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ABSTRACT

The debris particles obtained from wear experiments on poly-
mers are analysed by size and shape with image processing tech-
niques. The Fourier spectrum and morphological pattern spectra,
like the classical pattern spectrum, the area pattern spectrum and
the opening tree, are very promising techniques. They can be
used to extract parameters that relate to particle size and shape.
We determine the usefulness of the spectra in the field of ma-
terial science. The tests in this paper were done on a polymer
called “polyimide”. We performed wear experiments with dif-
ferent temperatures, loads and frequencies. In the future we will
perform experiments on composite materials.

1. INTRODUCTION

We perform tribological experiments on polymers and
composite materials (these are in essential polymers with
fibre strengthening). These materials can be used as dry
friction bearing materials, like in machinery for food and
pharmaceutical processes.

1.1. Tribology

Tribology is the science and technology of interacting sur-
faces in relative motion and the practices related thereto
[1]. Traditional parameters studied in tribological investi-
gations are the normal and the friction forces, which allow
us to determine one of the most important physical param-
eters: the friction coefficient. This parameter is important
because friction produces heat, and thus the friction coef-
ficient should be minimized. It depends on many parame-
ters such as normal load, speed and temperature.
Another interesting parameter to measure is the vertical
displacement, which gives an indication of the wear rate.
Nowadays it is not enough to know how quick materials
wear, but we want to understand how they wear, what the
major processes are, all in order to pick up the better ma-
terial combination. In this paper we investigate what role
image processing techniques can play.

Figure 1: Experimental setup of the pin-on-plate experi-
ment.

1.2. Experimental Setup

The test samples are installed onto a pin-on-plate setup
(Plint TE-77) (fig. 1) where a steel pin applies a normal
force on the sample while moving forward and backward.
This will wear the material. For the experiments described
in this paper we have used polymers called “polyimide”
(Vespel-SP1).
The debris particles resulting from the wear process are
collected and photographed. The analysis of the shape
and size of these particles in the pictures will hopefully
help us with the understanding of the wear process, and
with the correlation between all the parameters collected
during a test.
The wear particles look like the ones in fig. 2. The original
pictures were colour images with resolution 1300×1030,
but are converted to 8 bit grayscale pictures, since our
image processing algorithms only work on monochrome
images. For display purposes, we also performed a his-
togram equalisation to improve the contrast between the
background and the particles.
Three parameters are varied in the experiment: tempera-
ture, load and frequency.
The friction causes the plate to heat up. The tempera-
ture, which initially equals room temperature, can be reg-
ulated to stay at a certain value, or it can be left unreg-
ulated, resulting in further heating up of the plate (“free



Figure 2: Grayscale image of the debris particles from a
polymer.

T” in the table). The load of the pin on the sample varies
between 50 N and 200 N. We use different frequencies for
the movement speed of the plate.
We obtained pictures of debris particles for the following
experimental conditions:

Temperature (◦C) Load (N) Frequency (Hz)
1 free T 100 10
2 free T 100 20
3 free T 100 40
4 100 50 10
5 100 100 10
6 100 150 10
7 100 200 10
8 180 50 10
9 180 100 10
10 180 150 10

2. METHODS

Different possibilities are available to extract information
from an image. We use the parameters from spectral tech-
niques like the Fourier transform and morphological spec-
tra.

2.1. Fourier Analysis

The Fourier transform [2] of an image yields an energy
spectrum that reflects the grayscale periodicity (spatial
frequency spectrum) in the image. Large image objects
will constitute to the low frequency energy, small objects
to the energy of higher frequencies. The Fourier transform
lacks the ability of spatial localisation, but in our case this
is not a problem, since our debris particles are randomly
distributed over space.
An image is transformed with the 2D-FFT. This results in
a two dimensional (real) spatial frequency energy spec-

Figure 3: Schematic example of the basic morphological
operators. Solid line: original object; Dashed line: result
object; Circle: structuring element. Left: dilation; Right:
erosion.

trum. In order to calculate some first-order histogram
features and to remove the orientation dependence of the
FFT-spectrum, we transform the 2D-spectrum into a 1D-
spectrum (FFTh) with on the abscissa the spatial fre-
quency
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From the histogram, we compute the following parame-
ters, which will be discussed further on:

• Mean: the average frequency value;

• Standard deviation: the spread of the values;

• Skewness: the asymmetry of the histogram curve;

• Kurtosis: the curve shape relative to a normal dis-
tribution;

• Energy: the non-uniformity of the spectrum;

• Entropy: the uniformity of the distribution.

2.2. Mathematical Morphology

Mathematical morphology (MM) [3] is based on set the-
ory. The shapes of objects in a binary image are rep-
resented by object membership sets. This theory can be
extended to grayscale images. Morphological operations
can simplify image data, preserving the objects’ essential
shape characteristics, and can eliminate irrelevant objects.
Mathematical morphology is based on two basic opera-
tions, defined in terms of a structuring element (short:
strel), a small window that scans the image and alters the
pixels in function of its window content: a dilation of im-
age A with strel B (A⊕B) blows up the object, an erosion
(A 	 B) lets it shrink (see fig. 3).
Other operations, like the opening (an erosion followed
by a dilation) and the closing (a dilation followed by an
erosion), are derived from the basic operators.

2.2.1. (Area) Pattern Spectrum

If we take a strel and use it to perform an opening on an
image, some elements will disappear. If we take a big-
ger strel, then more elements in the image will vanish.



In this way we can determine how the number of elimi-
nated pixels increases when the image is morphologically
opened using strels nB = B ⊕ B ⊕ . . . ⊕ B (n times)
of increasing size n. The resulting plot of the number of
eliminated pixels versus the strel size n is called the pat-
tern spectrum (PS) or the granulometric curve [4].
The pattern spectrum is a histogram of the distribution of
the sizes of various objects displayed in an image. For-
mally, it is defined as follows:

PS(A; B)(n) = ][A ◦ nB \ A ◦ (n + 1)B], n ≥ 0 (1)

where ◦ is the opening symbol, \ is the pixelwise dif-
ference and ] is the count of grayscale pixels. Note that
0B = {0}.
Similarly, we define the Area Pattern Spectrum (APS).
Instead of using a structuring element, we now define
increasing threshold values λn which will decide which
connected components will be removed from the image.
There is an analogy with the Fourier spectrum: the low
frequencies in the Fourier spectrum and the big structur-
ing elements in the pattern spectrum relate to the global
features of the image, the other end of the spectrum relates
to the details in the image.
From the pattern spectrum we can extract different param-
eters [4], [5] that provide statistical information about the
content of the image:

• Mean object size: the mean strel size or mean area;

• Average roughness: the entropy, a quantification
of the shape-size complexity;

• Normalised average roughness: the entropy di-
vided by log

2
(Nmax + 1);

• B-shapiness: a quantitative measure of the resem-
blance of the objects to the strel shape;

• Maximal n (Nmax): the last bin (the highest n-
value, when all image objects are sieved out) of the
pattern spectrum histogram.

Notice that a different strel or λ-series results in differ-
ent (area) pattern spectra, and thus in other values for the
parameters.
Since the calculation time of the PS is very high, there is
need for other, similar techniques: besides the APS (using
a very fast algorithm [6], [7]), we will investigate a block
based technique and the pseudo-granulometry by minima
of linear openings [8].

2.2.2. Block Based Technique

The block based technique (BBT) divides the images into
smaller blocks that are processed independently. This

should lower the total calculation time, but introduces a
potential problem: a particle at a block boundary will be
treated as multiple particles or as a smaller particle. Or in
some cases even as a bigger particle. We investigate the
resulting deteriorations experimentally. Different sizes for
the subimages are used and verified.

2.2.3. Opening Tree

The opening tree [9] makes it possible to approximate the
pattern spectrum for grayscale images, with the calcula-
tion time about three orders of magnitude faster than the
traditional pattern spectrum calculation [8]. The opening
tree is a hierarchical technique where the image pixels are
the leaves and the nodes are made of pairs (h, n), where
h is a grayscale value and n is an opening size. The al-
gorithm (for details, see [8], [9]) works row-per-row or
column-per-column, or even diagonal-per-diagonal, but
can be extended to a two dimensional version. In that
case we get the so-called pseudo-granulometries by min-
ima/maxima of linear openings/closings. The pseudo-
granulometric curve should be a good approximation of
a square granulometry because of similar image features.

3. RESULTS

3.1. Calculation Time

In this section we compare the calculation times for the
different algorithms used. Seventeen 8 bit grayscale im-
ages with resolution 1300×1030 were processed.
The average results for one image are: the FFTh algorithm
only takes a few seconds, the APS about five seconds, for
the opening tree (1D and 2D) tens of seconds are needed,
the calculation time for the BBT goes from a few hours
(image split into 20×20 different images) to a few days
(3×4 subimages), while the calculation of the classical PS
takes a few days.
The calculations were made on a PC with an AMD Athlon
XP processor (CPU-speed about 1.6 GHz) and with 1 GB
of RAM. Other processes were running on the computers
at the same time, though. The opening tree and pattern
spectrum algorithms are written in C.
For the block based technique, the calculation time is the
sum of the different block images. We have not taken into
account the time necessary to split the images and merge
the results.

3.2. Fourier Analysis

Table 1 shows the correlation coefficients P between the
different experimental parameters (frequency, tempera-
ture and load) and the different spectral parameters. It



Table 1: Correlation coefficients for the FFTh parameters
Mean Std Skewness Kurtosis Energy Entropy

Frequency P 0.60 0.37 -0.64 -0.61 -0.51 0.78
free T, L = 100 N P̃ 0.59 0.76 0.55 0.59 0.66 0.43

Temperature P 1 1 1 1 1 -1
L = 50 N P̃ — — — — — —

Temperature P 1 1 -1 -1 -1 1
L = 100 N P̃ — — — — — —

Temperature P 1 1 1 1 -1 1
L = 150 N P̃ — — — — — —

Load P -0.14 0.62 0.87 0.86 -0.0087 -0.67
T = 100 ◦C P̃ 0.86 0.38 0.14 0.14 0.99 0.33

Load P -0.83 -0.25 0.44 0.41 -0.94 -0.63
T = 180 ◦C P̃ 0.38 0.84 0.71 0.73 0.23 0.57

also shows the value P̃ , the probability of getting a cor-
relation as large as the observed value by random chance,
when the true correlation is zero. So it is important that
the value for P is close to 1 and the value for P̃ is low.
Since there are too few pictures available to do the statis-
tical analysis, the P̃ value will be quite large in most of
the reported results. In the case of the correlation of the
temperature with the spectral parameters no value of P̃ is
listed, since only two observations were available.
From the correlation table we observe the following trends
for the parameters from the FFTh:

• Frequency increases with entropy;

• Temperature increases with mean and standard de-
viation;

• Load increases with kurtosis and skewness when
T = 100 ◦C;

• Load decreases with energy and mean when
T = 180 ◦C;

• Load increases with entropy in both cases but with
lesser probability.

Overall, entropy correlates best with the physical parame-
ters.

3.3. (Area) Pattern Spectrum

We calculated the classical spectrum by using a square
structuring element, starting at size 2×2, in order to be
able to compare with the pseudo-granulometry (section
2.2.3). Here we calculated five parameters. Table 2 shows
the correlation coefficients P for the different spectral pa-
rameters with the different experimental parameters (fre-
quency, load and temperature).

From the correlation table we observe the following trends
for the parameters from the PS:

• Frequency decreases with roughness, normalised
roughness and shapiness;

• Temperature decreases with Nmax and size;

• Load increases with normalised roughness when
T = 100 ◦C;

• Load increases with size when T = 180 ◦C;

• Load increases with roughness and to Nmax in both
cases.

For the generation of the area pattern spectrum we used a
4-connectivity and λ-series {4, 9, 16, 25, . . .}, so compar-
ison with the PS with a 2×2 strel is possible.
From table 3 we observe the following trends for APS:

• Frequency decreases with roughness, normalised
roughness and shapiness and increases with size;

• Load increases with all parameters, except shapi-
ness when T = 100 ◦C.

The area pattern spectrum gives a similar correlation as
the classical PS, except for the load when T = 180 ◦C.
Overall, for PS and APS, roughness and normalised
roughness correlate best with the physical parameters, and
they show the same behaviour.
Compared to the FFTh parameters (section 3.2), there is
a better correlation between the experimental parameters
and those from the (area) pattern spectrum.
As stated before, the number of pictures that were avail-
able is small. Therefore the presented results are prelim-
inary. More data are needed.



Table 2: Correlation coefficients for the PS parameters
Size Roughness Norm. roughness Nmax Shapiness

Frequency P -0.68 -0.88 -0.94 -0.10 -0.90
free T, L = 100 N P̃ 0.53 0.32 0.23 0.94 0.28

Temperature P -1 1 1 -1 -1
L = 50 N P̃ — — — — —

Temperature P -1 -1 1 -1 -1
L = 100 N P̃ — — — — —

Temperature P -1 -1 -1 -1 1
L = 150 N P̃ — — — — —

Load P 0.55 0.96 0.93 0.88 -0.79
T = 100 ◦C P̃ 0.45 0.037 0.074 0.12 0.21

Load P 0.98 0.95 0.48 0.93 0.51
T = 180 ◦C P̃ 0.14 0.20 0.68 0.23 0.66

Table 3: Correlation coefficients for the APS parameters
Size Roughness Norm. roughness Nmax Shapiness

Frequency P 0.90 -0.86 -0.86 -0.76 -0.97
free T, L = 100 N P̃ 0.29 0.34 0.34 0.45 0.17

Temperature P 1 1 1 1 1
L = 50 N P̃ — — — — —

Temperature P 1 1 1 1 -1
L = 100 N P̃ — — — — —

Temperature P -1 -1 -1 -1 -1
L = 150 N P̃ — — — — —

Load P 0.95 0.93 0.91 0.95 0.61
T = 100 ◦C P̃ 0.049 0.067 0.093 0.051 0.39

Load P 0.016 0.13 0.65 -0.0010 -0.34
T = 180 ◦C P̃ 0.99 0.92 0.55 0.99 0.78

3.4. Block Based Technique

When the number of subimages increases, the values of
size, Nmax en roughness decrease. The values of shapi-
ness and normalised roughness increase. Fig. 4 shows
the differences between the pattern spectra. At lower n-
values, the spectra from the images divided into more
blocks show higher PS-values, but lower PS-values at
higher n and lower Nmax-values. Notice from the insert
in fig. 4 that Nmax for the 3×4-case is higher than the one
for the original image. This is due to boundary effects.

Concerning the correlation we notice the following:
when the number of subimages increases the correlation
between the frequency and the spectral parameters im-
proves, but it worsens between the load and the spectral
parameters. Also, the parameter Nmax tends to decrease
with the load.

3.5. Opening Tree

If we compare the pattern spectrum with the 2D granulo-
metries (obtained with horizontal/vertical, diagonal or ho-
rizontal/vertical/diagonal opening trees), then we get the
following result: min.hv’s (minimal opening with hori-
zontal and vertical trees) parameters agree more with PS
than the other opening trees, although values can differ
strongly and other 2D granulometries visually look more
like the exact PS than min.hv. Roughness and normal-
ised roughness from min.hv agree most with the value
from the PS (over 90 % resemblance), followed by the pa-
rameter size (about 30 % too large). The other parameters
differ very much.
For the pseudo-granulometry by minima of linear open-
ings we observe the following trends:

• Frequency decreases with roughness, normalised
roughness and size;



30 40 50 60 70 80 90 100 110

1

2

3

4

5

6

7

8

9

x 105

n

P
S

(A
;B

)(
n)

Full image
3 x 4
10 x 10
20 x 20

250 300 350 400
0

2

4

6

8

10

12

14

x 105

Figure 4: Part of the Pattern Spectrum of the original
image and the into subimages divided (and afterwards
merged) images.

• Temperature decreases with size;

• Load increases with roughness and normalised
roughness when T = 100 ◦C;

• Load increases with shapiness when T = 180 ◦C;

• Load increases with size in both cases.

Overall, roughness and normalised roughness, which
show almost exactly the same correlation, and size cor-
relate best with the physical parameters.
For the other types of opening trees similar results are ob-
tained. There are slight differences between the diagonal
opening trees and the other trees, but they are not signifi-
cant.
It seems that the parameters from the PS (section 3.3) are
better correlated with the experimental parameters than
the parameters from the opening tree are.

4. CONCLUSIONS

Although the images don’t contain enough debris particles
and there are too few pictures to draw definite and reliable
conclusions, some indications for correlation between
the parameters of the FFTh/PS/APS/opening tree and the
physical parameters from the experiment can be seen.
The Fast Fourier Transform histogram is a fast technique
where the parameter entropy is the best to classify the
differently treated images. For the pattern spectrum al-
gorithms the parameters roughness and normalised rough-
ness are the best. The PS is very slow, but the APS
is very fast and gives similar results as the classical PS

when a proper λ-series has been chosen. The opening
tree algorithm is very fast compared to the exact pattern
spectrum algorithm and gives similar results (especially
min.hv). Size is a useful parameter.
Concluding from the obtained results, the opening tree
and the APS are preferred to the FFTh because of their
correlation accuracy and to the PS because of their huge
speed improvement.
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