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Abstract. In this paper we present a novel method for interpolating
images with repetitive structures. Unlike other conventional interpolation
methods, the unknown pixel value is not estimated based on its local
surrounding neighbourhood, but on the whole image. In particularly, we
exploit the repetitive character of the image. A great advantage of our
proposed approach is that we have more information at our disposal,
which leads to a better reconstruction of the interpolated image. Results
show the effectiveness of our proposed method and its superiority at very
large magnifications to other traditional interpolation methods.

1 Introduction

Many applications nowadays rely on digital image interpolation. Some examples
are simple spatial magnification of images or video sequences (e.g. printing low
resolution documents on high resolution (hr) printer devices, digital zoom in
digital cameras or displaying Standard Definition video material on High Defi-
nition television (hdtv)), geometric transformation and registration (e.g. affine
transformations or computer-assisted alignment in modern X-ray imaging sys-
tems), demosaicing (reconstruction of colour images from ccd samples), etc.

Many interpolation methods already have been proposed in the literature,
but all suffer from one or more artefacts. Linear or non-adaptive interpolation
methods deal with aliasing (e.g. jagged edges in the up scaling process), blurring
and/or ringing effects. Well-known and popular linear interpolation methods are
nearest neighbour, bilinear, bicubic and interpolation with higher order (piece-
wise) polynomials, b-splines, truncated or windowed sinc functions, etc. [7,10].

Non-linear or adaptive interpolation methods incorporate a priori knowledge
about images. Dependent on this knowledge, the interpolation methods could
be classified in different categories. The edge-directed based techniques follow
a philosophy that no interpolation across the edges in the image is allowed or
that interpolation has to be performed along the edges. This rule is employed
for instance in Allebach’s edi method, Li’s nedi method and Muresan’s aqua
method [1,8,12]. The restoration-based techniques tackle unwanted interpola-
tion artefacts like aliasing, blurring and ringing. Examples are methods based on
isophote smoothing, level curve mapping and mathematical morphology [11,9,6].
Some other adaptive techniques exploit the self-similarity property of an im-
age, e.g. iterated function systems [5,15]. Another class of adaptive interpolation
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methods is the training-based approach, which maps blocks of the low resolution
image into predefined high resolution blocks [4].

Adaptive methods still suffer from artefacts: their results often look seg-
mented, yield important visual degradation in fine textured areas or random
pixels are created in smooth areas [9]. When we use very big enlargements
(i.e. linear magnification factors of 8 and more), then all these artefacts become
more visible and hence more annoying.

In §2 we will motivate the exploitation of repetitive structures in image inter-
polation. In §3 we give an image interpolation scheme for repetitive structures
and in §4 we show some experiments and results of our proposed method com-
pared to other interpolation techniques.

2 Repetitive Structures

Fractal-based interpolation methods suppose that many things in nature possess
fractalness, i.e. scale invariance [5]. This means that parts of the image repeat
themselves on an ever-diminishing scale, hence the term self-similarity. This
self-similarity property is exploited for image compression and interpolation by
mapping the similar parts at different scales. Due to the recursive application
of these mappings at the decoder stage, the notion of iterated function systems
(ifs) is introduced.

Unlike ifs, we exploit the similarity of small patches in the same scale, i.e. spa-
tially. In order to avoid confusion, we will use the term repetitivity. Another class
of upscaling methods which also takes advantage of repetitivity, is called super
resolution (sr) reconstruction. sr is a signal processing technique that obtains
a hr image from multiple noisy and blurred low resolution images (e.g. from a
video sequence). Contrary to image interpolation, sr uses multiple source im-
ages instead of a single source image. It is well known that sr produces superior
results to conventional interpolation methods [3].

It is often assumed that true motion is needed for sr, however many reg-
istration methods do not yield true motion: their results are optimal to some
proposed cost criterion, which are not necessarily equal to true motion. With
this in mind, we can hypothetically assume that repetitive structures could serve
as multiple noisy observations of the same structure (after proper registration).
Results of our experiments in §4 will confirm that this hypothesis holds for real
situations. The concept of repetitive structures has already succesfully been used
for image denoising [2]. Besides repetitivity in texture, we can also find this re-
current property in other parts of the image, some examples are illustrated in
figure 1.

Our method is found perfectly suitable to some applications: some exam-
ples are interpolation of scanned text images (availability of multiple repeated
characters regardless of their font and the scan orientation) and gigantic satel-
lite images (long roads and a lot of texture provide a huge amount of training
data). A special application is sr in surveillance: when very few low resolution
images are available, missing data could be filled up with the use of repetitive
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structures. Because of the close relationship with sr, we can also denote our
method as an intra-frame sr technique. In that way, surveillance applications
could use a combination of inter- and intra-frame sr.

(a) Repetition in different objects.

(b) Repetition along edges.

(c) Repetition in uniform areas.

Fig. 1. Examples of repetitive structures in images

3 Proposed Reconstruction Scheme

We propose a simple interpolation method which exploits this repetitive be-
haviour. Our interpolation method is based on our camera model as shown in
figure 2. Our scheme is quite straightforward and consists of three consecutive
steps:

1. Matching repetitive structures and subpixel registration of these structures
on the hr grid.

2. Robust data fusion.
3. Restoration (i.e. denoising and deblurring).

In the rest of this paper we will simply treat each r,g,b-channel of colour im-
ages separately. For an enhanced colour treatment we refer to [14]. The following
sections will discuss each component carefully.
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Fig. 2. Observation model of the image acquisition

3.1 Matching and Registration of Repetitive Structures

For the sake of simplicity, we define small rectangular windows B as basic struc-
ture elements. Two criterions are used in our algorithm to find matching win-
dows or blocks across the whole image, namely the zero-mean normalized cross
correlation (cc) and the mean absolute differences (mad):

Ecc =

∑

x∈Ω

(B(m(x)) − B)(Bref(x) − Bref)

√∑

x∈Ω

(B(m(x)) − B)2
∑

x∈Ω

(Bref(x) − Bref)
2

(1)

Emad =
1

κ(Ω)

∑

x∈Ω

|B(m(x)) − Bref(x)| (2)

where Ω contains all the pixels of the reference window Bref and κ(Ω) is the
cardinality (i.e. the number of pixels) of Ω. B and Bref are denoted as the
mean values of respectively B and Bref. The transformation of the coordinates
is characterized by the mapping function m. To simplify the registration prob-
lem and in particularly to save computation time, we assume that we are only
dealing with pure translational motions of B. The main motive to use the cc and
mad criterions is because they are somewhat complementary: cc emphasizes the
similarity of the structural or geometrical content of the windows, while mad
underlines the similarity of the luminance and colour information. A matched
window is accepted if the two measures Ecc and Emad satisfy to the respective
thresholds τcc and τmad, more specifically: Ecc > τcc and Emad < τmad.
Since we only want to have positive correlation, Ecc must lay between 0.0 and
1.0 and τmad denotes the maximum mean absolute pixel difference between two
windows. The choice of Ecc and τmad depends heavily on the noise content of
the image (e.g. due to additive noise or due to quantization noise in dct-based
compressed images such as jpeg): the higher the noise variance, the lower Ecc
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and the higher τmad must be chosen in order to match the same repetitive struc-
tures. Our implementation uses an simple exhaustive search in order to find the
matching windows, but more intelligent (pattern-based) search algorithms could
reduce the computation time enormously.

Common ways to achieve subpixel registration in the spatial domain, is to
interpolate either the image data or the correlation data. In order to save com-
putation time we only resample the reference window Bref on a higher resolution.
In this way we represent the downsampling operator in the camera model in fig-
ure 2 as a simple decimation operator as illustrated in figure 3. We estimate the
subpixel shifts by minimizing the mad criterion in equation 2. As a simplifica-
tion of the optimization problem, we use the hr grid as the discrete search space
for the subpixel shifts. After the subpixel registration, the pixel values of B are
mapped onto the hr grid.

Most existing techniques use linear methods to resample Bref. However, these
interpolation methods typically suffer from blurring, staircasing and/or ringing.
These artefacts not only degrade the visual quality but also affect the regis-
tration accuracy. Therefore we adopt a fast non-linear restoration-based inter-
polation technique based on level curve mapping, which suffers less from these
artefacts [9].

Fig. 3. The 3 : 1 decimation operator maps a 3M × 3N image to an M × N image

3.2 Data Fusion

In this step we determine an initial pixel value for every pixel of the hr grid. In
the previous registration step we already obtained zero or more observations for
these pixels.

Several observations are available. Starting from the maximum likelihood
principle, it can be shown that minimizing the norm of the residuals is equiv-
alent to median estimation [3]. A residual is the difference between an ob-
served pixel value and the predicted pixel value. The median is very robust
to outliers, such as noise and errors due to misregistration. For this reason
we adopt the median estimate of all observations for every pixel in the hr
grid for which we have at least one observation.
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No observation is available. These unknown pixel values are initialised with
the values of the interpolated reference windows Bref. We do not need ad-
ditional computations since this image is already constructed for the regis-
tration step (see §3.1).

Restoring the original pixels. These original pixel values are simply mapped
back on the hr grid, because we know that these pixel values contain the
least noise.

In a nutshell, the hr grid consists of three classes: the original pixels (or),
the unknown pixels (un) and the fused pixels (fu). The last mentioned class
will provide the extra information which gives us better interpolation results
compared to conventional upscaling techniques.

3.3 Denoising and Deblurring

We assume that the blur in the camera model in figure 2 is characterized by a
shift-invariant point spread function (psf). The inverse problem becomes highly
unstable in the presence of noise. This can be solved by imposing some prior
knowledge about the image. Typically we will try to force spatial smoothness in
the desired hr solution. This is usually implemented as a penalty factor in the
generalized minimization cost function:

Î(x) = arg min
I(x)

[ρr(I(x)) + λρd(H ∗ I(x) − I(x, 0))] (3)

where H denotes the psf-kernel (typically Gaussian blur, which is characterized
by its standard deviation σblur) and λ is the regularization parameter between
the two terms, respectively called the regularization term ρr and the data fidelity
term ρd. Image I(x, 0) is the hr image obtained in §3.2.

The minimization problem of equation 3 could be transformed to the following
partial differential equation (pde) which produces iteratively diffused images
I(x, t) starting from the inialisation image I(x, 0):

∂I(x, t)
∂t

= ρ′r(I(x, t)) + λρ′d(H ∗ I(x, t) − I(x, 0)) (4)

where the chain rule is applied on both ρ-terms: ρ′(I(t)) = ∂ρ(I(t))
∂I(t) · ∂I(t)

∂t .
The use of the so-called edge-stopping functions in the regularization term

is very popular, because it suppresses the noise better while retaining impor-
tant edge information [13]. Therefore we apply one of the most successful edge-
preserving regularization terms proposed for image denoising, namely the total
variation (tv):

ρr(I(x, t)) = |∇I(x, t)| (5)

Since the interpolation of repetitive structures is closely related to super res-
olution problems, we could assume that the outliers (due to the inaccuracy of
the image registration, blur, additive noise and other kinds of error which are
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not explicitly modeled in the fused images) are better modeled by a Laplacian
probability density function (pdf) rather than a Gaussian pdf according to [3].
The maximum likelihood estimate of data in the presence of Laplacian noise
is obtained through the L1-norm minimization. That is why we will use the
L1-norm function for the data fidelity term:

ρd(H ∗ I(x, t) − I(x, 0)) = |H ∗ I(x, t) − I(x, 0)| (6)

These ρ-functions are very easy to implement and are very computationally
efficient. Other robust ρ-functions could also be employed [13]. We now adapt
the pde in equation 4 locally to the several classes of pixels on the hr grid:

– Class or: since these pixels contain the least noise as discussed in §3.2, very
little regularization has to be applied. This means that these pixels depend
mainly on the data fidelity term and thus λ is set to λmax.

– Class un: these pixels are most likely noise and depend only on the regular-
ization term (λ = 0).

– Class fu: these pixels contain noise and relevant information. The more ob-
servations we have, the more robust the initial estimation will be and hence
the lesser noise the pixel will contain. That is why we apply equation 4 with
λ proportional to the number of available observations α: in our implemen-
tation we use λ = min(λmax, α

10λmax). Where 10 is the buffer length of the
observations.

Finally the pde of equation 4 is iteratively applied to update the blurred and
noisy image in the restoration process.

4 Experiments and Results

As a first realistic experiment we have both printed and scanned one A4 paper
containing the Lorem ipsum text with the hp psc 2175 machine at 75 dpi as
shown in figure 4. The Lorem ipsum text is very popular as default model text,
but additionally it has a more-or-less normal distribution of letters [16].

The basic structure element was chosen to be a 18 × 12 rectangular window.
We have enlarged the region of interest (roi) with a linear magnification factor
of 8 and compared our result with the popular cubic b-spline interpolation tech-
nique in figure 4. The parameters for our method are σblur = 4.0, τcc = 0.6,
τmad = 40.0, λmax = 100 and 100 iterations for the restoration process. The
parameter selection was based on trial and error, i.e. to produce the visually
most appealing results. Also the detection rate of the word leo was perfectly,
this means a recall and a precision of both 100% (on 13 samples). We can clearly
see in figure 4 that our method outperforms traditional interpolation techniques:
the letters are much better readable and reconstructed, noise and jpeg-artefacts
are heavily reduced and much less blurring, staircasing and ringing artefacts are
created.
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(a)

(b) (c) (d)

Fig. 4. Interpolation of the Lorem ipsum text (8× enlargment): (a) a part of the
original scanned text image (at 75 dpi), (b) nearest neighbour interpolation of the roi
of (a), (c) cubic b-spline interpolation, (d) our proposed method (partition of the hr
grid: 1.5625% (or), 14.0625% (fu) and 84.375% (un))

(a) (b) (c)

Fig. 5. Experiment with the scanned Lorem ipsum text (2× enlargment): (a) original
scanned text at 150 dpi, (b) cubic b-spline interpolation of the roi of figure 4a at 75
dpi, (c) our proposed method applied on the roi of figure 4a at 75 dpi (partition of
the hr grid: 25% (or), 50% (fu) and 25% (un))

We have scanned the same text at 150 dpi as shown in figure 5. If we visually
inspect the 2× linear enlargment of our method and the cubic b-spline interpo-
lation to this ground truth data, we can conclude that our method manage to
reconstruct the characters much better. The images in figure 5 are 4× enlarged
with the nearest neighbour interpolation in order to achieve a better visibility.

As a second experiment we have interpolated a real image. In figure 6 we show
a part of the original image with a 8× nearest neighbour interpolation of the
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(a) A part of the original image.

(b) Nearest neighbour of the region of interest of (a).

Fig. 6. An example with a real image

region of interest. As basic structure elements we use 5×5 windows and we have
enlarged the image with a linear magnification factor of 8. For the matching step
we have used the following threshold parameters: τcc = 0.9 and τmad = 9.0.
For the denoising and deblurring we have applied the pde within 100 iterations
and with σblur = 4.0 and λmax = 10. With these parameters we obtained the
following partition of the different classes: 1.5625% (or), 30.9091% (fu) and
67.5284% (un).
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(a) Cubic b-spline.

(b) ifs [15].

(c) Our proposed method.

Fig. 7. Results of several interpolation methods for the roi of figure 6a
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Figure 7 shows our result compared to a linear interpolation (cubic b-spline)
and an ifs method (obtained from commercial software [15]). Significant im-
provements in visual quality can be noticed in our method: there is a very good
reconstruction of the edges and our result contains much less annoying artefacts.
The result produced with our method is also better denoised while important
edges are preserved.

5 Conclusion

In this paper we have presented a novel interpolation scheme based on the repet-
itive character of the image. Exploiting repetitivity brings more information at
our disposal, which leads to much better estimates of the unknown pixel values.
Results show the effectiveness of our proposed interpolation technique and its
superiority at very large magnifications to other interpolation methods: edges
are reconstructed well and artefacts are heavily reduced. In special applications
with text images, we can achieve excellent results: characters could be made
much better readable again. This could be very advantageous for optical char-
acter recognition (ocr) applications or when the image resolution can not be
improved at the sensor because of technological limitations or because of high
costs.
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