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Abstract— In this article we present a technique for seg-
menting the affected tissue visible as white flaring in the
ultrasound brain images of neonates with Leukomalacia
(White Matter Damage). The technique combines both tex-
tural information of the investigated tissue as well as math-
ematical morphology in order to detect and delineate the
boundaries of the affected parts of the brain. The repro-
ducibility of the proposed technique is evaluated and the ex-
perimental results are validated by comparing them to the
manual delineations of 12 expert medical doctors from dif-
ferent institutions. Although it seems hard to reach a con-
sensus on the correct segmentation of the flaring, because of
the lack of a golden standard in the ultrasound images, we
show that our method outperforms the existing techniques
based on active contours in speed and is more accurate.

Keywords— Medical Ultrasound, Leukomalacia, segmen-
tation, mathematical morphology

I. I NTRODUCTION

20 To 50 percent of the neonates with a very low birth
weight (< 1500 g) suffer from the “White Matter Dam-
age” (WMD) [1]. Due to a lack of oxygen in the brain
parts of the white matter die. This leads flaring on the ul-
trasound image as shown in figure 1. In current practice,
experts depend on visual inspection of ultrasonic (US) im-
ages for the diagnosis of WMD [1] when there is no other
information such as MRI available.
In order to objectively support the diagnosis (e.g. in medi-
cal reports, for purposes of meta-analysis or to objectively
evaluate the progression of the disease in time, staging)
there is a clear need for (semi-) automated algorithms for
delineating (segmenting) the affected regions. A classical
and commonly used approach to the delineation problem
in other imaging modalities is the technique of active con-
tours [2]. However, this technique performs poorly on US
images, because of speckle noise. The contours tend to get
stuck on isolated speckles [3]. Another problem is that US
images acquired using different equipment can differ sub-
stantially which implies that algorithms have to be tuned,
often even redesigned for different equipment.

In this paper, we present a new technique that is more
robust against speckle noise and that is machinery inde-
pendent (it can be used on different types of ultrasound
machines without refining). The segmentation technique
is based on the experimental observation [3] that textural
features based on the co-occurrence matrix can to some de-
gree distinguish between (large) affected and non affected
areas. Some morphological image processing is used to
detect the outer boundaries of the textural homogeneous
affected parts.
To validate our new technique, we performed segmenta-
tion tests on a population of 21 images from WMD pa-
tients and 7 images from patients without this disease.
The images were acquired using an Ultramark ultrasound
machine. To validate the machine-independence, we also
tested the algorithm on 35 images acquired using an Acu-
son ultrasound machine. The results show that better de-
lineations are achieved with this technique than with the
active contours, and that it is not necessary to adapt or tune
the algorithm on different equipment.
Our algorithm is fast which could be useful in case of real-
time post processing applications like 3D ultrasound seg-
mentations or 3D volumetrical measurements of the flares.
In the next sections we will consequently explain the
method used and the segmentation algorithm before turn-
ing to the results, the validation of those and their discus-
sion. We will end with the further research that remains to
be done.

II. M ETHOD

A. Textural information

According to earlier results [3] and [4] textural fea-
tures based on the co-occurrence matrix are useful to dis-
tinguish affected from unaffected brain tissue. The co-
occurrence matrix counts the number of timesn(a, b) two
pixelsp(x, y) = n1 andp(x + a, y + b) = n2 located in
a fixed relative position to each other assume a particular
combination(n1, n2) of grey values. As such it is a two-
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Fig. 1. Brain infected with WMD, one affected part, delineated
white flare, is shown in a bounding box. A square region of
interest (ROI) is also shown for texture examination. The Plexus
Chorideus is also delineated

dimensional histogram [5]. In practice, the co-occurrence
matrix is computed in a square region, one or more fea-
tures (numbers) are derived from it and these features are
used to classify the region. In earlier work usually two par-
ticular features, the mean grey value and the contrast were
used [3].
However, many other combinations of features are possi-
ble. In order to investigate the best combination of features
for our purpose, we have evaluated 10 first and second or-
der features (Angular Second Moment, Entropy, Contrast,
Correlation, Inverse Difference Moment, Max. Probabil-
ity, Mean Grey Value, Standard Deviation, Signal-to-noise
ratio and Kappa [5]) derived from the co-occurrence ma-
trix to investigate if adding these could features would lead
to a better classification. We repeated this evaluation for
different values ofa = d cos θ andb = d sin θ, i.e. for
θ = 0, 45, 90 and135 degrees and ford in the range 1
to 20 for window sizes (ROI) ranging from 30x30 up to
60x60 pixels. These regions in which the co-occurrence
matrix is computed, were selected in the proper anatomi-
cal region where WMD usually occurs.
Figure 2 shows us some results from this experiment, in
which we see the average value (with the standard devi-
ation as vertical bars) of the features over the unaffected
(green) and affected (red) images for different distances in
the co-occurrence matrix for a specific angle (0 degrees)
and window size (30x30 pixels). The figure shows that for
anyd only the grey mean value is an acceptable discrimi-
nating feature, at least in the case where only one param-
eter is used, combinations of parameters are not discussed
here [3]. Similar results were obtained with the other win-
dow sizes and angles. The results imply that the struc-
tural texture pattern is not very different in affected and
unaffected tissue at least when we use these features, that
adding extra texture features does not drastically improve

Fig. 2. Curves of co-occurrence parameters over multiple dis-
tances, with error bars. Darker curve (red if color) is for the
affected images, lighter one (if color green) for healthy ones.

the classification and that it is best to rely mainly on the
average grey value for classification.
Given the rather poor textural results we applied another
technique based on prior research involving the correla-
tion in grey mean value between the flaring and the plexus
chorideus, an anatomical feature partly inside the ventrical
as can also be seen in figure 1. In [6] it is shown that there
is a correlation between the grey mean value of the plexus
and of the flaring around.

B. Segmentation algorithm

The information above can be used in the development
of a semi-interactive algorithm that requires the user to in-
dicate a rough bounding box around the flare of interest af-
ter which the algorithm computes the exact boundary. This
type of interaction is smaller compared to the interaction
required in the active contours technique where typically
multiple points have to be precisely chosen.
More into detail the technique proceeds as follows: first of
all, the user selects 2 Regions of Interest or ROI, figure 1.
The first ROI contains the plexus chorideus which is easy
to segment and the second ROI contains the desired flaring.
Now since the borders of the flaring are unclear and a man-
ual segmentation is rather inaccurate, some background is
usually included [3] in the second ROI.
The first ROI can be seen as a bounding box containing the
reference grey mean value, the second as the area where
the flaring is expected. Next, a threshold will is applied.
All pixels in the flaring with grey value less than the mean
grey value of the plexus ROI are set to zero. This we
do based on the results in [6] Segmentation in our case
is region based and comes down to classifying a pixel in
the class representing the flare or in the class represent-
ing background. Therefore, the remaining grey values are
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made binary. The upper left part of figure 3 shows the re-
sult of this combined pre processing.
The resulting binary image however contains a lot of holes
due to the speckled nature of the image. These holes are
part of the flaring, but if we make a segmentation on this
current image, several little regions will be detected, al-
though we presume the flare is one large connected area.
Further image processing is then done with the help of
morphological operators.
Mathematical morphology image processing is based on
set theory, so the shapes of objects in a binary image are
represented by object membership sets. Morphological
operations can simplify image data, preserving the objects’
essential shape characteristics, and can eliminate irrelevant
objects. Our technique is based on two basic widely used
operations: a dilation, which fills holes and smooths out
the contour lines, and an erosion, which removes small ob-
jects and disconnects objects connected by a small bridge.
Such operations are defined in terms of a structuring ele-
ment, a small window that scans the image and alters the
pixels in function of its window content. The choice of the
proper structuring element is important, most commonly
little rectangles, squares, discs or crosses are used depend-
ing on the application and morphological properties of the
images. A dilation of imageA with structuring element
B (A ⊕ B) blows up the object, an erosion (A ª B) lets
it shrink. Dilation and erosion are union and intersection
operations, respectively:

A⊕B = max{A(a− b) + B(b) | b ∈ B, a− b ∈ A}
AªB = min{A(a + b)−B(b) | b ∈ B, a + b ∈ (A)}
wherea is each pixel of the imageA andb is each pixel in
the structure elementB. Other operations, like theopening
A ◦ B (an erosion followed by a dilation) and theclosing
A•B (a dilation followed by an erosion), are derived from
the basic operators. The closing, in specific, acts like a
dilation (it fills holes), but does not blow up the objects, so
the original object size is retained.
How we will use these operators in our technique will now
be explained. After the preprocessing we still notice tiny
black holes and outlying speckles. Using a square or a disk
as structure element we can fill those holes and connect the
speckles by closing the image with these structure element
as can also be seen in figure 3, upper right en lower left.
Since there is no dominant direction in the flaring using
disks gives a more natural result, so from now on stick to
them. After the closing we can already measure the pixel
area of the flare, extracting the contour of the flare can be
done with another morphological operation, the gradient.
Taking the difference of the dilation with the erosion, thus
calculatingGB(A) = (A ⊕ B)\(A ª C) gives us this

Fig. 3. Upper left: preprocessing result, Upper right: closure
with a disk , Lower left: closure with a squared structure ele-
ment, Lower right: gradient operation.

gradient. In this equationA is the upper right image in 3,
B is a disk of radius 4 to 6 for the dilation andC is a disk
of radius 1 to 3 for the erosion. The result of the gradient
operation can be seen in the lower right part of figure 3.
This will be our final delineation. It is possible that for
different images different radii of the structure elements
have to be tested in order to obtain best result. The interval
mentioned above (4 to 6, and 1 to 3 are good indications in
this).

III. E XPERIMENTAL RESULTS

When compared to a standard active contour method
[2], our method outperforms it as well in speed as in the
results obtained. As can be seen from figure 5 and figure 4,
our method is less sensitive to isolated speckles surround-
ing the flares which makes the contour more refined. Our
method can also be used over different machinery without
adaption, as for now we tested it on images obtained with
Ultramark and Acuson equipment. In term of time our al-
gorithm needs about 1 sec. where the active contours go
up to 20 sec. (AMD, 2GHz. processor).

IV. VALIDATION

A. Inter-observer variability

In order to compare our method to the manual delin-
eations made by experts we set up the following experi-
ment. We collected a set of 10 images of children infected
by WMD and sent them to 12 medical doctors from differ-
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Fig. 4. On the left the delineation of a medical doctor, in the
middle our technique, on the right the active contour method
performed on an Ultramark ultrasound machine

Fig. 5. On the left the delineation of a medical doctor, in the
middle our technique, on the right the active contour method
performed on an Acuson ultrasound machine

Fig. 6. The upper image is one of the 10 used in the test set,
in the lower image the different delineations are shown using
different colors, each medical doctor has his own color against
a blue background

pix. area method pix. area MD OR (%)
image 1 10785 6645 60,17
image 3 10785 9794 77,61
image 4 11793 11138 74,90
image 5 12817 12457 83,74
image 6 11792 10890 79,52
image 7 6875 7430 85,22
image 8 6697 5689 69,23

TABLE I
INTER-OBSERVER VARIABILITY

ent institutions, asking them to segment the flaring as they
see them, without further prior information. The results
were somehow surprising as can be seen in figure 6. This
figure shows the overlay of the different delineations of
the left and right flaring in the image placed above. As can
easily be seen, the inter-observer variability is enormous.
The mayor explanation for this is the lack of a golden stan-
dard for characterizing affected tissue in ultrasound im-
ages, Another reason is the lack of prior medical informa-
tion, as we said we asked the medical doctors involver to
segment blindly. This is a drawback for the validation of
the technique.
As for now, we compared our segmentations to those of
the medical doctor who acquired the images, as we may
expect that he has the best knowledge of the pathology in
these images, having access to other complementary med-
ical information of the patients.
In order to do so we calculated the ratio of the area of
overlap of different segmentations and the total area of the
union of both segmentations. LetA be the manual delin-
eation by the medical expert andB be our delineation, we
computed following simple overlap ratio (OR)

OR =
A ∩B

A ∪B
. (1)

The results for 8 of the 10 test images can be found in
table I, in which we compared the delineation of the med-
ical doctor to the delineation make by our algorithm. The
higher the ratio, the better the segmentations overlap. Note
that in fact next to the overlap we also have to take the mor-
phology of the segmentations into account. More sophis-
ticated methods of comparing the segmentations, based on
[7], which also take into account the morphology are cur-
rently investigated.

B. Intra-observer variability

In order to measure the intra-observer variability or, i.e.
the reproducibility of our method, we set up the following
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pix. area method pix. area MD OR (%)
image 1 18739 5.1 85,21
image 2 16134 4.0 86,16
image 3 22573 4.2 87,45
image 4 22452 5.2 85,45
image 5 13179 5.9 84,13
image 6 14988 6.5 86,52
image 7 14659 6.8 79,12
image 8 22435 3.9 85,78

TABLE II
INTRA-OBSERVER VARIABILITY

experiment. Out of the test set of 10 pictures, we let the
computer pick an image which was presented to the same
user to segment. This continued until each of the 10 pic-
tures was picked and segmented 5 times. We did this in
order to scramble the images and prevent the user of using
prior information if he or she would be asked to segment
the same image multiple times. In other words if he or she
would segment the same images 5 times the one immedi-
ately after the other the chance of having highly correlated
segmentations is big. We try to overcome this by present-
ing the images somehow randomly. The results for the
right flaring can be found in table II for 7 of the 10 images.
Further research of how the morphology of the segmenta-
tions behaves is also here in process. This can partly be
done using the overlap region method as explained earlier,
only now we take the intersection and union of the 5 seg-
mentations per image. These figures are also presented in
II.

V. DISCUSSION

As shown above we have developed an easy-to-use,
quite fast, semi-automatic tool to aid medical doctors in
their diagnoses of WMD. The direct usefulness of the tech-
nique should be seen as mentioned in the introduction in
terms of staging information of the disease other than in
the precise hard classification and segmentation of the tis-
sue. The pathology changes over time as so the flaring
changes.
When we now turn to tables we can conclude from table
II that concerning the intra-observer variability, the area of
the segmented flares does not differ more than 5 percent in
most cases, which is acceptable [7]. Looking at the over-
lap ratios we might tend to say these are not as high as one
would expect, all lay around 85 percent with the excep-
tion of one outlier, there where in fact they all do not differ
more than 5 percent from the mean. More advanced tech-

niques of comparing the morphology of the delineations
could give us extra information on this point.
When we turn to the inter-observer variability and the re-
sults in table I, there we obtain Overlap Ratio numbers in
the 60 percent (which is rather bad) to 85 percent (which is
acceptable) interval. The differences here can be explained
by the fact that some medical doctors only segment the
core of the flaring, there where other times they also in-
clude the outlying, may be less affected tissue. Our tech-
nique always tries to find the outliers, unless the bounding
box is especially chosen else wise. In the images 1, 4 and 8
of our test set this difference is clearly visible in the Over-
lap Ratio.

VI. FURTHER RESEARCH

Given the results there remain considerable problems to
be tackled, both from the medical as well as the image
processing point of view. Medically, the most important
drawback is the lack of a golden standard in segmenting
the flares in ultrasound images. As can easily be seen
from figure 6 the inter-observer variability is very large,
this makes it hard to validate the techniques since there is
little agreement on what is the standard. All medical doc-
tors segment the core of the affected tissue, in the upper
part, right above the ventricles, see figure 6. Only few also
segment some outlying tissue also as being affected. The
only ways to overcome this problem are or to only look
at the core part and try to classify the tissue there, to look
for a segmentation band instead of a boundary, or to make
a multi-modal registration for instance using MRI images.
These drawbacks do influence the image processing prob-
lems also, where we still investigate whether texture is a
good discriminant for WMD. As may be clear we have not
yet found very good distinctive textural features. The na-
ture of the ultrasound images, mostly the speckle included
makes this far from easy. In order to improve classifica-
tion as well as segmentation we investigate preprocessing,
before calculation, as well as other textural features based
on Gabor Filters and Fractal dimensions.
Another research topic in the development of better tech-
niques for comparing segmentations [8]. This might even-
tually also help in our search for a golden standard for seg-
mentations.
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