Joint Turbo Decoding and Synchronisation

ESA Contract 18261/04/NL/AR ABSM Workshop ESTEC, 30 March 2006

11

Overview

Project Overview

Objectives \succ Market Justifications

System Overview Problem Statement

Joint Synchronisation and Decoding Algorithm Selections

EURECOM

177.20

SATELLITE NETWORKS > Hardware Implementation

Project Overview

Team Members and their Contributions:

> Advantech Satellite Networks (Former EMS)

- Thorough knowledge of DVB-RCS and commercial needs
- Existing demodulator designs and implementation
- Previous work on joint techniques

Turbo Concept:

- Industry-standard IP core products for turbo code and turbo like decoders
- Thorough knowledge of implementation of iterative algorithms
- Previous work on joint techniques

Eurecom:

State-of-the-art advanced techniques

EURECOM

1773

EURECOM πr

Project Overview: Incentives

> Advantech Satellite Networks:

- To enhance the performance of the DVB-RCS demodulator product, in particular rain fade counter measure
- In response to identified customer needs

Turbo Concept:

To improve the DVB-RCS and DVB-S2 decoder products, by allowing them to operate with synchronisation algorithms in an integral fashion

Eurecom:

- To advance the state of the art of joint techniques, with special emphasis on short-burst applications
- Build upon experiences gained in a previous ESA Contract: "Carrier phase estimation with iterative decoding" (Contract No. 17337/03/NL/LvH).

System Baseline

- Return Link: DVB-RCS: Potential extension to 8PSK modulation and more flexible burst structure
- Forward Link: DVB-S2

EURECOM

ANTECH

The main emphasis on the performance improvement of the return link.

Objectives

- Robust synchronisation for power efficient transmission schemes
 - Reduce transmitted power requirement.
 - Improvement in carrier synchronisation

Performance improvement of DVB-RCS return link channel

- Low turbo coding rates
- Short bursts (carrying one or two ATM bursts, overhead bursts)

Robust synchronisation in the presence of phase noise at low symbol rate

Problem Statement

- ♦ 55-byte payload, PER=1e-4
- Performance degradation at coding rates below r=2/3.
- Similar trend at lower PER targets.

Problem Statement

188-byte payload (One MPEG Unit), PER=1e-4

Algorithm Selection

- A short list containing two sets of algorithms were identified:
- Group1: Evolutionary algorithms
 - Enhanced carrier frequency offset estimator
 - Decoder—assisted frequency offset selection
 - Soft-decision aided phase tracking

Group 2:State-of-the-art algorithms

- Bayesian algorithms for carrier synchronisation and decoding
- Factor Graph and Product sum approach.
- C.B.C. Algorithm

Evolutionary Algorithms

Conventional Carrier Synchronisation

- Coherent demodulation of DVB-RCS signal:
 - Carrier Frequency Estimation (NDA or DA)
 - Carrier Phase Estimation and Tracking (DA, NDA, DD)
- Carrier frequency estimation, main cause of carrier synchronisation error at low SNR in DVB-RCS return channel for short bursts.
 - Data-Aided Approach: Inaccurate estimate based on short preamble
 - Non-Data-Aided Approach: "Threshold Effect" at low SNR.
 - Phase noise: the main cause of performance degradation for longer bursts operating at low symbol rate and low coding rate

Carrier Frequency Estimator

Threshold Effect:

- Increased Probability of large errors ("outliers")
- Deviation from expected performance predicted by Cramér-Rao Bound

Important to identify whether the threshold effect is fundamental

Investigate theoretical bounds on performance

Performance Bounds: Cramér-Rao Bounds

- Cramér-Rao Bound on the estimate variance
 Frequency Estimate of QPSK Signals
- CRB does not identify the threshold effect.

$$\operatorname{CRB}(f_e) = \frac{6}{\left(2\pi\right)^2 N\left(N^2 - 1\right) \frac{E_s}{N_0} F\left(\frac{E_s}{N_0}\right)}$$

- N : Number of channel Observations
- F(.): Non-linear function, dependent on Es/No and Modulation
- Other Mean Square Error (MSE) lower bounds provide tighter lower bounds at different SNR regions
 - Ziv-Zakai Bound, Chazan-Zakai-Ziv Bound, Bellini-Tartara Bound

MSE Bounds for DA Frequency Estimate

- Performance bounds computed for data Estimators
 MSE bounds and CRBs are similar at high SNR
- Consistent with previously reported results

ADVANTECH SATELLITE NETWORKS

MSE Bounds for Frequency Estimate of QPSK Signals

- MSE bounds under two different Assumptions:
 All QPSK symbols are unknown
 - QPSK symbols are partially known (e.g. preamble)
- Performance bounds are different at low SNR

Observations based on MSE Bounds

- Threshold effect of the frequency estimator is fundamental
- The SNR at threshold depends on:
 - Observation length
 - Modulation type
 - Parameter range and its distribution
- Combination of data aided and non-data aided information reduces the threshold level.
- At a given SNR, hybrid DA-NDA estimator has lower probability of outliers than an NDA estimator.
- Solution: Hybrid DA-NDA Frequency Estimator

Hybrid DA-NDA Frequency Estimator

- According to MSE bounds, a significant improvement in probability of outliers by combining DA and NDA estimation.
- Maximum Likelihood Frequency estimation confirms the theoretical results.
- An approximation of ML estimator with feasible implementation was proposed.

Hybrid DA-NDA estimator reduces the probability of outliers.

 Hybrid frequency estimator provides the flexibility of DA, NDA or Hybrid frequency estimation

Hybrid Frequency Estimator

Hybrid DA-NDA Carrier Frequency Estimator

Main Features:

- Unbiased Estimate, Minimum MSE.
- Scaling Factors can be adjusted for pure DA or NDA frequency estimation.

Optimal combination to minimise the probability of outliers.

Flexibility in pilot symbol distribution

A priori knowledge of frequency range can be incorporated.

Simulation Result Examples

- Error Distribution for Hybrid and NDA Frequency Estimators
 - Total of 488 QPSK Symbols, first 48 symbols are known.
 - Es/No=3 dB
- Optimisation of Combination Method

Joint Synchronisation and Decoding Algorithms

- Main Constituents:
 - Hybrid Frequency Estimator
 - Phase estimation and correction
 - Decoder Assisted Frequency Estimation:
 - Use maximum Likelihood Branch selection to choose most likely value of the frequency estimate.
 - Soft-Decision Aided Phase Tracking
 - Pending Patent Applications:
 - "Hybrid Frequency Estimator",
 - U.S. 2005/0058229 A1,
 - PCT WO 2005/027353 A2
 - "Joint Synchronisation and Decoding",
 - U.S. 2005/0058224 A1,
 - PCT WO 2005/027451 A1

Joint Synchronisation and Decoding Algorithms

Carrier Synchronization- Frequency Estimation

- > Payload Size: 55 Bytes, Coding Rate:1/2
- Preamble Size: 48 Symbols
- Ideal Symbol Timing Synchronization

Carrier Synchronization- Frequency Estimation

- > Payload Size: 12 Bytes, Coding Rate:1/2
- Preamble Size: 48 Symbols
- Ideal Symbol Timing Synchronization

Summary of Performance Results

- Performance improvements compared to the conventional methods:
 - TRF bursts carrying one ATM cell, coding rate 1/2:
 - More than 1.0 dB performance improvement in the presence of carrier frequency offset and phase noise.
 - Less than 0.3 dB degradation compared to Ideal synchronisation.
 - Similar improvement for bursts carrying 2 ATM cells
 - Overhead bursts (12 byte payload), coding rate 1/2:
 - More than 1.5 dB performance improvement
- For long bursts and low symbol rate, the preamble symbols alone are not sufficient to mitigate the impact of the phase noise.
- For short overhead bursts, increase in preamble size improves the PER performance (ignoring the Eb/N0 penalty due to longer preamble size).

Test Bed

Using our existing test bed for demodulator hardware validation.

- Signal Generation Software
- STE Hardware
- Demodulator Hardware
- Control and Monitoring Functions
- Real-time generation of
 - AWGN
 - Phase noise according a given mask
- Performance tests
 - Error counting done on processor board
 - Missed detection, false alarm
 - Burst/cell error ratio
 - Residual bit error ratio

Real-Time Phase Noise Generator

- Sub-Band Frequency Domain Filtering
 - To handle total bandwidth as well as detail at low frequencies
- Spectral Shaping according to arbitrary phase noise mask
- Sub-band Filtering for enhanced resolution at low frequencies
- Direct Block Processing in Frequency Domain
 - Reduced complexity
- Programmable Phase Noise Mask
 - Mask to be adjusted according to the sampling rate
- Large Dynamic Range (more than 80 dB)
- Successfully tested in the lab

Example of Phase Noise samples

- DVB-RCS Mask
 - Sampling rate: 768 kHz

Hardware Implementation Status

- Bit Exact fixed-point development completed
- Bit-true VHDL model developed
- RTL Simulations were carried out.
 - Different burst sizes
 - Carrier frequency offset
 - AWGN
 - Initial Phase Offset
 - Different Signal Power levels
- > All FPGA's were synthesized
 - Proper pin-out
 - Design meets timing constraints
- Work in progress to validate the hardware implementation and carry out performance tests.

ESA Contract 18261/04/NL/AR ABSM Workshop ESTEC, 30 March 2006

CBC Algorithm: Background and Principles

Application to DVB-RCS

Application to DVB-S2

Problem Statement

Goal : solve the optimal decision rule on information bits b_i, given the channel observation :

$$\mathsf{P}_{\mathsf{i}} = \arg \max_{\mathsf{b} \in \{0;1\}} \mathsf{P}_{\mathsf{i}}(\mathsf{b}|\mathbf{y})$$

Channel model :

$$y_k = x_k e^{j\theta}_k + w_k, \qquad k = 0,...,N-1$$

 $\begin{array}{l} \succ \quad \mathsf{P}_{\mathsf{i}}(\mathsf{b}|\mathbf{y}) \text{ can be obtained using } \mathsf{P}(\mathbf{b}, \theta \mid \mathbf{y}), \text{ which can be factored into :} \\ \mathsf{P}(\mathbf{b}, \theta \mid \mathbf{y}) \propto \chi[\mathbf{x} = \mu_{C}(\mathbf{b})] \ \mathsf{p}(\theta_{0}) \prod \mathsf{p}_{\Delta}(\theta_{\mathsf{k}} - \theta_{\mathsf{k}-1}) \prod \mathsf{f}_{\mathsf{k}}(\mathbf{x}_{\mathsf{k}}, \theta_{\mathsf{k}}) . \end{array}$

code indicator function

phase noise (Markov model)

k=1

channel observation

$$f_{k}(x_{k},\theta_{k}) \stackrel{\Delta}{=} exp \left\{ \begin{array}{c} -\frac{1}{N_{0}} \left| y_{k} - x_{k} e^{j\theta_{k}} \right|^{2} \right\}$$

k=0

Factor Graph

> F.G. representation of $P(\mathbf{b}, \theta \mid \mathbf{y})$:

- variables :
 - constellation symbols x_k ; phase error θ_k ; code bits (hidden in the Code factor)
 - factors :
 - \bullet code ; f_k ;phase transition ;
 - messages :
 - up and down probabilities on symbols x_k
 - forward and backward probabilities on phase error θ_k

Finding Practical Algorithms

- The phase error is a continuous random variable
 - the Sum Product Algorithm involves integrals of continuous pdf
 - not practicable for implementation
 - \Rightarrow find discrete parameterization of the pdfs.

• discretization of $[0;2\pi]$ uniformly in *L* values

- BCJR on a phase trellis
- becomes optimal with large values of L (L ~ 8*constellation size)
- high complexity

 \succ

Tikhonov approximation (CBC algorithm)

- Proposed by Colavolpe, Biglieri, Caire, 2004
- Observe that $P_d(\theta_k)$ is a linear combination of Gaussian pdf

$$p_d(\theta_k) \propto \sum_{\mathbf{X} \in \mathbf{X}} P_d(\mathbf{x}_k = \mathbf{x}) f_k(\mathbf{x}_k = \mathbf{x}, \theta_k) .$$

=> Approximated by the **Gaussian pdf at minimum divergence** defined by its mean and variance values (α_k ; β_k)

$$\alpha_{k} \stackrel{\Delta}{=} \sum_{\mathbf{X} \in \mathcal{X}} \mathbf{X} \mathsf{P}_{\mathsf{d}}(\mathbf{x}_{\mathsf{k}} = \mathbf{x}) \qquad \beta_{k} \stackrel{\Delta}{=} \sum_{\mathbf{X} \in \mathcal{X}} |\mathbf{x}|^{2} \mathsf{P}_{\mathsf{d}}(\mathbf{x}_{\mathsf{k}} = \mathbf{x}) \ .$$

CBC equations

> The pdf $P_d(\theta_k)$ is then entirely represented with one complex parameter u_k (through a Tikhonov distribution)

$$u_{k} = \frac{2 y_{k} \alpha_{k}^{*}}{N_{0} + \beta_{k} - |\alpha_{k}|^{2}}$$

> The same applies to $P_f(\theta_k)$ and $P_b(\theta_k)$, defined with a_k and b_k resp.

$$a_{k} = \frac{a_{k-1} + u_{k-1}}{1 + \sigma_{\Delta}^{2} |a_{k-1} + u_{k-1}|} \qquad b_{k} = \frac{b_{k+1} + u_{k+1}}{1 + \sigma_{\Delta}^{2} |b_{k+1} + u_{k+1}|}$$

- is computed recursively
- + σ_{Δ} is matched to the phase noise variance
- \triangleright P_u(x_k) is obtained with :

$$\mathsf{P}_{\mathsf{u}}(\mathsf{x}_{\mathsf{k}}) \propto \exp\left\{ -\frac{|\mathsf{x}_{\mathsf{k}}|^{2}}{\mathsf{N}_{0}} \right\} \ \mathsf{I}_{0} \left(\begin{array}{c} | & \mathsf{a}_{\mathsf{k}} + \mathsf{b}_{\mathsf{k}} + 2 \, \frac{\mathsf{y}_{\mathsf{k}} \, \mathsf{x}_{\mathsf{k}}^{*}}{\mathsf{N}_{0}} \right) \right)$$

In practice log(Pu) is needed ; log(I0(x)) simplifies into x-2
 If |x²| is constant (QPSK or 8PSK), the first factor can be omitted

Application to DVB-RCS – Performance

- ATM cell, 64kbaud, DVB-RCS phase noise mask +6dB
- Two pilot situations are considered :
 - DVB-RCS air interface (48symbols preamble ; no pilots)
 - Distributed pilots (48symbols)

ATM burst

- Near coherent performance
- Pilots are needed for 2*ATM cells and longer bursts
- The fixed point performance is within 0.1 dB of the floating point model

Application to DVB-RCS – implementation

Block diagram

>

- modified turbo decoder (produce bitLLRs on redundancy bits)
- need bit <->symbol conversions
- sliding window phase tracker

- Complexity (*)
 - 8000 FPGA Logic Elements
 - increase of 40% in logic wrt. turbo decoder
- Throughput (*)
 - depends on the number of JDD iterations
 - 4 Mbit/s with 4 JDD iterations

JDD iterations	8	4	2	0
decoder bitrate (Mbps)	2,96	4,60	6,35	10,26

(*) Examples given with a 10 Mbps commercial decoder Core

ANTECH

Application to DVB-S2 – performance

> 64kbit frames, with pilots, 5 Mbaud, consumer-LNB phase noise.

- Near coherent channel performance
 - The fixed point performance is within 0.1 dB of the floating point model

Application to DVB-S2 – implementation

20 Mbit/s coded with 4 JDD iterations

JDD iterations	20	8	4	0
Coded bitrate (Mbps)	5,44	12,13	20,57	63,00

(*) Examples given with a 20 Mbaud version of the tc4000 commercial Core