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Abstract— We consider the carrier frequency offset estimation degradation. To this purpose, we consider the case of a
in a digital burst-mode transmission affected by phase no&s purst-mode transmission using a linearly modulated signal
The corresponding Cramer-Rao lower bound is analyzed for |, this scenario, it is usual to have a first coarse carrier

linear modulations under a Wiener phase noise model and in f isition t d the f folld
the hypothesis of knowledge of the transmitted data. Even ifve requency acquisition to reduce the irequency error W

resort to a Monte Carlo average, from a computational point ¢  after timing recovery, by a fine DA frequency estimator based
view the evaluation of the Cramer-Rao bound is very hard. We on a known preamble [11]. Phase estimation and tracking is
introduce a simple but very accurate approximation that allows then performed after frequency compensation. Since we are
to carry out this task in a very easy way. As it will be shown, tfe ;yiarested in the operations of the fine DA frequency estimat
presence of the phase noise produce a remarkable performaac . . S . L
degradation of the frequency estimation accuracy. In addibn, we we consider th's_ setting: known .d.ata, ideal tlmlng., and a
provide asymptotic closed-form expressions of the CrameRao discrete observation model. In addition, the phase noiseda
bound and we also gain some important hints on the estimators be considered as a nuisance parameter.
to be used in this scenario. The computation of the resulting CRB is a formidable
task. In fact, the likelihood function necessary for the CRB
computation must be obtained by averaging over the phase
The Cramer-Rao bound (CRB) is a fundamental lower limioise. A closed-form expression does not exist and even if we
to the variance of any unbiased parameter estimator [1]. ASsort to numerical methods, the computational effort is/ ve
such, it gives the ultimate accuracy that can be achievedtard. In this paper, we introduce a simple but very accurate
synchronization operations. closed form for the likelihood function and then we perform
For the frequency offset estimation problem, this bourntle expectation necessary to obtain the CRB by means of
was computed under different assumptions. The CRBs fa arithmetical average over a number of computer-gerterate
the frequency estimation of a single tone in the case of baiceived samples. The result is in perfect agreement wih th
a known and an unknown constant phase were computgdsed form asymptotic expressions of the CRB that we also
in [2] based on a discrete-time observation model. Thesempute in this paper. The derived approximated likelihood
results can be also directly applied to the case of phasenction can be also employed to derive new estimation
shift keying (PSK) signals when transmitted data are p#yfecalgorithms and to gain new hints on the existing algorithms
known, i.e., when a data-aided (DA) frequency estimation isilored for a constant phase offset.
performed based on a known preamble. The CRBs in the case
of non-data aided (NDA) operations for binary and quaternar Il. SYSTEM MODEL AND THE CRB
PSK (BPSK and QPSK) were derived in [3] and extended
to quadrature amplitude modulations (QAM) in [4]. In these We consider the transmission of a sequence of complex
papers, the phase offset was assumed known or the casenofiulation symbols{a;}+ !, belonging to aniM-ary con-
joint phase and frequency estimation was considered. lginabtellation of unit average energy, over an additive whitei$sa
for PSK signals, in [5] the CRBs for DA and NDA estimatorsian noise (AWGN) channel affected by carrier phase noise
considering both the case of unknown phase offset unifornynd a constant frequency offset Symbolsa, are linearly
distributed in the interval0, 27) and the case of joint phasemodulated. Assuming Nyquist transmitted pulses, matched
and frequency estimation were computed. The comparistitering, a small frequency offset and phase variationsvslo
between the discrete-time model commonly used and the te@ough so as no intersymbol interference arises, the thscre
continuous-time model was discussed in [5], showing thditne baseband received signal is given by
although the correct observation model yields the smaller _
CRB, the difference between the CRBs resulting from the two 7% = axe’ @™ 0% 4y - k=0,1,... . K -1 (1)
models is apparent only at very low values of the signal-to- _ _ .
noise ratio (SNR). where T is the symbol interval and the noise samples

All these papers, as well as the papers dealing with th&}i—o are independent and identically distributed (i.i.d.),
algorithms for frequency estimation (see for example [zz:,omplex, cwcm_JIarIy symmetric Gaussian random variables
[6]-[9], or [10] and references therein) refer to an idezdiz (VS), €ach with mean zero and variance equaRid =
situation in which the phase offset is constant. However, io/£s, No being the one-sided noise power spectral density
radio communications, and particularly in modern bursdmo @NdEs the received signal energy per information symbol. For
satellite communications, it is common to incur in a stron@({'}\? time-varying channel phasg, we assume a random-walk

time-varying phase noise due to the oscillator instabaitiln iener) model:
this case, it is interesting to quantify the resulting perfance Okr1 = Ok + Ay (2)

I. INTRODUCTION



where {A} are real i.i.d. Gaussian rvs with mean zero andhere Iy(x) is the zero-th order modified Bessel function

standard deviationa,! and the rvd, is uniformly distributed. of the first kind. By using these definitions and taking into

The rvs {0} are supposed unknown to the receiver, araccount the system model (1), we may express, discarding

statistically independent of symbols and noise. Whan= 0 irrelevant proportionality factors independentéaf and v

we obtain the classical case of a constant and uniformly

distributed phase offset. _
Some of the information symbols in the transmitted bur&(rl6.v) = L1 20 Oy )

are known to the receiver (pilot symbols) and the frequency ;:_2

estimation is based on these symbols. For generality, we 1 x—i@rvk(n)T+0k(m)

assume that the inserted pilot symbols are{ay,,)} where o [ e o7 Relrkim @iy © ]

{k(n)|0 <n < N — 1} is an index set for the sample times.

N-1

N-1
These symbols and the corresponding rAeceived and phase _ H t(Zk(n);ek(n)) @)
H T N—-1
samples are collected into three vectars= {aj)},—g 0
A — A —
r = {rign) bnso s and6 = {9@(n)}2{:o1- . _ =
The CRB for this estimation problem is defined as [1] P(0) =p(Or(0)) H P(Ok(n))1Ok(n—1)) 8
62 n=1
CRB,' = E, |-=1 3 ot
v |: v np(r|l/)] ( ) having definect;, é %e—j2wukT_ In (8), the pdfp(ek(o)) is

where p(r|v) is the probability density function (pdf) of P(fk()) = 1/2m, since the vy o) is uniformly distributed,
givenv, the derivative is evaluated at the true valuespaind Whereas the pdf(0j.(,))|0kn-1)) are Gaussian with zero

E. denotes statistical expectation with respect to the vactormean and standard deviatidiin) = oa+/k(n) — k(n — 1)
This pdf can be obtained as (we implicity assume, for the adopted pilot distribution,

d(n) < 2m). By substituting (7) and (8) into (4), observing
pleiv) = Eg plel6.v)} = [ p(xlo.v)p(®)de. (@) tha
Io(|z + uf)

As already mention, the likelihood functiop(r|v) cannot t(z;0)t(u;0) = ——————t (2 +u;0) 9)

be expressed in a closed form. On the other hand, if the 2mlo(|2)To(lul)

expectation in (3) can be easily performed by means of &g using the following approximation [13], [#4]

Monte Carlo average, the computational effort requiredhey t

numerical evaluation of the expectation in (4) is much more 9 ¢

intensive. In the next section, we describe an approximate b /t(C, z)g(x,6%y) de ~ 1 (‘1 n 52|C|;y> (10)

very accurate closed-form expression for this pdf. ) o o )
In the technical literature, there is an alternative lowéfiscarding irrelevant multiplicative terms, after somenipa

bound on the estimator error variance, the so-called madifiglations we obtain the following expression of the likeliito

CRB [12], easy to compute but in general quite looser. F8#nction [15]:

the problem at hand, this bound is not useful, since it can be N—

2
easily shown that it gives the same result is obtained when th p(rly) & H Lo (|2k(n) + unl) (11)
phase noise is not present. L To(Junl)
[Il. THE LIKELIHOOD FUNCTION where coefficients:,, can be recursively computed as

In this section, we introduce an approximated closed-form Ung1 + Zk(nit
expression for the pdi(r|v) that will be used in the computa- Uy = - 2’”’ )
tion of the CRB, and also a couple of exact asymptotic closed- L+ [k(n +1) = k(n)]o[un+1 + 2in+n)|
form expressions, in the absence of phase neige= 0) and n=N-=2,...0. (12)

in the absence of thermal noise € 0), respectively. with initial condition 0
N-1=VU.

A. Approximated Closed-Form Expression

Let us denote by(n, §%;x) a Gaussian distribution im,
with mean value; and vari:_;mce?Q, and byt(¢;x) a Tikhonov  Whenoa = 0, i.e., when a constant unknown phase offset
distribution in = characterized by the complex paramefer is considered, we obtain amact expression for the likelihood

B. Absence of Phase Noise

ie., function which is equivalent to that derived in [9]. In faat,
52 1 _a—m? 5 this case (10) holds with equality and coefficients can be
g(n,6% ) = Norr -l (®)  expressed as -
]. —jx —
H(x) = ————eRelce™] (6) Up = Zr(e) - 13
( ) 27TIO(|C|) Z:;rl k(£) ( )

INote that, since the channel phase is defined mogulothe pdf of A,
can be approximated as Gaussian only § < 2. °Note that, whers = 0, (10) holds with equality.



Hence, we have this means that there is a performance degradation due to the
phase noise.

N2 To (1205 2| i | | |
(xly) H 0 t=n ~k(£) (14) For high SNR values, by using (15) in (3) we obtain [15]
p(r|v) o< .
_ 1 2
amo T (122500 200 CRBy = 5= (32) - (18)
C. Absence of Thermal Noise Note that this result is exact since no approximation (etiogp

We now consider the case of absence of thermal noise (it Of high SNR values) is involved in the derivation of
o = 0). This is an approximation of the case when the SNR (d5). This high SNR limit allows to draw some important
large enough so as the effect of thermal noise is negligikte wConsiderations. First of all, in the presence of a time-vayy
respect to phase noise. In this case, an exact closed fotme offhase, the CRB has a floor, i.e., it is not possible to reach

likelihood function can be computed. Through straightfarsy the desired estimation accuracy simply increasing the SNR
manipulations, we find that [15] value. In addition, the asymptotic CRB only depends on the

positions of the first and last pilot symbols (as the asyniptot
(2m)*D likelihood function (15)) and is completely independentlod
203 actual pilot distribution. Let us now consider the partioul
N-1 pilot distribution characterized by(n) = nL, whereL > 1
- arqu(n)a;;(n)rlt(n1)ak(n1))]2} is an integer constant which plays the role of the distance
2nD n=1 between two consecutive pilot symbols. It it worth notingtth
(15) L =1 depicts the situation aV consecutive pilot symbols. In

) ) o this case, beind = (N — 1)L, the high SNR limit assumes
having definedD = k(N — 1) — k(0). Hence, in this case the ha form

likelihood function is Gaussian and does not depend on the CRBy — 1 (U_A)2
number and position of pilot symbols, but only on the distanc = (N —-1)LT? \ 27

D between the first and the last pilot symbol. Hence, for high SNR values, the CRB goes &s! in
IV. THE CRAMER-RAO BOUND the presence of phase noise whereas it goed'a$ fora
. . constant phase offset [9]. As a consequence, an increase in
We now describe the computation of the CRB for thgs estimation window has still a beneficial effect on the
problem at hand. estimation accuracy, mitigated by the fact that the presenc

As already mentioned, a first computationally intensivgs 5 (ime_varying phase leads to almost independent redeive
method is based on a numerical evaluation, through Mo@ﬁmples if the window becomes larger.

Carlo average, of both the expectations_in (3) and (4)_. TheSimiIarIy, the CRB goes a&~! for a time-varying phase
corresponding result, denoted @§2Byc, is used 10 Verify \yhereas it can be shown that it is goesas for a constant
the accuracy of the CRB obtained through the use of the siiase offset. This behavior is due to the fact that increasin

plified approximated closed-form expression of the liketitl he gistance between two consecutive pilot symbols has the
function (11) and denoted &SR By, In this latter case, the g5me effect of increasing the phase noise variance.
Monte Carlo average is only used to compute the expectation

in (3). In the case of absence of phase noise, by using the V. ESTIMATION ALGORITHMS
closed-form expression (14), @R B, is exact and gives By using the expressions for the likelihood function dedive
the same result obtained in [5, eqn. (29)] for known dat#) Section Ill we can design a couple of maximum likelihood
a constant and unknown phase offset, and the discrete-tiMl) estimation algorithms for this scenario. We consider
observation model. the above mentioned pilot distributiok(n) = nL. In this
The low and high SNR limits of the CRB can be alsgase, for the considered discrete-time signal model, saddie
computed in closed form. By observing that for low SNHRrequency offset which differ oft /LT are indistinguishable
values the arguments of the Bessel functions in (11) assufiece they produce the same received samplgs = r,r.
low values, we can use the limiting form for small argumentdence, the likelihood functions arg-periodic with respect to
InIp(x) ~ 22 /4, obtaining [15] the normalized frequency offsef”. This means that the valid
estimation range must be small enough so as no more than

p(rly) o eXp{— 8

(19)

CRBL, = ot/ (16) one global maximum appear in the likelihood function, that
) QN‘Q Nl is, the possible values of the frequency offset must be énsid
2m2T2y Y | F(n, ) the rangel— 51, 72-1.
n=0/f=n+1 By considering the likelihood function (11), we obtain the
where following estimator
F(n,f) é [k(g) N k(n)]2|ak(l)|2|ak(n)|2€7%[k(z)7k(n)]gz ) v o= al’gn;‘iXp(I‘h/) = argngxlnp(ﬂy)
a7) N—2
For oo = 0, PSK signals, andV consecutive pilots, i.e., = argmax Z InIo(Jznr + un|) — InIg(Junl)] -
k(n) = n, n = 0,1,..., N, this result coincides with the Y=o

low SNR limit in [5]. For oa > 0, the CRB increases and (20)



The search for the maximum of the log-likelihood function ca 10t
be accomplished, as for the Rife and Boorstyn algorithmiff2], -
two steps. In a first coarse search, the log-likelihood fiomct

is evaluated for some values of the frequency offset in the 10°3

range[—ﬁ, ﬁ] and the valuev.; which corresponds to 10—4
the maximum value is obtained. Then, with a fine search the
value ofv closest tov.; which maximizes the log-likelihood @ 10_5
function is located, for example by using the secant methqgd. 106
This estimator will be denoted a&'py. Obviously, it is o \
quite complex for a receiver implementation. In the nunadric 10”7 "‘i% ~
results it will be used as a term of comparison to evaluate the 10—8 %, \
performance that can be obtain with a practical estimator. “ay,

Let us now take into account the asymptotic expression of 10 9 x“”v%
the likelihood function. A ML estimator based upon (15) is 10710 y,
characterized by th_ls S|mp!e estimation ruk € (N — 1)L -30 -20 -10 0 10 20
for the above mentioned pilot distribution)

. EdNy
P 2n=1 @9 [T"LG”LT(TL—ULG(”_I)L 1) Fig. 1. CRB in the case aV = 64 consecutive pilot symbols and different
2m(N — 1)LT values ofoa.

weighting coefficients [6], [10]. We will denote this estitoa
as Eqsymp. It is straightforward to show that, for high SNR @
values, this estimator is unbiased.

In the numerical results we will compare the performance
of these two algorithms with that of some of the algorithmsg
designed in the literature in the absence of phase noise.

that is very similar to the Kay estimator excepting for theu"c’
]

n v

estim

VI. NUMERICAL RESULTS

e
Although the results in the previous sections can be applié'_ﬁ
to general linear modulations, in the numerical results we

consider M-PSK signals since in this case the performancE 10 5, S ‘7’7.,»

does not depend on the adopted pilot sequence. We show the \"w.._ iz -

accuracy of the CRB computed by using the simplified closed- 7 | "'“—"‘“T
form expression of the likelihood function. The performanc 10 ‘

of the derived estimators is also shown and compared with -10 - 0 > 10
the CRB and with the performance of “classical” frequency EJNy

estimators.
In Fig. 1, foroa = 0,2, 6 degrees, we show th€R By,
together with the derived low and high SNR asymptotic
expressions, as a function of the SNR in the cas&/cf 64 estimators are unbiased, we show the estimator variance,
consecutive pilot symbols (henée= 1). TheCRBj;¢ is also normalized to1/72, which coincide with the mean square
shown. We may observe that the derived simplified methegtimation error. All the following simulation results felveen
has a very good accuracy since & B;;,,,, coincides with obtained by generating a random frequency offset in theerang
the CRBy;c. The high SNR valueCRBy is reached for [—2-1072,2-1072], independently frame by frame.
values of Es /N, around 10 dB, whereas the low asymptotic In Fig. 2 we show the normalized error variance as a
value CRBy, which slightly depends on the value efy, function of the SNR, forrpo = 6 degrees andV = 64 pilot
is reached only at very low SNR values. The performansgmbols. The cases df = 1 (consecutive pilots) and = 20
degradation for high SNR values due to the presence of phaswe been considered. The R&B estimator, which is optimum
noise is significant already farn = 2 degrees, as shown byfor a constant phase, does not seem to be able to reach the CRB
the presence of the floor predicted by our high SNR asymptoter high SNR. On the contrary, estimatafsy and Eqgymp,
designed taking into account the phase noise statisties, ar
We now consider the performance of the estimators dasymptotically optimal. At very low SNR, all the estimator
scribed in the previous section and compare it with thexhibits a larger variance with respect to the bound duedo th
performance of the best algorithm for frequency estimaition occurrence of outliers [2], [10]—the corresponding thiidh
the presence of constant phase offset, i.e., the Rife & Bgrors depending on the estimator and on the valué dh particular,
(R&B) algorithm, denoted in the figures dsrp. Since we the estimatott,,., has a very high threshold. However, we
verified that in the considered operating conditions all theould like to point out that forEls /Ny larger than few dBs,

Fig. 2. Normalized estimator variance fof = 64 andoa = 6 degrees.



normalized estimation variance
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Fig. 3. Normalized estimator variance féfs/No = 10 dB and N = 64
consecutive pilot symbols.
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Fig. 4. Normalized estimator variance féfs/No = 10 dB andoa = 6 10
degrees. (10]

it is convenient to use the estimatsy,,..,, which is able to 1]
reach the CRB and presents a noticeable smaller complexity

with respect to the other estimators.

The performance degradation due to phase noise is higt
lighted in Fig. 3, where the normalized estimation variance
for the considered estimators is reported, together with tf13]
CRB, as a function of the phase noise standard deviation for

Es/Noy =10 dB and N = 64 consecutive pilot symbols.

Although it is not possible to derive a closed-form expressi

we have shown an approximation that leads to a simple, fast
but very accurate evaluation of the bound by using a Monte
Carlo average. The asymptotic closed-form expressioniseof t
bound for low and high values of signal-to-noise ratio have
been also provided. These expressions are very usefulter bet
understand the effects of the phase noise on the frequency
offset estimation accuracy. In particular, we demonstrtteat

in the presence of the phase noise it is not possible to réach t
desired estimation accuracy simply decreasing the signal-
noise ratio. These asymptotic expressions of the bound allo
also to quantify the effect of the pilot distribution paraers

and phase noise variance. Finally, a couple of ML-based
algorithms specifically tailored for this scenario have rbee
designed and compared with the algorithms designed in the
literature for the case of absence of phase noise.
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