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Abstract

We present some iterative decoding algorithms for channels affected by strong phase noise. The
proposed algorithms are obtained as an application of the sum-product algorithm to the factor graph
representing the joint a posteriori probability mass function of the information bits given the channel
output. To overcome the problems due to the presence in the factor graph of continuous random
variables, we advocate the method of canonical distributions. For several choices of canonical distri-
butions, we derive the corresponding iterative decoding algorithms and compare their performance
by computer simulation. We present numerical results for binary LDPC codes and LDPC-coded
modulation, with particular reference to some phase-noise models and coded-modulation formats
standardized in the next-generation satellite Digital Video Broadcasting (DVB-S2). Our results show
that phase noise, with a rate of change typical of the instabilities of satellite transmitter and receiver
oscillators, does not entail significant degradation with respect to the case of a perfectly coherent
channel.
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I. INTRODUCTION

The factor graph (FG) representation and the sum-product algorithm (SPA) [1] provide a

general and powerful framework to reinterpret a number of well-known algorithms in digital

communications, such as the Viterbi algorithm [2], the BCJR algorithm [3], the iterative

“turbo” decoding algorithm [4], and the belief propagation algorithm for low-density parity-

check (LDPC) codes [5].

In this paper, we use this framework to derive new efficient algorithms for iterative

detection and decoding of channel codes transmitted over channels affected by phase noise.

The approach is Bayesian, i.e., the unknown channel parameter is modeled as a stochastic

process with known statistics. We construct the FG corresponding to the a posteriori joint

probability distribution of the information message bits given the received signal and let

the SPA compute the posterior marginal distributions. Bit-by-bit decisions are then made,

based on the resulting posterior marginals. The FG includes the knowledge of the unknown

parameter statistics. The average over the unknown parameter is implicitly performed by the

SPA as part of the marginalization. The posterior marginal probabilities computed by the SPA

are exact if the underlying FG is cycle-free. In this case, the bit-by-bit decision is optimal,

i.e., it minimizes the average bit-error probability. More often, the underlying FG has cycles

and the resulting SPA is inherently iterative. In this case, the SPA does not yield in general

the optimal MAP decision rule. Nevertheless, the iterative SPA has proven to provide very

good performance in several problems and therefore it can be regarded as a viable low-

complexity solution when the optimal decision rule is just too complex to be implemented

in practice. Since the resulting algorithms are naturally iterative, they are particularly suited

to the decoding of codes such as LDPC and turbo codes, whose decoding algorithms are

typically iterative (and suboptimal) even in the fully coherent setting (all channel parameters

known).

Iterative decoding algorithms for channels with unknown phase has attracted an increas-
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ing interest in the recent literature. The algorithms developed in [6]–[10] are designed for

noncoherent decoding of turbo codes and can be applied to LDPC codes only if trellis-based

separate detection is performed. In particular, in [6], receivers for both the block-constant

phase model and a discretized random-walk phase model are developed by using a phase

discretization approach. In [11], the use of FGs that include both the code constraints and

the channel parameter statistics is advocated in a very general setting. By specializing the

approach of [11] to particular channel phase statistics, several algorithms for noncoherent

detection/decoding have been proposed. In [12], [13] LDPC ensemble optimization via density

evolution is considered for a very simplified block-constant phase model quantized over the

two levels 0 and π. In [14] a constant and a random-walk phase noise model with Gaussian

increments are considered and approximations of the SPA are derived and evaluated whereas

in [15], messages in the SPA related to continuous random variables are approximated by

means of an impulse at an estimated value and different estimation methods are considered.

Finally, in [16] a phase model where the unknown carrier phase is constant over a block of N

symbols and independent from block to block is considered, the channel parameters are not

explicitly introduced in the FG, and the power allocation to the pilot symbols is optimized

by using density evolution.

A non-Bayesian approach is adopted in [17]–[23]. In [17]–[22] the concept of soft-decision-

directed estimation is introduced. The channel parameters are estimated by using the expectation-

maximization (EM) algorithm [17]–[21] or an ad-hoc procedure [22] and the estimation algo-

rithm is embedded into the iterative decoding process. Generally speaking, the non-Bayesian

approaches consider the channel phase as a deterministic unknown constant. Tracking time-

variations, such as in the case of the random-walk model, is allowed by using some heuristic

sliding window adaptation. As a matter of fact, while the non-Bayesian schemes may be

suited for the block-constant phase model, their performance degrades significantly in the

presence of phase noise since the algorithms are not designed by exploiting the statistical
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knowledge of the phase time-variations.

In this paper we adopt the FG/SPA framework of [11] and we focus on the random-walk

phase noise model with Gaussian increments. While the SPA is well-suited to handle discrete

random variables, characterized by a probability mass function (pmf), the channel parameters

are typically continuous random variables, characterized by a probability density function

(pdf). The SPA for continuous random variables involves integration and computation of

continuous pdfs, and it is not suited for direct implementation. A solution for this problem is

suggested in [11] and consists of the use of canonical distributions, i.e., the pdfs computed

by the SPA are constrained to be in a certain “canonical” family, characterized by some

parameterization. Hence, the SPA has just to forward the parameters of the pdf rather than

the pdf itself. We shall consider several canonical distributions, yielding different algorithms.

The most straightforward parameterization is based on the discretization of the parameter

space [6]. Obviously, this approach becomes “optimal” (in the sense that it approaches the

performance of the exact SPA) for a sufficiently large number of quantization levels, at the

expenses of an increased computational complexity. For this reason, it will be considered

as a performance benchmark. The other approaches proposed in this paper are based on

Fourier, Tikhonov and Gaussian parameterizations, respectively. In the latter case, the derived

algorithm is a modified version of the well-known Kalman smoother. Different pdf families

lead to different performance and complexity, showing that the choice of the canonical

distribution family is a non-trivial key step for obtaining efficient algorithms. We found

that the proposed Tikhonov parameterization yields to an algorithm with unprecedented

performance/complexity tradeoff.

The reminder of this paper is organized as follows. Section II introduces the channel model

and derives the basic FG and SPA. In Section III, we briefly recall the discretization method

and present the details of the new algorithms. In Section IV we present numerical results to

compare the proposed algorithms in the context of LDPC decoding, under the random-walk
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phase noise model and under a European Space Agency (ESA) phase noise model used to

evaluate the next-generation Digital Video Broadcasting satellite standard (DVB-S2) [24],

[25]. Finally, Section V points out some conclusive remarks.

II. SYSTEM MODEL AND EXACT SUM-PRODUCT ALGORITHM

We consider the transmission of a sequence of complex modulation symbols c = (c0, c1, . . . , cK−1)

over an additive white Gaussian noise (AWGN) channel affected by carrier phase noise.

Symbols ck are linearly modulated. Assuming Nyquist transmitted pulses, matched filtering,

and phase variations slow enough so as no intersymbol interference arises, the discrete-time

baseband complex equivalent channel model at the receiver is given by

rk = cke
jθk + nk, k = 0, . . . , K − 1 . (1)

We assume that the sequence c is a codeword of the channel code C constructed over an

M -ary modulation constellation X ⊂ C. We include possible pilot symbols (known to the

receiver) and/or possible differential encoding as a part of the code C. The vector of noise

samples n = (n0, n1, . . . , nK−1) has i.i.d., complex circularly symmetric components, with

nk ∼ NC(0, 2σ2).1 The vector of channel phases θ = (θ0, θ1, . . . , θK−1) is random, unknown

to both transmitter and receiver, and statistically independent of c and n.

A common model for the phase noise process {θk} is the random-walk (Wiener) model

described by

θk = θk−1 + ∆k (2)

where {∆k} is a white real Gaussian process with ∆k ∼ N (0, σ2
∆). Under this assumption

and assuming θ0 ∼ Uniform[0, 2π), it follows that

p(θk|θk−1, θk−2, . . . , θ0) = p(θk|θk−1) = p∆(θk − θk−1) (3)

1A complex circularly symmetric (resp., real) Gaussian random vector v with mean m and covariance matrix Σ is

denoted by v ∼ NC(m,Σ) (resp., by v ∼ N (m,Σ)). We denote the multivariate complex circularly symmetric (resp.

real) Gaussian pdf with mean m, covariance matrix Σ and argument x by gC(m,Σ, x) (resp., by g(m,Σ,x)).
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where we define p∆(φ) as the pdf of the increment ∆k mod [0, 2π), i.e.,

p∆(φ)
∆
=





∞∑

`=−∞

g
(
0, σ2

∆, φ − `2π
)

φ ∈ [0, 2π)

0 elsewhere.

(4)

The Wiener phase noise model will be considered in the following as a working assumption

in order to derive efficient iterative detection and decoding algorithms. This assumption will

be relaxed in Section IV, where we apply our algorithms to the DVB-S2-compliant ESA

model described in [24], [25].

Without loss of generality, we assume that the code C admits an encoding function µC :

F
B
2 → XK , mapping binary information messages b ∈ F

B
2 into the codewords. The optimal

decision rule that minimizes the average bit-error probability is given by

b̂i = arg max
b∈F2

Pbit,i(b|r) (5)

where Pbit,i(b|r) denotes the a posteriori pmf for the i-th information bit given the received

signal vector r = (r0, . . . , rK−1). Let P (b, θ|r) denote the joint posterior probability distri-

bution function2 of the information bits and of the phase noise vector θ given r. Clearly, the

desired Pbit,i(b|r) can be obtained by marginalizing P (b, θ|r) with respect to θ and to all

bj for j 6= i. This can be accomplished in an approximated but low-complexity way by the

SPA applied on the FG of P (b, θ|r), as illustrated in the following.

We assume that the reader is familiar with the FG/SPA framework (that can be found, for

example, in the excellent tutorial paper [1]). Therefore, for the sake of space limitation we

will not recall here this background. From the definition of the encoding function µC and the

2We use the term probability distribution function to denote a continuous pdf with some discrete probability masses. For

a probability distribution function we still use the symbol P (.).
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channel model (1) we obtain the factorization3

P (b, θ|r) ∝ P (b)p(θ)p(r|θ,b)

∝ χ[c = µC(b)]p(θ)p(r|θ, c = µC(b))

∝ χ[c = µC(b)]p(θ)
K−1∏

k=0

p(rk|ck, θk)

∝ χ[c = µC(b)]p(θ)

K−1∏

k=0

fk(ck, θk) (6)

where we have used the fact that the output signal pdf p(r) does not depend on b, that the

information bits are uniform and i.i.d., therefore P (b) = 2−B, that the AWGN channel for

given θ is memoryless, and we have defined the functions

fk(ck, θk)
∆
= exp

{
1

σ2
Re[rkc

∗
ke

−jθk] − |ck|2
2σ2

}
∝ exp

{
− 1

2σ2
|rk − cke

jθk|2
}

. (7)

and the code indicator function χ[c = µC(b)], equal to 1 if c is the codeword corresponding

to b and to zero otherwise. The FG corresponding to (6) is shown in Fig. 1.

Under the assumption of 1st order Markov model for the phase noise, we can further factor

the term p(θ) as p(θ) = p(θ0)
∏K

k=1 p∆(θk − θk−1) obtaining

P (b, θ|r) ∝ χ[c = µC(b)]p(θ0)
K−1∏

k=1

p∆(θk − θk−1)
K−1∏

k=0

fk(ck, θk) . (8)

The corresponding FG is sketched in Fig. 2 and represents the starting point for the devel-

opment of the proposed algorithms.

The SPA applied to the FG in the upper box, corresponding to the code constraints, consists

of the well-known standard belief propagation whose efficient implementation depends on

the structure of the code C and needs no details here. Hence, we shall concentrate on the SPA

message propagation in the lower part of the graph. Omitting for simplicity of notation the

explicit reference to the current iteration, let us denote by Pd(ck) the message from variable

3In this paper, we use extensively the proportionality relationship f ∝ g, indicating that f = ag for some real constant

a, since the SPA is defined up to scaling its messages by positive factors, independent of the variables represented in the

graph.
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node ck to factor node fk, and by Pu(ck) the message in the opposite direction (see Fig. 2).

The message pd(θk) from factor node fk to variable node θk can be expressed as

pd(θk) ∝
∑

x∈X

Pd(ck = x)fk(ck = x, θk) . (9)

We also assume that in the lower part of the FG, describing the phase-noise evolution,

a forward-backward node activation schedule is adopted. Therefore, messages pf(θk) from

factor node p∆(θk − θk−1) to variable node θk, and pb(θk) from factor node p∆(θk+1 − θk) to

variable node θk, can be recursively computed as follows:

pf (θk) ∝
∫ 2π

0

pd(θk−1)pf (θk−1)p∆(θk − θk−1) dθk−1 (10)

pb(θk) ∝
∫ 2π

0

pd(θk+1)pb(θk+1)p∆(θk+1 − θk) dθk+1 (11)

with uniform pdfs as initial conditions:

pf (θ0) = pb(θK) =
1

2π
. (12)

The message Pu(ck) from fk to ck is given by

Pu(ck) ∝
∫ 2π

0

pf (θk)pb(θk)fk(ck, θk) dθk . (13)

The vector of messages {Pu(ck) : k = 0, . . . , K − 1} represents the observation (in the form

of sequence of a posteriori pmfs) of the coded symbols “seen” through a virtual memoryless

channel, and are processed by the upper part of the graph according to the standard belief

propagation algorithm. At each iteration, this produces updated messages {Pd(ck) : k =

0, . . . , K − 1} and updated estimates of the a posteriori probabilities Pbit,i.

Equations (10), (11), and (13), form the main part of the SPA for iterative detection and

decoding in the presence of phase noise.

III. PROPOSED ALGORITHMS

It is clear that the implementation complexity of the exact SPA is impractical, since the

messages from and to the variable nodes {θk} are continuous pdfs. In order to obtain practical

algorithms, we follow the canonical distribution approach proposed in [11].
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A. Discretization of the channel parameters

This case corresponds to letting the canonical distribution be a weighted sum of impulses.

This approach has been adopted for Viterbi- and BCJR-like receivers in [26] and [6], [15],

respectively. We assume that the channel phase θk may take on the following L values:

Θ = {0, 2π/L, . . . , 2π(L − 1)/L}.4 Obviously, this approach becomes “optimal” (in the

sense that it approaches the performance of the exact SPA) for a sufficiently large number

of discretization levels, at the expenses of an increasing computational complexity.

B. Fourier Parameterization

The function fk(ck, θk) defined in (7) is periodic in θk. Hence, it can be expanded in

Fourier series. We use the well-known identity [27, eqn. (9.6.34)]

ex cos θ = I0(x) + 2

∞∑

`=1

I`(x) cos(`θ) (14)

where I`(x) is the modified Bessel function of the first kind of order `. Letting, for a complex

number z, φ(z) = arg(z), after some straightforward manipulations we obtain

fk(ck, θk) ∝ e−
|ck|2

2σ2

∞∑

`=−∞

I`

( |rk||ck|
σ2

)
e−j`φ(rkc∗

k
)ej`θk . (15)

Substituting (15) into eqn. (9), we may express

pd(θk) ∝
∞∑

`=−∞

A
(`)
k ej`θk (16)

having defined

A
(`)
k

∆
=

∑

x∈X

Pd(ck = x)e−
|x|2

2σ2 I`

( |rk||x|
σ2

)
e−j`φ(rkx∗)

= e−j`φ(rk)
∑

x∈X

Pd(ck = x)e−
|x|2

2σ2 I`

( |rk||x|
σ2

)
ej`φ(x)

= e−j`φ(rk)
∑

x∈X

Pd(ck = x)e−
|x|2

2σ2 I`

( |rk||x|
σ2

)
x`

|x|` . (17)

4In [6], the authors state that for M -PSK signals, L = 8M values are sufficient to have no performance loss.
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Note that for M -PSK signals, the expression of coefficients A
(`)
k , neglecting irrelevant terms,

simplifies to

A
(`)
k = e−j`φ(rk)I`

( |rk|
σ2

)∑

x∈X

Pd(ck = x)x` . (18)

In this case, at the first iteration, when the probabilities of symbols Pd(ck) are all equal to 1/M

(except for the pilot symbols), these coefficients are zero for ` 6= 0,±M,±2M,±3M, . . . .

Pdfs pf(θk) and pb(θk) take on the same form, i.e., they are periodic as well and can be

expanded in Fourier series as

pf(θk) =

∞∑

`=−∞

B
(`)
f,ke

j`θk (19)

pb(θk) =

∞∑

`=−∞

B
(`)
b,ke

j`θk . (20)

Substituting (16) and (19) into eqn. (10), we obtain

∞∑

`=−∞

B
(`)
f,ke

j`θk =

∞∑

m=−∞

∞∑

n=−∞

A
(m)
k−1B

(n)
f,k−1

∫ 2π

0

ej(m+n)θk−1p∆(θk − θk−1) dθk−1

=
∞∑

`=−∞

∞∑

m=−∞

A
(m)
k−1B

(`−m)
f,k−1

∫ 2π

0

ej`θk−1p∆(θk − θk−1) dθk−1 . (21)

We notice that, for practical values of σ∆, the pdf p∆(φ) is essentially zero for argument φ

outside an interval centered in 0 of size much smaller than 2π. Hence, we can write
∫ 2π

0

ej`θk−1p∆(θk − θk−1) dθk−1 '
∫ ∞

−∞

ej`θk−1g(0, σ2
∆, θk − θk−1) dθk−1

= D`(σ∆)ej`θk (22)

where we define

D`(σ∆)
∆
= e−

σ2
∆`2

2 . (23)

By using (22) in (21) we obtain

∞∑

`=−∞

B
(`)
f,ke

j`θk =
∞∑

`=−∞

[
D`(σ∆)

∞∑

m=−∞

A
(m)
k−1B

(`−m)
f,k−1

]
ej`θk (24)

yielding the forward recursion for the Fourier coefficients B
(`)
f,k:

B
(`)
f,k = D`(σ∆)

∞∑

m=−∞

A
(m)
k−1B

(`−m)
f,k−1 = D`(σ∆)[A

(`)
k−1 ⊗ B

(`)
f,k−1] (25)
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where ⊗ denotes convolution of sequences. From condition (12), we derive the initial con-

dition

B
(`)
f,0 = δ(`) (26)

where δ(`) denotes the Kronecker delta. Similarly, the backward recursion to compute the

coefficients {B(`)
b,k} is given by

B
(`)
b,k = D`(σ∆)[A

(`)
k+1 ⊗ B

(`)
b,k+1] (27)

with initial condition

B
(`)
b,K−1 = δ(`) . (28)

Note that the computation of these coefficients can be simplified taking into account the

symmetries A
(−`)
k = A

(`)∗
k , B

(−`)
f,k = B

(`)∗
f,k , and B

(−`)
b,k = B

(`)∗
b,k . Finally, substituting (15), (19),

and (20) into eqn. (13) and defining

E
(`)
k

∆
= e−

|ck|2

2σ2

{
B

(`)
f,k ⊗ B

(`)
b,k ⊗

[
I`

( |rk||ck|
σ2

)
e−j`φ(rkc∗

k
)

]}
(29)

we have

Pu(ck) ∝
∞∑

`=−∞

E
(`)
k

∫ 2π

0

ej`θk dθk = E
(0)
k . (30)

Remark: Truncation of the Fourier coefficients. The convolution of the infinite-duration

Fourier coefficients can be effectively implemented by truncation. Hence, a reduced number

N of coefficients must be taken into account due to the fact that, for a given x, functions

I`(x) are monotonically decreasing for increasing values of `. Standard smoothed truncation

methods (windowing) can be applied [28]. In particular, by means of computer simulations,

we found that the Kaiser window with an optimized parameter β [28] yields good results,

as it will be demonstrated in Section IV.
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C. Tikhonov Parameterization

Let us consider eqn. (9). If the messages Pd(ck) were the exact a posteriori probabilities

of the code symbols, it would be

pd(θk) ∝
∑

x∈X

Pd(ck = x)fk(ck = x, θk) ∝ p(rk|θk) . (31)

We use Fact 1 in Appendix A and approximate p(rk|θk) by the Gaussian pdf at minimum

divergence, given by gC(αke
jθk , 2σ2 + βk − |αk|2, rk), where αk and βk are the first and

second-order moments of ck ∼ Pd(ck), given by

αk
∆
=

∑

x∈X

xPd(ck = x) (32)

βk
∆
=

∑

x∈X

|x|2Pd(ck = x) . (33)

Under the above min-divergence Gaussian approximation, we obtain

pd(θk) ∝ p(rk|θk)

' gC

(
αke

jθk , 2σ2 + βk − |αk|2, rk

)

∝ exp

{
2

Re[rkα
∗
ke

−jθk]

2σ2 + βk − |αk|2
}

. (34)

Substituting (34) in the forward recursion (10), we obtain

pf(θk) '
∫ 2π

0

exp

{
2

Re[rk−1α
∗
k−1e

−jθk−1]

2σ2 + βk−1 − |αk−1|2
}

pf(θk−1)p∆(θk − θk−1) dθk−1 . (35)

When the channel phase is slowly-varying, i.e., for σ∆ → 0, we have p∆(θk − θk−1) =

δ(θk−θk−1). In this case, the solution of the recursion given by eqn. (35) with initial condition

(12) is a sequence of Tikhonov pdfs, given by

pf(θk) ∝ exp
{
Re[af,ke

−jθk ]
}

(36)

where af,k can be recursively computed as

af,k = af,k−1 + 2
rk−1α

∗
k−1

2σ2 + βk−1 − |αk−1|2
(37)
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with the initial condition af,0 = 0. Similarly, the solution of the backward recursion (11)

under the above approximations is the sequence of Tikhonov pdfs

pb(θk) ∝ exp
{
Re[ab,ke

−jθk]
}

(38)

where ab,k can be recursively computed as

ab,k = ab,k+1 + 2
rk+1α

∗
k+1

2σ2 + βk+1 − |αk+1|2
(39)

with the initial condition ab,K−1 = 0. From (36), (38) and (13) we obtain

Pu(ck) ∝ exp

{
−|ck|2

2σ2

}
I0

(∣∣∣∣af,k + ab,k +
rkc

∗
k

σ2

∣∣∣∣
)

. (40)

When the phase is rapidly-varying, the approximation p∆(θk − θk−1) ' δ(θk − θk−1) does

not hold any longer. However, we found that good approximations of functions pf(θk) and

pb(θk) are still given in the form (36) and (38) where the coefficients af,k and ab,k are updated

by the modified forward and backward recursions

af,k =

[
af,k−1 + 2

rk−1α
∗
k−1

2σ2 + βk−1 − |αk−1|2
]
· γ
(

σ2
∆,

∣∣∣∣af,k−1 + 2
rk−1α

∗
k−1

2σ2 + βk−1 − |αk−1|2
∣∣∣∣
)

(41)

ab,k =

[
ab,k+1 + 2

rk+1α
∗
k+1

2σ2 + βk+1 − |αk+1|2
]
· γ
(

σ2
∆,

∣∣∣∣af,k+1 + 2
rk+1α

∗
k+1

2σ2 + βk+1 − |αk+1|2
∣∣∣∣
)

.

(42)

The real function γ(x1, x2), of real arguments x1 and x2 can be numerically computed and

stored in a lookup table. The motivation of (41) and (42) and a closed-form approximated

expression of the correction factor γ is provided in Appendix B.

Remark: Modification in the case of long pilot fields. When the pilot symbols are arranged

in bursts (training sequences) separated by long blocks of code symbols, as in the case of the

DVB-S2 system [29], it is necessary to slightly modify the algorithm in order to speed-up

the convergence process and to avoid the risk of a phase ambiguity. In fact, consider the

recursive integral equation (10) from the second iteration on. If the product

pd(θk)pf(θk) =

(
∑

x∈X

Pd(ck = x)fk(ck = x, θk)

)
pf(θk)
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contains a dominant exponential term, i.e., if there exists a value x ∈ X such that

ln Pd(ck = x) +

∣∣∣∣af,k +
rkx

∗

σ2

∣∣∣∣ > δ + ln Pd(ck = x) +

∣∣∣∣af,k +
rkx

∗

σ2

∣∣∣∣ , ∀x ∈ X , x 6= x (43)

where δ is a real parameter to be optimized by computer simulation, it is preferable to

let αk = x and βk = |x|2. Otherwise, we choose αk and βk as in (32) and (33). This

corresponds to using a decision-aided scheme based on hard decisions for some symbols ck.

Similar considerations also hold for the recursive integral equation (11). In the numerical

results related to the DVB-S2 system, we found that δ = 1.5 yields satisfactory results.

D. Gaussian parameterization

Another exemplification of the canonical distribution approach consists of modeling the

phasor process hk
∆
= ejθk as a complex circularly symmetric Gauss-Markov process and

treating h = (h0, . . . , hK−1) and r as jointly Gaussian. This assumption yields the forward

and backward recursions (10) and (11) in the form of a Kalman smoother (non-causal linear

MMSE estimator).

As for the Tikhonov parameterization of the previous section, we impose a jointly Gaussian

structure on the observation {rk} and the phasor process {hk} by using the minimum Diver-

gence approximation of the pdf of rk given hk, i.e., we let p(rk|hk) ' gC (αkhk, 2σ
2 + βk − |αk|2, rk)

where we have used Fact 1 of Appendix A, and where the conditional mean and variance of

rk given hk are given by E[rk|hk] = αkhk and by Var(rk|hk) = 2σ2 + βk − |αk|2, with αk

and βk given in (32) and in (33), respectively.

Under the Gauss-Markov assumption for {hk} and the above joint Gaussianity, we can

define the “state” and “observation” equations by

hk+1 = ρhk + vk (44)

rk = αkhk + wk (45)

where {vk} and {wk} are independent Gaussian processes with independent components such

that vk ∼ NC(0, 1 − ρ2) and wk ∼ NC(0, 2σ2 + βk − |αk|2). For the Wiener phase noise
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model, we obtain explicitly ρ = e−σ2
∆/2. The time-reversal process (hK−1, . . . , h1, h0) is also

Gauss-Markov [30] with state and observation equations given by hk−1 = ρhk + v′
k and by

rk = αkhk + w′
k, respectively, where {v′

k} and {w′
k} have the same statistics of {vk} and

{wk}.

Under this model, we have p(hk|{rj : j 6= k}) = gC(mk, Σk, hk), where the conditional

mean and variance can be computed iteratively using the Kalman smoother [30], [31]. The

derivation of the Kalman filter via the SPA is given in [1]. The forward and backward

recursions (10) and (11) are evaluated explicitly by a repeated application of Facts 2 and 3 in

Appendix A (details are omitted for the sake of brevity). Let mk|k−1, Σk|k−1 be the conditional

mean and variance of hk given {rj : j = 0, . . . , k − 1} (prediction) and mk|k and Σk|k be

the conditional mean and variance of hk given {rj : j = 0, . . . , k} (filtering). Similarly, Let

µk|k+1, Ξk|k−1 be the conditional mean and variance of hk given {rj : j = k + 1, . . . , K − 1}

(backward prediction) and µk|k and Ξk|k be the conditional mean and variance of hk given

{rj : j = k, . . . , K − 1} (backward filtering). The resulting recursions are given by

mk|k = mk|k−1 +
Σk|k−1α

∗
k

|αk|2(Σk|k−1 − 1) + 2σ2 + βk

(
rk − αkmk|k−1

)

Σk|k =
2σ2 + βk − |αk|2

|αk|2(Σk|k−1 − 1) + 2σ2 + βk
Σk|k−1

mk+1|k = ρmk|k

Σk+1|k = ρ2Σk|k + 1 − ρ2 (46)

for k = 0, . . . , K − 1, with initial conditions Σ0|−1 = 1 and m0|−1 = 0, and by

µk|k = µk|k+1 +
Ξk|k+1α

∗
k

|αk|2(Ξk|k+1 − 1) + 2σ2 + βk

(
rk − αkµk|k+1

)

Ξk|k =
2σ2 + βk − |αk|2

|αk|2(Ξk|k+1 − 1) + 2σ2 + βk
Ξk|k+1

µk−1|k = ρµk|k

Ξk−1|k = ρ2Ξk|k + 1 − ρ2 (47)

for k = K − 1, . . . , 0, with initial conditions ΞK−1|K = 1 and µK−1|K = 0.
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Finally, for each k we obtain

mk =
Ξk|k+1

Σk|k−1 + Ξk|k+1

mk|k−1 +
Σk|k−1

Σk|k−1 + Ξk|k+1

µk|k+1

Σk =
Σk|k−1Ξk|k+1

Σk|k−1 + Ξk|k+1

. (48)

It remains to find an expression for the message Pu(ck), that is, the probability of the code

symbol ck given the observation rk and the phasor estimate hk ∼ NC(mk, Σk). We let

hk = Rke
jθk and, by using Facts 4 and 5 in Appendix A, after some manipulations, we

obtain

Pu(ck) ∝
∫

exp

(
− 1

2σ2
|rk − cke

jθk |2
)

gC

(
mk, Σk, Rke

jθk
)

RkdRkdθk

∝ e−
|ck|2

2σ2

∫ ∞

0

e−zI0

(√
|rkc∗|2

σ4
+ 4

z|mk|2
Σk

+ 4

√
z√

Σkσ2
Re{rkc∗m

∗
k}
)

dz .

(49)

The above integral can be easily computed by using Gauss-Laguerre quadrature rules.

IV. NUMERICAL RESULTS

In this Section, the performance of the proposed schemes is assessed by computer simula-

tions in terms of bit error rate (BER) versus Eb/N0, Eb being the received signal energy per

information bit and N0 the one-sided noise power spectral density. Unless otherwise stated,

the considered code is a (3,6)-regular LDPC code with codewords of length 4000 [32],

a maximum of 200 iterations of the SPA on the overall graph is allowed, and the BPSK

modulation is adopted. Pilot symbols are inserted in the transmitted codeword in order to make

the iterative decoding algorithms bootstrap. This corresponds to a decrease in the effective

transmission rate, resulting in an increase in the required signal-to-noise ratio which has

been introduced artificially in the curve labeled “known phase” for the sake of comparison.

Hence, the gap between the “known phase” curve and the others is uniquely due to the need

for phase estimation/compensation, and not to the rate decrease due to the insertion of pilot

symbols.

March 25, 2004 DRAFT



G. COLAVOLPE, A. BARBIERI AND G. CAIRE: ITERATIVE DECODING IN THE PRESENCE... 16

In Fig. 3, the algorithms described in Sections III-A and III-B (discretization of channel

parameters and Fourier parameterization) have been considered, assuming a pilot symbol

in every block of 20 transmitted symbols. The ESA phase noise model and a more severe

Wiener model (2) with σ∆ = 6 degrees, have been considered. This latter case has been

used to stress the robustness of the described schemes to a strong phase noise and to select

the best algorithm, from a performance-complexity trade-off point of view, to be used for

high-order modulations. In the case of the ESA model, all the receivers were designed by

assuming a Wiener phase noise model with σ∆ = 0.3 degrees.

In the case of the Wiener model, different values L of discretization levels and different

values of the number N of considered Fourier coefficients have been considered. No improve-

ment has been observed for values of L > 16 and this is in agreement with a result in [6].

Similarly, values of N > 17 are not considered since they do not produce any performance

improvement. Therefore, the value of N = 17 (i.e., −8 ≤ ` ≤ 8 in all the equations of

Section III-B) can be considered as optimal for σ∆ = 6 degrees. Hence, the gap of about

0.2 dB with respect to the curve labeled “known phase” is only due to the loss in channel

capacity for a time-varying channel phase.

In the binary case considered in the previous figure, the proposed algorithms have a

practically optimal performance and a similar complexity. However, for a modulation format

characterized by a more dense constellation, if for the discretization-based algorithm the

optimal number of discretization levels, and thus the complexity, must be increased, it can

be expected that the number N of considered Fourier coefficients in the proposed algorithm

remains practically the same. This aspect is shown in Fig. 4 where a QPSK modulation is

considered. The phase noise has σ∆ = 6 degrees and even in this case we have a pilot

symbol in every block of 20 transmitted symbols. For the discretization-based algorithm

L = 8M = 32 quantization levels are considered whereas for the algorithm based on Fourier

parameterization, the number of Fourier coefficients is still N = 17.
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In Fig. 5, the performance of the algorithms based on Tikhonov and Gaussian parameter-

izations is shown in the same conditions of Fig. 3. We observe that, despite the very low

complexity, these algorithms have practically the same performance of more computationally

demanding algorithms based on discretization and Fourier parameterization. This fact can be

also observed from Fig. 6 where all the considered algorithms are compared for a Wiener

phase model with σ∆ = 6 degrees. In this figure, the performance of two other algorithms

described in the literature is also shown for the sake of comparison. The first one is the

“ultra fast” algorithm with overlapped windows described in [23], with the value of N

optimized by computer simulation. The second one is based on the EM algorithm [17]–[21].

In order to adapt the algorithm to a time-varying channel phase, different phase estimates

are computed for each code symbol, taking into account the contribution of the adjacent

symbols belonging to a window whose dimension is optimized by computer simulation.

For this reason the algorithm is denoted by EM with sliding window (EM-SW). We found

that the optimal window has width of 60 symbols for the considered phase noise. In both

cases, the performance loss is due to the fact that these two algorithms are designed for a

different phase model, i.e., a block-constant phase. Based on the above experiments and on

extensive numerical evidence (not shown for the sake of space limitation) we conclude that

all the proposed algorithms exhibit a practically optimal performance (i.e., they perform as

well as the discretization approach). Among them, those based on Tikhonov and Gaussian

parameterizations, because of their low complexity (roughly equivalent to that of the EM-SW

algorithm), represent the best candidates for this detection scenario. For this reason, these

two algorithms will be considered in the remaining results.

The sensitivity to distributions of the pilot symbols is considered in Fig. 7. In the case of

the Wiener model with σ∆ = 6 degrees, two different distributions are considered, namely

1 pilot simbol in each block of 20 consecutive bits and 20 pilots in each block of 400

consecutive bits (hence the effective transmission rate is the same). We may observe that the
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algorithm based on Tikhonov parameterization is almost insensitive thanks to the algorithm

modification described in Section III-C. A similar modification is not possible in the case

of the algorithm based on Gaussian parameterization, since it can be shown that the choice

of a dominant term corresponds to a hard-decision based uniquely on the decoder outcome

Pd(ck). We verified that this modification of the algorithm described in Section III-D does

not provide any performance improvement. Note that, in general, the distribution of the pilots

has to be optimized for the specific detection algorithm employed.

Finally, we consider the application of our new algorithms to the DVB-S2 system. We

consider two standardized LDPC codes with codewords of length 64800 [29]. The first one

has rate 2/3 and is mapped onto a 8-PSK modulation. The second one has rate 4/5 and is

mapped onto a 32-APSK modulation. A maximum number of 50 iterations is considered and

36 pilot symbols every 1476 symbols are included, as prescribed by the existing standard [29].

The above mentioned phase noise ESA model is considered. The performance is shown in

Fig. 8. For the algorithm based on Tikhonov parameterization, the loss due to phase noise

is less than 0.1 dB in both cases. Notice that a further improvement in performance may be

obtained if the maximum number of iterations is not limited to 50. The Kalman smoother

(Gaussian parameterization) does not perform as well mainly because of the bursty allocation

of pilot symbols.

V. CONCLUSIONS

In this paper, the problem of joint detection and decoding of coded signals transmitted

over an AWGN channel affected by strong phase noise has been considered. We obtained

a number of new algorithms based on the direct application of the sum-product algorithm

over the factor-graph representing a suitable factorization of the posterior joint probability

mass function of the information bits given the received signal. To overcome the problem

of computing and propagating messages in the graph corresponding to probability density
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functions (associated to continuous random variables), we used the method of canonical

distributions.

Different parameterizations have been considered. Among all considered schemes, the

novel algorithm based on Tikhonov parameterization exhibits practically optimal performance

and very low complexity, and represents an attractive solution for systems where powerful

LDPC-coded modulations are transmitted in the presence of phase noise, such as in next-

generation satellite Digital Video Broadcasting.

APPENDIX

A. Some facts about Gaussian distributions

The following facts can be easily proved by direct calculation.

Fact 1. Let p(x) and q(x) be two probability distribution functions. The divergence D(p‖q)

(also known as cross-entropy, or Kullbach-Leibler distance [33]) is defined by

D(p‖q) =

∫
p(x) log

p(x)

q(x)
dx .

Let f(x) be a probability distribution function of a real random variable with mean µf and

variance σ2
f . The solution to the divergence minimization problem ming∈G D(f‖g), where G

is the set of all real Gaussian pdfs, is given by g(µf , σ
2
f , x), i.e., it is the Gaussian pdf with

the same mean and variance.

Let f(x) be the probability distribution function of a complex random variable with mean

µf and variance σ2
f . The solution to the divergence minimization problem ming∈G′ D(f‖g),

where G ′ is the set of all complex circularly-symmetric Gaussian pdfs, is given by gC(µf , σ
2
f , x),

i.e., it is the complex circularly-symmetric Gaussian pdf with the same mean and variance.

�

Fact 2.

gC(A1, Σ1, x)gC(A2, Σ2, x) ∝ gC

(
Σ2

Σ1 + Σ2

A1 +
Σ1

Σ1 + Σ2

A2,
Σ1Σ2

Σ1 + Σ2

, x

)
. (50)
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The proportionality constant is trivially given by

κ =

∫
gC(A1, Σ1, x)gC(A2, Σ2, x)dx .

The same relationship holds for real Gaussian pdfs. �

Fact 3.

∫
gC(A1, Σ1, x)gC(A2x, Σ2, y)dx ∝ gC

(
A1A2, Σ2 + |A2|2Σ1, y

)
. (51)

The same relationship holds for real Gaussian pdfs. �

Fact 4. Let X ∼ NC(A, Σ) be expressed in magnitude and phase as X = Rejθ. Hence,

the joint distribution of R and θ is given by

f(R, θ) =
1

πΣ
R exp

(
−R2 + |A|2

Σ

)
exp

(
2R|A| cos(θ − φ)

Σ

)
(52)

where we have defined A = |A|ejφ. �

Fact 5. Let a, b ∈ R+. We have,

1

2π

∫ π

−π

exp (a cos(θ − α) + b cos(θ − β)) dθ = I0

(√
a2 + b2 + 2ab cos(α − β)

)
(53)

where I0(z) is the modified Bessel function of the first kind and order zero. �

B. Modified Tikhonov parameterization

Consider the function

f(y) =
1√

2πσ2
∆

∫ 2π

0

eRe[ze−jx]e
− (x−y)2

2σ2
∆ dx =

1√
2πσ2

∆

∫ π

−π

eRe[ze−j(x+y)]e
− x2

2σ2
∆ dx

where z is a complex number and x and y are real numbers. By discarding irrelevant

multiplicative factors, we shall show that f(y) ' eγ(σ2
∆,|z|)Re[ze−jy], where γ(σ2

∆, |z|) is a

real function of |z| and σ2
∆. This can be seen by using the following approximation which

holds for large values of a ∈ R
+ (in practice a > 5)

ea cos(x−y)

2πI0(a)
' 1√

2π/a
e−

a
2
(x−y)2 = g(y,

1

a
, x) . (54)
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In fact, for sufficiently large values of a, the Tikhonov pdf ea cos(x−y)

2πI0(a)
has its support in a small

interval around y. Hence, by using a second-order Taylor expansion, we have cos(x − y) '

1 − (x−y)2

2
. A normalization constant has been further added to obtain a pdf.

The correction term γ in (41) and in (42) can be derived by using the approximation (54).

In fact, we let

f(y) =
1√

2πσ2
∆

∫ 2π

0

eRe[ze−jx]e
−

(x−y)2

2σ2
∆ dx

(a)'
∫ ∞

−∞

eRe[ze−jx]g(x, σ2
∆, y) dx

(b)' 2πI0(|z|)
∫ ∞

−∞

g(φ(z),
1

|z| , x)g(x, σ2
∆, y) dx

(c)∝ g(φ(z),
1

|z| + σ2
∆, y)

(d)' 1

2πI0(
|z|

1+σ2
∆|z|

)
exp

{
1

1 + σ2
∆|z|

Re[ze−jy]

}

∝ exp

{
1

1 + σ2
∆|z|

Re[ze−jy]

}
(55)

where (a) follows from the observation that, for σ∆ � 1, the function e
− (x−y)2

2σ2
∆ has its support

in a small interval around y, (b) and (d) follow from the approximation (54) and (c) follows

from Fact 3 of Appendix A.

Hence

γ(σ2
∆, |z|) =

1

1 + σ2
∆|z|

.

REFERENCES

[1] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE

Trans. Inform. Theory, vol. 47, pp. 498–519, Feb. 2001.

[2] G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp. 268–278, Mar. 1973.

[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,”

IEEE Trans. Inform. Theory, vol. 20, pp. 284–287, Mar. 1974.

[4] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans.

on Commun., vol. 44, no. 10, pp. 1261–1271, October 1996.

[5] R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.

[6] M. Peleg, S. Shamai (Shitz), and S. Galán, “Iterative decoding for coded noncoherent MPSK communications over

phase-noisy AWGN channel,” IEE Proc. Commun., vol. 147, pp. 87–95, Apr. 2000.

[7] I. D. Marsland and P. T. Mathiopoulos, “On the performance of iterative noncoherent detection of coded M-PSK

signals,” IEEE Trans. on Commun., vol. 48, no. 4, pp. 588–596, Apr. 2000.

March 25, 2004 DRAFT



G. COLAVOLPE, A. BARBIERI AND G. CAIRE: ITERATIVE DECODING IN THE PRESENCE... 22

[8] G. Colavolpe, G. Ferrari, and R. Raheli, “Noncoherent iterative (turbo) detection,” IEEE Trans. on Commun., vol.

48, no. 9, pp. 1488–1498, Sept. 2000.

[9] G. Ferrari, G. Colavolpe, and R. Raheli, “Noncoherent iterative decoding of spectrally efficient coded modulations,”

Annals of Telecommun., vol. 56, pp. 409–421, July/August 2001.

[10] A. Anastasopoulos and K. M. Chugg, “Adaptive iterative detection for phase tracking in turbo coded systems,” IEEE

Trans. on Commun., vol. 49, Dec. 2001.

[11] A. P. Worthen and W. E Stark, “Unified design of iterative receivers using factor graphs,” IEEE Trans. Inform. Theory,

vol. 47, no. 2, pp. 843–849, Feb. 2001.

[12] H. Jin and T. Richardson, “Design of low-density parity-check codes for noncoherent MPSK communication,” in

Proc. IEEE symposium on information theory, Lausanne, Switzerland, June-July 2002, p. 169.

[13] H. Jin and T. Richardson, “On iterative joint decoding and demodulation,” in Proc. 41st Allerton Conference,

Monticello, IL, USA, October 2003.

[14] J. Dauwels and H.-A. Loeliger, “Joint decoding and phase estimation: an exercise in factor graphs,” in Proc. IEEE

Symposium on Information Theory, Yokohama, Japan, July 2003, p. 231.

[15] J. Dauwels and H.-A. Loeliger, “Phase estimation by message passing,” in Proc. IEEE International Conf. Commun.,

Paris, France, June 2004.

[16] R. Nuriyev and A. Anastasopoulos, “Pilot-symbol-assisted coded transmission over the block-noncoherent AWGN

channel,” IEEE Trans. on Commun., vol. 51, pp. 953–963, June 2003.

[17] V. Lottici and M. Luise, “Carrier phase recovery for turbo-coded linear modulations,” in Proc. IEEE International

Conf. Commun., Apr. 2002, pp. 1541–1545.

[18] V. Lottici and M. Luise, “Embedding carrier phase recovery into iterative decoding of turbo-coded linear modulations,”

submitted to IEEE Trans. on Commun., 2002.

[19] N. Noels, C. Herzet, A. Dejonghe, V. Lottici, H. Steendam, M. Moeneclaey, M. Luise, and L. Vandendorpe, “Turbo

synchronization: an EM algorithm interpretation,” in Proc. IEEE International Conf. Commun., Anchorage, AK,

U.S.A., June 2003, pp. 2933–2937.

[20] N. Noels, V. Lottici, A. Dejonghe, H. Steendam, M. Moeneclaey, M. Luise, and L. Vandendorpe, “A theoretical

framework for soft information based synchronization in iterative (turbo) receivers,” submitted to IEEE Trans. on

Commun., 2003.

[21] H. Steendam, N. Noels, and M. Moeneclaey, “Iterative carrier phase synchronization for low-density parity-check

coded systems,” in Proc. IEEE International Conf. Commun., Anchorage, AK, U.S.A., June 2003, pp. 3120–3124.

[22] L. Zhang and A. Burr, “Application of turbo principle to carrier phase recovery in turbo encoded bit-interleaved coded

modulation system,” in Proc. Intern. Symp. on Turbo Codes & Relat. Topics, Brest, France, Sept. 2003, pp. 87–90.

[23] I. Motedayen-Aval and A. Anastasopoulos, “Polynomial-complexity noncoherent symbol-by-symbol detection with

application to adaptive iterative decoding of turbo-like codes,” IEEE Trans. on Commun., vol. 51, pp. 197–207, Feb.

2003.

[24] A. Ginesi, D. Fittipaldi, A. Bigi, and R. De Gaudenzi, “Pilot-aided carrier synchronization techniques for broadband

satellite transmissions,” Tech. Rep., ESA-ESTEC, Sept. 2003.

[25] L. Benvenuti, L. Giugno, V. Lottici, and M. Luise, “Code-aware carrier phase noise compensation on turbo-coded

spectrally-efficient high-order modulations,” in 8-th Intern. Work. on Signal Processing for Space Commun., Catania,

Italy, Sept. 2003, pp. 177–184.

[26] O. Macchi and L.L. Scharf, “A dynamic programming algorithm for phase estimation and data decoding on random

phase channels,” IEEE Trans. Inform. Theory, pp. 581–595, September 1981.

[27] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathematical Functions, Dover, 1972.

[28] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Prentice-Hall, Englewood Cliffs, New Jersey,

1989.

[29] ETSI, “ETSI - DVBS2 74r13, Digital Video Broadcasting (DVB): Second generation framing structure, channel

coding and modulation systems for Braoadcasting, Interactive Services, News Gathering and other broadband satellite

applications,” 2003.

[30] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, Prentice-Hall, 2000.

[31] H. V. Poor, An Introduction to Signal Detection and Estimation, Springer-Verlag, 1994.

[32] D. J. C. MacKay, “Regular LDPC online database,” available at the url http://www.inference.phy.cam.ac.uk/mackay/.

[33] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc., New York, 1991.

March 25, 2004 DRAFT



G. COLAVOLPE, A. BARBIERI AND G. CAIRE: ITERATIVE DECODING IN THE PRESENCE... 23

θ

f(θ)

c0 c1 c2 c4c3 c5

Code constraints, χ(c)

f0 f1 f2 f3 f4 f5

Fig. 1. Factor graph corresponding to eqn. (6).
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Fig. 2. Factor graph corresponding to eqn. (8).
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Fig. 3. Performance of the algorithms based on discretization of channel parameters and Fourier parameterization. BPSK

and two different phase models are considered.
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Fig. 4. Performance of the algorithms based on discretization of channel parameters and Fourier parameterization. QPSK

and the Wiener model with σ∆ = 6 degrees are considered.
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Fig. 5. Performance of the algorithms based on Tikhonov and Gaussian parameterizations. BPSK and two different phase

models are considered.
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Fig. 6. Performance of all the proposed algorithms and comparison with other algorithms proposed in the literature. BPSK

and the Wiener phase model with σ∆ = 6 degrees are considered.
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Fig. 7. Performance of the algorithms based on Tikhonov and Gaussian parameterizations. BPSK and two different pilot

distributions are considered.
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Fig. 8. Performance of the algorithms based on Tikhonov and Gaussian parameterizations. The ESA phase model is

considered along with 8-PSK and 32-APSK modulations.
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