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Abstract
This contribution deals with phase noise estimation from pilot symbols. The phase noise process is represented as an expansion of DCT basis functions containing only a few terms. We propose an algorithm that estimates the coefficients of the DCT expansion. By means of theoretical analysis and computer simulations, we demonstrate that the resulting mean-square estimation error consists of two contributions : a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise-independent contribution that results from the phase noise modeling error. Performance can be optimized by a proper selection of the number of DCT coefficients to be estimated. Considerable performance improvement is found as compared to the case where only the time-average of the time-varying carrier phase is estimated.
I. Introduction
Discrete-time processes that have a bandwidth which is considerably less than the sampling frequency can often be modeled as an expansion of suitable basis functions, that contains only a few terms. Such a basis expansion has been succesfully applied in the context of channel estimation and equalization in wireless communications, where the coefficients of the channel impulse response are lowpass processes with a bandwidth that is limited by the Doppler frequency [refs].
Phase noise results from instabilities that occur in the oscillators used for baseband to bandpass conversion (at the transmitter) and bandpass to baseband conversion (at the receiver). In order to reliably detect the transmitted data symbols, the phase noise must be estimated at the receiver and compensated for. Several methods for phase noise estimation exist :
· Phase noise can be estimated by means of a feedback algorithm that operates according to the principle of the PLL. As feedback algorithms give rise to rather long acquistion periods, they are not well suited to systems with burst transmission. [refs]
· Phase noise is assumed to be piecewise constant over small intervals, and in each such interval a conventional algorithm is used to estimate the local average of the phase [ref].
· A factor graph approach for phase noise estimation has been presented in [], but the algorithm appears rather cumbersome
In this contribution we apply the basis expansion model to the problem of phase noise estimation; the basis functions are those from the discrete cosine transform (DCT). In contrast to the case of channel estimation, the phase noise does not enter the observation model in a linear way.
Section II of this contribution presents the system description, which includes the observation model and the phase noise model. The phase noise estimation algorithm, based on the estimation of a few DCT coefficients, is derived in section III. Section IV contains the performance analysis of the proposed algorithm in terms of the mean-square error (MSE) of the phase estimate; we consider the Cramer-Rao lower bound corresponding to the actual observation model, and the performance analysis of the linearized observation model. Numerical results from analysis are confirmed by computer simulations in section V; both the MSE of the phase estimate and the associated bit error rate (BER) degradation considered. Conclusions are drawn in section VI. One of the main conclusions is that a proper selection of the number of DCT coefficients to be estimated gives rise to a considerable performance improvement as compared to the case where only the time-average of the phase noise is estimated.
II. System description
We consider the transmission of a block of K data symbols over an AWGN channel that is affected by phase noise. The resulting received signal is represented as

r(k) = a(k)exp(j(k)) + w(k), k = 0, ..., K-1
(1)
where the index k refers to the k-th symbol interval of length T, {a(k)} is a sequence of data symbols with E[|a(k)|2] = Es, the additive noise {w(k)} is a sequence of i.i.d. zero-mean circular symmetric complex-valued Gaussian random variables with E[|w(k)|2] = N0, and (k) is the sum of a static phase offset 0 and a zero-mean phase noise process with KxK correlation matrix R
The symbol sequence {a(k)} contains known pilot symbols at positions ki, i = 0, ..., KP-1. We assume that the pilot symbols have constant magnitude : |a(ki)|2 = Es. From the observation of the received signal at the pilot symbol positions ki, an estimate of 
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 of the time-varying phase (k) is to be produced. This phase estimate will be used to rotate the received signal before data detection, i.e., the detection of the data symbols is based on {z(k)} = {r(k)exp(-j
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 = (k). For uncoded transmission, the detection algorithm reduces to symbol-by-symbol detection :
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with A denoting the symbol constellation.

III. Phase estimation algorithm
The phase (k) can be represented over the interval (0, K-1) as a weighed sum of K basis functions :
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As (k) is essentially a lowpass process, it can be well approximated by the weighed sum of a limited number N (<< K) of suitable basis functions :
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In this contribution we make use of the orthonormal discrete cosine transform (DCT) basis functions, that are defined as 
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(5)
Hence, xn is the n-th DCT coefficient of (k). As n(k) has its energy concentrated near the frequencies n/(2KT) and -n/(2KT), the DCT basis functions are well suited to represent a lowpass process by means of a small number of basis functions.
In the following we will produce from the observation {r(ki)} an estimate {
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, n = 0, ..., N‑1} of the coefficients {xn, n = 0, ..., N-1}, using the phase model () with equality. From{
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However, as (4) is not an exact model of the true phase (k), the phase estimate will be affected not only by the additive noise contained in the observation, but also by a phase noise modeling error. 
Considering the observations (1) at instants ki, and assuming that (4) holds with equality, we obtain
rP = D(x)aP + wP
(7)
where, for i = 0, ..., KP-1, (rP)i = r(ki), (wP)i = w(ki), (aP)i = a(ki), and D(x) is a diagonal matrix with
(D(x))i = exp(j(Px)i)
(8)
and P)i,n = n(ki), (x)n = xn, n = 0, ..., N-1 with N(KP. 

Maximum-likelihood estimation of x from rP results in 
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As x enters the observation rP in a nonlinear way, the ML estimate is not easily obtained. 
Therefore, we present a simple ad hoc estimate of x, which is based on the argument (angle) of the complex-valued observations. However, as the function arg(z) reduces the argument of z to an interval (-, ), taking arg(r(ki)) might give rise to phase wrapping, especially when the static phase offset 0 is close to - or . In order to reduce the probability of phase wrapping, we will first rotate the observation r over an angle avg that is close to the time-average of (k), use the argument of the rotated observations r(exp(-javg) to estimate the DCT coefficients of the fluctuation (k)-avg, and finally compute the phase estimate 
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and construct r' with (r')i = arg(r(ki)a*(ki) exp(-javg)). From r', we obtain an estimate 
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 of the DCT coefficients x' of the fluctuation (k)‑avg. through a least-squares fit : 
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This yields 
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In order that 
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 exists, we need N ( KP. Finally, the phase estimate is given by
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with (
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, (1)k = 1, (K)k,n = n(k), k = 0, ..., K-1; n = 0, ..., N-1.
In order to avoid the matrix inversion in (12), we select the positions ki of the KP pilot symbols such that 
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 is diagonal. In other words, the functions n(ki) must form N orthogonal functions of length KP. Let us consider the DCT basis functions (n(i) of length KP. By selecting 
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we obtain
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so that 
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In order that ki from (14) be integer, K must be an odd multiple of KP. However, when K is not an odd multiple of KP, rounding the right-hand side of (14) to the nearest integer gives rise to pilot symbol positions that yield an essentially diagonal matrix 
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IV. Performance analysis
As the observation vector rP is a nonlinear function of the carrier phase, an exact analytical performance analysis is not feasible. Instead, we will resort to a linearization of the argument function (which is reasonably accurate when the additive noise and the fluctuation of the phase noise are small) in order to obtain tractable results.
Linearization of the argument function yields

r'(i) = arg(r(ki)a*(ki)exp(-javg)) = (ki) - avg + nP(i), i = 0, ..., KP-1
(18)
where {nP(i)} is a sequence of i.i.d. zero-mean Gaussian random variables with variance N0/(2Es). Note that (18) incorporates the true phase (ki) instead of the approximate model (4), so that our performance analysis will take the modeling error into account. Substituting (18) into (17) yields 
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with (nP)i = nP(i) and (P)i = (ki). If the model (4) were exact, we would have  = Kx and P = Px, yielding 
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in which case the estimation error would be caused only by the additive noise.

As a performance measure of the estimation algorithm we consider the mean-square error (MSE), defined as 
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Substituting (19) into (21) yields
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where
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The first term in (22) denotes the contribution from the additive noise, whereas the second term in (22) constitutes a MSE floor, caused by the phase noise modeling error. Note that the noise contribution to the MSE is proportional to N (because N parameters need to be estimated), whereas the MSE floor decreases with increasing N (because the modeling error is reduced when more DCT coefficients are taken into account). Hence, there is an optimum value of N that minimizes the MSE.
From the nonlinear observation model (7), which assumes that (4) holds with equality, we compute the Cramer-Rao lower bound on the MSE resulting from any unbiased estimate 
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 of the DCT coefficients of (k). According to [ref CRB], the matrix 
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 is positive semi-definite, with J denoting the NxN Fischer information matrix. From this we obtain the following Cramer-Rao bound :
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The Fischer information matrix J can be computed as 
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Combining (24) with (25) yields :
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Comparison of (26) and (22) indicates that our ad hoc algorithm (17) yields the minimum possible (over all unbiased estimates) noise contribution to the MSE (assuming that the linearization of the observation model is valid). 
V. Numerical results
beschrijving van setup : phase noise model, selectie van parameters
resultaten : 

- MSE voor (k) = 0 --> verificatie dat MSE dicht bij CRB ligt

- MSE in aanwezigheid van faseruis, simulatie vgln. met analytisch resultaat

- BER degradatie als functie van N (ook N= 1 beschouwen)

- BER als functie van Eb/N0 (perfecte synchronisatie, synchronisatie met N=1, synchronisatie met N=Nopt)
VI. Conclusions and remarks

In this contribution we have considered an ad hoc data-aided phase noise estimation algorithm that is based on the estimation of a only a few (N) coefficients of the DCT basis expansion of the time-varying phase. Linearization of the observation model has indicated that the mean-square error of the resulting estimate consists of an additive noise contribution (that increases with N), and a MSE floor caused by the phase noise modeling error (that decreases with N). The noise contribution coincides with the Cramer-Rao lower bound.
These analytical findings have been confirmed by means of computer simulations. The numerical results illustrate that the MSE of the phase noise estimate and the associated BER degradation can be minimized by a suitable choice of N. For the considered setting, substantial improvement is obtained as compared to the case where only the time-average of the phase is estimated.
The considered algorithm makes use of only the observations that contain the pilot symbols. When the resulting performance is not satisfactory, one can envisage to further reduce the MSE and the associated BER degradation by using an iterative estimation algorithm [ref] that also exploits the observations containing the unknown data symbols; the phase estimate resulting from the ad hoc algorithm presented above could be used to initialize the iterative algorithm. The investigation of the performance of such an iterative algorithm is a topic of further research.
References

Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels

Giannakis, G.B.; Tepedelenlioglu, C.;

Proceedings of the IEEE

Volume 86,  Issue 10,  Oct. 1998 Page(s):1969 - 1986


Blind space-time multiuser channel estimation in time-varying DS-CDMA systems

Tugnait, J.K.; Luo, W.;

Vehicular Technology, IEEE Transactions on

Volume 55,  Issue 1,  Jan. 2006 Page(s):207 - 218

Estimation and equalization of doubly selective channels using known symbol padding

Rousseaux, O.; Leus, G.; Moonen, M.;

Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on]

Volume 54,  Issue 3,  March 2006 Page(s):979 - 990

_1229255032.unknown

_1229259737.unknown

_1229263521.unknown

_1229267316.unknown

_1229275789.unknown

_1229278745.unknown

_1229278776.unknown

_1229277143.unknown

_1229275643.unknown

_1229264385.unknown

_1229267247.unknown

_1229263962.unknown

_1229260497.unknown

_1229260567.unknown

_1229260133.unknown

_1229256739.unknown

_1229258665.unknown

_1229259569.unknown

_1229257116.unknown

_1229255832.unknown

_1229256624.unknown

_1229255261.unknown

_1229255095.unknown

_1229238672.unknown

_1229240941.unknown

_1229249793.unknown

_1229254887.unknown

_1229241113.unknown

_1229240199.unknown

_1229240592.unknown

_1229239986.unknown

_1229237990.unknown

