Mob-Com Dept. Internal Seminar Series

Efficient Turbo-synchronization algorithms
for phase noise and frequency offsets.

Giuseppe Caire, Eurecom Institute, France

Problem

AWGN channel with phase noise and frequency offset

yr = wped Ok 2mR) o k=0,...,N—1.

The sequence x = (zg,...,xn_1) IS @ codeword of the channel code C
constructed over an M-ary modulation constellation X C C.

We include pilot symbols, interleaving, preambles etc etc ... as part of
the code.

The channel SNR is given by SNR = El[|z|?]/No, where z is uniform over
X.

Phase noise

e 0 = (0p,01,...,0n_1) is random, unknown to both transmitter and
receiver, and statistically independent of x and w.

e WORKING ASSUMPTION:
Or = 0k_1+ Ag
where {A} is a white real Gaussian process with Ax ~ N (0,03).
e Under this assumption, assuming 6y ~ Uniform[0, 27),

P(O0k|Ok—1,0k—2,...,00) = p(0k|0r—1) = pA(Ox — Or—1)

where pa(¢) is the pdf of A; mod [0, 27).

Frequency offset

e v is assumed to be uniformly distributed in [—vmax, Vmax) -

® UVmax = fmaxI, Where f...« IS the frequency specified tolerance and T is
the symbol period.

e The one-sample per symbol model makes sense only if vy, < 1/2 (for
large frequency offset ISI appears).

Optimal bit-wise decoding

e Focus first on the case of phase noise only (vy.x = 0).

e The code C admits an encoding function pc : Ff — XN, mapping binary
information messages b € F& into the codewords.

e Optimal decision rule that minimizes the average bit-error probability:

AN

b; = arg max Pyt ;(b|y)
bEFQ

Posterior probability marginalization = BP

e Let P(b,0|y) denote the joint posterior probability distribution function of
the information bits and of the phase noise vector 6 given y.

e The desired P ;(bly) can be obtained by marginalizing P (b, 8|y) with
respect to 6 and to all b; for j # :.

e This can be accomplished in an approximated but low-complexity way by
BP applied on the FG of P(b, 0]y).

Factorization (1)

P(b,0y) oc P(b)p(0)p(y|6,b)

o< x[x = pc(b)lp(0)p(y|0,x = pc(b))

o« x[x = puc(b)p(0) 1] plyrlar, br)
k=0

i = e(b)]p(0) TT il 00)
k=0

e We have defined the functions:

fr(@r, 0x) = exp iRe[ykw*e_jek] _ el X exp —ilyk — zped2
, NO g NO NO

Factorization (2)

Under the assumption of 1st order Markov model for the phase noise:

N—-1

P(b.6ly) o xlx = pc(b)]p(00) [[pa(6s — 1) [] fulew.00).
k=1 k=0

Factor Graph

H{x = u(b)}

Pd(#k: 1) Pyi(xy, Py(zp{1)
Tpu(l‘k:—l) Py () Py(Tk11)
| | |

Jrlzr, Ok
| | |
ﬂ\ pA(ekz - 9k—1ﬂ\ pA(9k+1 — ek)ﬂ\
N) NG

ps(Ok—1) ps(0k) Pb(O) Po(Or41)

Belief Propagation (1)

Py(xx): message from variable node x; to factor node f; (decoder soft-
output);

P, (z): message from factor node f; to variable node x; (decoder soft-
input);

pa(0k): message from factor node fj, to variable node 6y:

pd((gk) X Z Pd(azk = .I‘)fk(.l'k - T, Qk) .

reX

We assume that in the lower part of the FG a forward-backward node
activation schedule is adopted.

Belief Propagation (2)

Messages p¢(0x) from factor node pa(0r — 0x—1) to variable node 6y,
and py(0;) from factor node pa(0x+1 — %) to variable node 6, can be
recursively computed as follows:

27

p1(0h) ox / pa(Ok1)p s (On_1)pa(On — Op_1) by,
0
27

py(Ok) O</ Pd(0k+1)Po(Ok+1)PA(Ok4+1 — Ok) dOky1
0

The message P,(xy) from fi to xi is given by

Py (k) O</O Wpf(Qk)pb(%)fk(ﬂ?k,@k)d9k-

10

Belief Propagation (3)

e Decoder output: {Py(xx) : k=0,...,N —1}.

e Decoder input: {P,(zg) : k=0,...,N — 1}.

e Pilot symbols have probability Py(xx
known k-th pilot value.

ar) = 1, where ay, is the a-priori

11

Approaches to practical low-complexity algorithms

e Discretization: propagate pmfs instead of pdfs.
e Canonical distributions: propagate the parameters of the distributions.

e Remark: There are other standard approaches in the literature, e.g.,
particle filters (generate Monte Carlo samples from a distribution).

12

Discretization

We assume that the channel phase 6, may take © = {0,27 /L, ..., 2x(L—
1)/L}.

This approach becomes “optimal” (in the sense that it approaches
the performance of the exact BP) for a sufficiently large number of
discretization levels.

Rule of thumb: for M-PSK signals, L = 8M values are sufficient to have
no practical performance loss w.r.t. exact BP.

Main limitation: complexity (it is still quite computationally intensive).

13

Phase trellis (1)

e State space O of size L, isomorphic to Z;..

e A sensible choice for the phase dynamics is to assume that state ¢, has
transitions with non-zero probability only to states /.1 = l, lri1 =
b+ 1,01 =¥ — 1, modulo L.

e By symmetry of the phase noise distribution, we have that
PA/2 £k+1:£k—1

P(fk — ékz—|—1) = 1 — Pa €k+1 = Ek
PA/Z lrir =Ll +1

14

Phase trellis (2)

o o
P
.><§

e

Matching the discrete process variance

e The value of Pp is chosen such that the variance of the phase increment

Is equal to the variance of the phase difference of the continuous (non-
discretized) phase noise process.

e For example, for the Wiener model defined before we have

o\
O(2iiscr — PA (f)

and by letting o3, .. = o2 we obtain

I\ 2
PA = (OL)
2T

16

Phase BCJR: definitions

e Denote the message from p(6|0x—_1) t0 %, in the log-probability domain,
as {ar(¥): L€ Zr}.

e Denote the message from p(0;11|0x) 10 %, in the log-probability domain,
as {Gr(¢): L € Z}.

e The branch weight for the trellis section (k, k + 1) is given by

1 o |2
Ye(€,m) = LogSum,, . {log Py(zy = x) — AL a:e_ﬂﬁ/L‘ }+log Pl — m)
0

where P(¢ — m) is the trellis transition probability ¢, = ¢ and {11 = m.

17

Phase BCJR: forward recursion

e Initialize ap(¢) =0forall ¢ € Zy.
e Fork=0,...,N —1let

agpi1(m) = LogSum, 7 {v(l,m) + ar(f)}

18

Phase BCJR: backward recursion

e Initialize By_1({) =0forall ¢ € Z.
e Fork=N—-1,...,1let

Bh1(m) = LogSum, 7, {(£,m) + By(0)}

19

Phase BCJR: output

Finally, the BCJR output is given by the log-probabilities {n(z) : z € X'},
with

1 . 2
nk(af) = LogsumKEZL {ogk(é) + 5,{:(6) — ﬁo Vi — we—]27r£/L‘ }

fork=0,...,N — 1.

20

Gaussian approximation of p,(6;)

e If the messages P,(xx) were the exact a posteriori probabilities of the
code symbols, it would be

pa(Ox) o< Y Pa(wy = z) fr(z = =, 0%) o< p(yk|Or) -

reX

The pdf p(yrl0k) = > ,cx Pilzr = x)gc(ze?® No,yx) is a linear
combination of Gaussian pdfs.

e We approximate p(yx|0x) by the Gaussian pdf at minimum divergence,
given by gc(ake?’®, No + B — |ow|?, y), where

Ok def Z rPy(zy = x)
reX

and def ,
B = Y |af Pa(ay = x)

reX

21

Tikhonov parameterization

e With the above Ga

ussian approximation, we obtain

pa(fr) o p(yr|Or)

e Substituting in the

2T
py(Ok) 2/ exp q 2
0

~ Jc (Oékejek,No + Bk — |04k\2ayk)

Re[ykoz}';e_jek] }
X exp- 2
p{ No + Br — |ow]?

forward and backward recursion, we obtain

(Re[yk_loz}';_le_jek—l])

No + ey — Jan? (P Ok-1palln = Or—1) O

¢ _ 0 \
2Re[yk+1oz}';+16 Tokt1]

> D (Ok11)pA Ok — Ok11) dOry1 -

27T
pb(ek):/ exp X
0

\ No + Br+1 — |04k+1|2)

22

Facts about Tikhonov pdfs

Let HCia) = 1 eRe[Ce_jm]

| 27y (|¢])
denote a Tikhonov pdf with parameter (.
Fact 1. |

LG +n) =tCe ™ x)
Fact 2.
. . Io(|¢1 + ¢l) |
t(Clv CI?)t(CQ, x) X 2710(‘<1‘)IO(|<2|)t(<1 + C27 513)

Fact 3. Let g(y, 0%;) denote a real Gaussian distribution in = with mean
value y and variance o2, then

2 o (1+|§2|ICI> 6112‘1—%“24' S

23

e Fact 3 can be easily shown by direct calculation, considering the
approximation

o<

1
t(Cy) ~ \/TICIIo(ICI)g (arg(C),m,y)

which holds for values of |(| larger then few units. This is obtained by
approximating cos(y —arg(¢)) =~ 1 —1(y —arg({))?, i.e., by using its Taylor
expansion truncated to the first term.

24

Tikhonov algorithm: forward and backward recursions

e By using the above facts, we are able to obtain forward and backward
recursions in the form:

ps(0k) X exp {Re[af,ke_jek]} , pu(Or) ox exp {Re[ab,ke_jek]}

e The forward and backward parameters a¢j; and a, , can be recursively

computed by afj—1+ Up—1

Ak =7 + o%lafr—1+ uk_1|
ap = p k+1 T Ukt1
" 1+ oRlab k1 + Ukt
where .
wp = 2 YOy,

No + Br — |a/?

25

Tikhonov algorithm: output

The ouptut of the Tikhonov algorithm is given by

Py(xr) o< exp {—‘xk|2} Io (
No

forall z, € X.

*

Yk,
No/2

afr+ apk +

)

26

Estimating the phasor rather than the phase

def : .
e We model the phasor process h, = e’% as a complex circularly
symmetric Gauss-Markov process.

e Wetreath = (hg,...,hx_1) and y as jointly Gaussian, by letting

p(yrlhr) ~ gc (axhr, No + B — o], i)

e The underlying dynamical system is given by

hry1 = phe+ vg

Yr = aghg + wg

where v, ~ N:(0,1 — p?) and wy, ~ N:(0, Ng + Bk — |aw|?).

27

Some facts about Gaussian pdfs (1)

e Fact 1.

> > Y12
gC(AhEl?x)gC(A?aE%w)OCQC(2 : 1=z .) .

Aq+ Ao, oy
SSPRNED S SPIED 'S Mt ST S

e Fact 2. Let (x,y) be jointly Gaussian, such that x ~ g¢.(A41,¥;2) and
y = Az + 2o With 25 ~ ¢¢(0,X,), independent of z. Then

Al 21 ATZl) T o))
Jgc ([A1A2] 9 [A121 22 i |A1|221]) [Y]) - gC(A17217'T)gC(A2337227y)

ALS
= gc(A1A2, X5 + [A2]PX159) e <A1 + s v — A2ds), 22334221221; 96‘)

28

Some facts about Gaussian pdfs (2)

It follows that the marginal pdf of y is given by

/ ge(A1, T1; 2)ge(s, Sa; y)da = ge (A1 A, Ty + |As*S1sy) .

and that E|z|y] (MMSE estimation of x given y) is given by

A3
1+ 5
Yo + |As|?3,

A (y — A2A1)

Moreover, E|z|y| is Gaussian with variance

D920
Yo+ |Ao|?Xy

29

Some facts about Gaussian pdfs (3)

e Fact 3. Let X ~ N:(A4,X) be expressed in magnitude and phase as
X = Re’?. Hence, the joint pdf of R and @ is given by

f(R,0) = LRexp (—R2 + |A‘2) exp (2R|A‘ cos(f — Cb))

T)y)
where A = |A|e’?.
e Fact4. Leta,b e R,. We have,

1 s

2r),

exp (a cos(f —) + beos(6 — 3)) db = I (\/a2 + b? + 2ab cos(a — 5))

where Iy(z) is the modified Bessel function of the first kind and order
zero.

30

Kalman algorithm: forward recursion (1)

o Let my—1 = Elhgl{y; : = 0,...,k — 1}], 351 = var(hp|{y; : j =
0,...,k — 1} (prediction).

o Letmy, = E[hr|{y; : 7 =0,...,k}] and Xy, = var(hx|{y; : 7 =0, ..., k})
(filtering).

e We let
Py k(he) o< ge(Mmpk—1, Zkje—1; i)
The forward recursion takes on the form ...

31

Kalman algorithm: forward recursion (2)

prir1i(hey1) = ge(Mpgiies Zrgan; Pea1)

X /gC(mk|k—1aZk|k—1§hk¢)'

-ge(arhi, No + Be — |arl?; yr)ge(phe, 1 — p°; his1) dhy
@ ge(armpp—1, | (Zgp—1 — 1) + No + Br; k) -

| ge(mugs Zojres b) ge(phis 1L — p?5 higr) dhy,

< ge(pmpir, p°(Zkpe — 1) + 15 hyegr)

32

Kalman algorithm: forward recursion (3)

e (a) follows from Fact 2, the last line follows from Fact 1 and where we
have identified

Qg2 k-1
ok |*(Bgjp—1 — 1) + No + B

M|k = Mklk—1 T (Yr — akmk|k—1)

and
(No + Bk — |ak|*) Zkjk—1

Ykk—1(1 — |ax|?) + No + B
by the MMSE estimation property stated in Fact 2.

2iklk =

33

Kalman algorithm: forward recursion summary

Dkl _1007
Mgk = Mglg—1 T L (yk; — Oékmk|k—1)
x| (Bgje—1 — 1) + No + B
Yklk = No + B — || 2ikk—1
| |k (Bgjp—1 — 1) + No + B k-
Megi1jk = PMg|k
Sipip = P (Skr—1)+1

for k =0,..., N — 1, with initial conditions Xy _; = 1 and mg_; = 0.

34

Kalman algorithm: backward recursion summary

j— X
k| k4+10

p— —|— —
K|k HE|k+1 \Oék|2(5k|k+1 1) + No + Br (yk k:,ukz|k+1>
Sglk = No + B = Joul Zk|k+1
| |k |?(Exjk+1 — 1) + No + B kot
He—1lk — Plk|k
Spcie = PGk —1)+1

fork =N —1,...,0, with initial conditions Ex_;xy =1 and py_1n = 0.

35

Kalman algorithm: output

e The smoothed estimate is given by

. S| k1 - N 2iklk—1)
ko= — k|k—1 = k|k+1
2iklk—1 T Sk|k+1 2iklk—1 T Sk|k+1

Dk k—12k k41
Y =

2iklk—1 T Sk|k+1

e We let hy, = Rre??c and we obtain

1 : .
P,(z1) o /exp (—ﬁwk — -il?kejek’\2) ge (my, Sk, Rke’’%) Ry, dRy, doy,
0

Cz* oo * |2 2
0

R rEm*
N§ X V2 No TS

36

Handling constant carrier frequency offsets

e We propose to handle phase and frequency in two different ways:

using canonical parameterization for the phase and discretization for the
frequency.

e Frequency is constrained to take values on the grid of points (frequency
“states”):

V:{VKZEAV_VmaX . EZO,,QM}
with A, = vax/M.

37

Brute-force approach: parallel decoders

Estimate P i(bly,ve) for all £ = 0,...,2M by applying any of the BP
approximations seen before conditionally to the hypothesis v = v,.

The symbol-by-symbol decisions on the information bits are made using
the probabilities

| 2M
Prit,i(bly) = Y Zpbit,i(bb’a 7)
(=0

This amounts to running 2M + 1 decoders in parallel, one for each
frequency value, and combining their soft-output symbol-by-symbol
decision metrics.

It might be an attractive approach if some pre-estimation technique yields
a small set of frequency values containing the true value with high
probability!

38

Low-complexity approaches: parallel detectors, single
decoder

e We define a new channel state variable u, = (0, vg).
e We define the function nodes

9k (O, Ok —1, Vi, Vi—1) = pa(Ok — Op—1) v = vie_1}

39

Factor graph for phase and frequency

Lx = u(b))
Pd(ﬁk 1) Pi(zg, Pi(zpt1)
Tpu(xk—l) Pu(xkz> Pu(mk—H)
| | |
fr(zr, p)
| | |
ﬂ\ 9(pke, pr—1) J\ 9(Bket1, prc) J\
pf(pk—1) ps(px) po(k) Py(Mk+1)

40

The parallel Tikhonov algorithm (1)

e Applying BP we have

pr(pe) = pOr,vlys) = pwlys p(Oklv, y)
po(pr) = (9k7V|yk+1) = (V|Yk—|—1)p(Ok|v, yk:—|—1)

(notation: y? < {yx}_. i < j).
e With discretization,
(€)

Plv=wlys™) = ;)

N 1) (E)

P(v = Vg|yk_|_1

41

The parallel Tikhonov algorithm (2)

e As before, we assume

R
~
~~
)
ok
=
D
=
~—~—

p(Orlve, yo)

pOklve,yin) =~ tlay,;6k)

e Hence, in order to update the messages, we have simply to propagate
the variables vj(f,i 7,52 aﬁfi, and a,(f,l, for all v, € V along the phase trellis.

42

The parallel Tikhonov algorithm (3)

e As for the standard Tikhonov algorithm, we use the min-divergence
Gaussian approximation and let

e Also, for notational convenience, we introduce the term

_ kaoz}';
No + Bk — |og|?

Uk

43

The parallel Tikhonov algorithm (4)

e By using again the properties of the Tikhonov pdf, after some algebra,
we obtain the forward recursion in the form

I gt
v 1+o2 a(e) +u ‘
(£) (£) A|CfET R

y4
V;,l)s+1t(af,k+159k+1) X TVrk I(w‘)
0

Atk
2
l
UQA‘CLSP}{‘_Uk
1402 (£)+ ‘ (£) 12TV
e A%k E , a’f,k:—i_uk € ¢

§9k+1

| 2 ()
\/l—l—ai‘agffzﬁ—l—uk‘ L+ oilayy +u

44

The parallel Tikhonov algorithm: forward recursion

e Since \a + uy| is usually larger then a few units and o5 < 1, we use

the large argument approximation Iy(x) ~ e* and neglect aA\a + ug|
with respect to 1 in the square root.

e We obtain
(3)
EQH L uk e’
1+ 0A|a + ug|
i
’y](cl)c—i—l = 'VJ(“lleXp{ ()Jruk‘ ‘ }

foreach ¢ =0,...,2M.

45

The parallel Tikhonov algorithm: backward recursion

e Similarly, the backward recursion is given by

14
(K) a;l(),])c + U

a = e
bk—1 7
) 21, (£)
1+ 0A|ab7k + ug|

14 14 14 14
s = e {[o o] o]

—J2Tyy

46

The parallel Tikhonov algorithm: output

e By applying sum-product algorithm we find

Py(zg) = Z/pf(‘gkaVz)pb(‘gkaVE)p(yk|33k79k)d9k

— 0 (¢ ¢ ¢ Re
oce” M0 309k [Hallkioaf):bu)e

e This yields

14 14 C
o (s + o+ 25

o (Jaf]) 1o (Jais

)

oyl 0 (4
P,(x Vo Z%(c -

47

The parallel Kalman algorithm (1)

Using the phasor h;, = ¢727% rather than 6, itself, the resulting re-defined
state variable is given by px = (hg,vi) with hy € cand v, € V.

If follows that, for each value v = vy, the corresponding conditional
estimator for {%} is given by a Kalman smoother identical to what seen
before, when replacing oy, by the rotated version aye?2™ve*,

The 2M +1 Kalman smoothers are run in parallel, and produce estimates
that are assumed to be Gaussian ~ N.(mg(£), X).

Notice that the covariance sequence of the Kalman smoothers does not
depend on ¢, and hence only one covariance recursion instead of 2M +1
can be implemented.

48

The parallel Kalman algorithm (2)

e It remains to see how the terms ~;x(¢) and v, x(¢) are recursively
calculated.

e By using again the properties fo the Gaussian pdfs:

Pre+1(pe+1) = Vre+1(0)ge(Mpr1r(€), Vryan; her1)
vk (0) ge (e ™ Fmy 1 (0), |k *(Skp—1 — 1) + No + Be; yx)

‘QC(pka(g)aPz(ka — 1)+ 15 hpq1)

49

The parallel Kalman algorithm (3)

e |t follows that the forward update is

1
Vi k+1(£) o< vfk(€) exp (_Iak|2(2k|k—1 — 1) + No + Bk

- 2
|k — Oékej%wkmmk—l(f)‘)

e Similarly, the backward update is

1
_1(f) x l)exp | —
ﬁ)/b,ki 1() /Yb,k() p (‘ak‘2(2k|k—|—1 . 1) + NO + /Bk:

. 2
‘yk: _ ak6327rvgkmk|k+1(€)‘)

50

The parallel Kalman algorithm: output

e The messages to be sent to the decoder are immediately obtained as

Py(ze) o< e MY yp i)yl
¢

=0

_ \ykwﬂz z|mp(£)|? NE :
: e “Iy | 2 + + 2 Re{ypximi(£)e—i2mvik
/O 0 \/ N?) VLN, {yewimy (6) J

[1]

DA
my(f) = e My k—1(£) + L

2iklk—1 T Sklk+1

= foke 1 (£)
2iklk—1 T Zk|k41 "t

2k k—12k k-1

2iklk—1 T Sklk+1

51

Intuition: why it works

e We plot Nt
M) = my(0)]?
k=0

vs. the frequency values v, € V, for one snapshot.

e For v, far from the true value v* of the frequency offset, my(¢) =~ 0.

e For v, close to v*, |mi(4)| =~ 1.

52

Snapshot: DVB-RCS, TC (frame 1712 bits), rate 1/2,
Ey/No =2 dB

1600 T T T T - T

1400

1200

1000

800

600

400

200 |- ~

almost over ...!

Some numerical example

Comparisons (binary LDPC (3,6), N = 4000)

BER

known phase
discret., L=16
Fourier, N=17
Tikhonov
Gaussian
EM-SW

ultra fast, N=20

\\i

\\

1 1.5 2

2.5

55

Comparisons (binary LDPC (3,6), N = 4000)

—t+— known phase
—t&— Tikhonov, 1/20
—&&— Tikhonov, 20/400
—®— Gaussian, 1/20

i o _

10 *\!*\\!i —®— Gaussian, 20/400
2 \5

\\ N\ -

\ 3

1 1.5 2 2.5 3

E,/N,

BER

Effect of pilot symbols placement.

56

Performance for the DVB-S2 standard

—©— known phase| ;
—4A— Tikhonov
-{_ —®— Gaussian

BER

E/N,

LDPC-coded modulation, binary codign rate 4/5, binary blocklength 64800,
bursts of 36 pilots spaced by 1476 symbols.

57

DVB-RCS standard: Phase BCJR

FER

frame = 440 bits, rate = 1/2, phase noise: 64kbaud+6dB, quantized phase algorithm

0 0.5 1 1.5 2 2.5 3

Eb/NO (dB)

58

DVB-RCS standard: Tikhonov algorithm

ER

frame = 440 bits, rate = 1/2, phase noise: 64kbaud+6dB, tikhonov algorithm

0 0.5 1 1.5 2 2.5 3

Eb/NO (dB)

59

DVB-RCS standard: Kalman algorithm

FER

frame = 440 bits, rate = 1/2, phase noise: 64kbaud+6dB, Kalman algorithm

0 0.5 1 15 2 2.5 3 3.5 4 4.5
Eb/NO (dB)

60

Parallel Kalman algorithm: v, = 0.01, M = 10

frame = 440 bits, rate = 1/2, phase noise: 64kbaud+6dB, Kalman algorithm

FER

Eb/NO (dB)

Parallel Kalman algorithm: v,,., = 0.05, M = 50

FER

frame = 440 bits, rate = 1/2, phase noise: 64kbaud+6dB, Kalman algorithm

Eb/NO (dB)

62

