Mob-Com Dept. Internal Seminar Series

Efficient Turbo-synchronization algorithms for phase noise and frequency offsets.

Giuseppe Caire, Eurecom Institute, France

Eurecom, September 23, 2004

Problem

• AWGN channel with phase noise and frequency offset

$$y_k = x_k e^{j(\theta_k + 2\pi\nu k)} + w_k, \quad k = 0, \dots, N-1.$$

- The sequence $\mathbf{x} = (x_0, \dots, x_{N-1})$ is a codeword of the channel code \mathcal{C} constructed over an M-ary modulation constellation $\mathcal{X} \subset \mathbb{C}$.
- We include pilot symbols, interleaving, preambles etc etc ... as part of the code.
- The channel SNR is given by SNR = $\mathbb{E}[|x|^2]/N_0$, where x is uniform over \mathcal{X} .

- $\theta = (\theta_0, \theta_1, \dots, \theta_{N-1})$ is random, unknown to both transmitter and receiver, and statistically independent of x and w.
- WORKING ASSUMPTION:

 $\theta_k = \theta_{k-1} + \Delta_k$

where $\{\Delta_k\}$ is a white real Gaussian process with $\Delta_k \sim \mathcal{N}(0, \sigma_{\Delta}^2)$.

• Under this assumption, assuming $\theta_0 \sim \text{Uniform}[0, 2\pi)$,

 $p(\theta_k|\theta_{k-1},\theta_{k-2},\ldots,\theta_0) = p(\theta_k|\theta_{k-1}) = p_\Delta(\theta_k - \theta_{k-1})$

where $p_{\Delta}(\phi)$ is the pdf of $\Delta_k \mod [0, 2\pi)$.

- ν is assumed to be uniformly distributed in $[-\nu_{max}, \nu_{max}]$.
- $\nu_{\max} = f_{\max}T$, where f_{\max} is the frequency specified tolerance and T is the symbol period.
- The one-sample per symbol model makes sense only if $\nu_{\rm max} \ll 1/2$ (for large frequency offset ISI appears).

- Focus first on the case of phase noise only ($\nu_{max} = 0$).
- The code C admits an encoding function $\mu_{\mathcal{C}} : \mathbb{F}_2^K \to \mathcal{X}^N$, mapping binary information messages $\mathbf{b} \in \mathbb{F}_2^K$ into the codewords.
- Optimal decision rule that minimizes the average bit-error probability:

$$\widehat{b}_i = \arg \max_{b \in \mathbb{F}_2} P_{\mathrm{bit},i}(b|\mathbf{y})$$

Posterior probability marginalization \Rightarrow BP

- Let $P(\mathbf{b}, \boldsymbol{\theta} | \mathbf{y})$ denote the joint posterior probability distribution function of the information bits and of the phase noise vector $\boldsymbol{\theta}$ given \mathbf{y} .
- The desired $P_{\text{bit},i}(b|\mathbf{y})$ can be obtained by marginalizing $P(\mathbf{b}, \boldsymbol{\theta}|\mathbf{y})$ with respect to $\boldsymbol{\theta}$ and to all b_j for $j \neq i$.
- This can be accomplished in an approximated but low-complexity way by BP applied on the FG of $P(\mathbf{b}, \boldsymbol{\theta} | \mathbf{y})$.

Factorization (1)

$P(\mathbf{b}, \boldsymbol{\theta} | \mathbf{y}) \propto P(\mathbf{b}) p(\boldsymbol{\theta}) p(\mathbf{y} | \boldsymbol{\theta}, \mathbf{b})$ $\propto \chi[\mathbf{x} = \mu_{\mathcal{C}}(\mathbf{b})] p(\boldsymbol{\theta}) p(\mathbf{y} | \boldsymbol{\theta}, \mathbf{x} = \mu_{\mathcal{C}}(\mathbf{b}))$ $\propto \chi[\mathbf{x} = \mu_{\mathcal{C}}(\mathbf{b})] p(\boldsymbol{\theta}) \prod_{k=0}^{N-1} p(y_k | x_k, \theta_k)$ $\propto \chi[\mathbf{x} = \mu_{\mathcal{C}}(\mathbf{b})] p(\boldsymbol{\theta}) \prod_{k=0}^{N-1} f_k(x_k, \theta_k)$

• We have defined the functions:

$$f_k(x_k, \theta_k) \stackrel{\text{def}}{=} \exp\left\{\frac{2}{N_0} \operatorname{Re}[y_k x_k^* e^{-j\theta_k}] - \frac{|x_k|^2}{N_0}\right\} \propto \exp\left\{-\frac{1}{N_0}|y_k - x_k e^{j\theta_k}|^2\right\} \,.$$

Factorization (2)

Under the assumption of 1st order Markov model for the phase noise:

$$P(\mathbf{b}, \boldsymbol{\theta} | \mathbf{y}) \propto \chi[\mathbf{x} = \mu_{\mathcal{C}}(\mathbf{b})] p(\theta_0) \prod_{k=1}^{N-1} p_{\Delta}(\theta_k - \theta_{k-1}) \prod_{k=0}^{N-1} f_k(x_k, \theta_k).$$

Factor Graph

- $P_d(x_k)$: message from variable node x_k to factor node f_k (decoder soft-output);
- $P_u(x_k)$: message from factor node f_k to variable node x_k (decoder soft-input);
- $p_d(\theta_k)$: message from factor node f_k to variable node θ_k :

$$p_d(\theta_k) \propto \sum_{x \in \mathcal{X}} P_d(x_k = x) f_k(x_k = x, \theta_k).$$

• We assume that in the lower part of the FG a forward-backward node activation schedule is adopted.

• Messages $p_f(\theta_k)$ from factor node $p_{\Delta}(\theta_k - \theta_{k-1})$ to variable node θ_k , and $p_b(\theta_k)$ from factor node $p_{\Delta}(\theta_{k+1} - \theta_k)$ to variable node θ_k , can be recursively computed as follows:

$$p_f(\theta_k) \propto \int_0^{2\pi} p_d(\theta_{k-1}) p_f(\theta_{k-1}) p_\Delta(\theta_k - \theta_{k-1}) \, d\theta_{k-1}$$
$$p_b(\theta_k) \propto \int_0^{2\pi} p_d(\theta_{k+1}) p_b(\theta_{k+1}) p_\Delta(\theta_{k+1} - \theta_k) \, d\theta_{k+1}$$

• The message $P_u(x_k)$ from f_k to x_k is given by

$$P_u(x_k) \propto \int_0^{2\pi} p_f(\theta_k) p_b(\theta_k) f_k(x_k, \theta_k) \, d\theta_k$$

- Decoder output: $\{P_d(x_k) : k = 0, ..., N-1\}.$
- Decoder input: $\{P_u(x_k) : k = 0, ..., N-1\}.$
- Pilot symbols have probability $P_d(x_k = a_k) = 1$, where a_k is the a-priori known k-th pilot value.

Approaches to practical low-complexity algorithms

- Discretization: propagate pmfs instead of pdfs.
- Canonical distributions: propagate the parameters of the distributions.
- Remark: There are other standard approaches in the literature, e.g., particle filters (generate Monte Carlo samples from a distribution).

Discretization

- We assume that the channel phase θ_k may take $\Theta = \{0, 2\pi/L, \dots, 2\pi(L-1)/L\}$.
- This approach becomes "optimal" (in the sense that it approaches the performance of the exact BP) for a sufficiently large number of discretization levels.
- Rule of thumb: for *M*-PSK signals, L = 8M values are sufficient to have no practical performance loss w.r.t. exact BP.
- Main limitation: complexity (it is still quite computationally intensive).

- State space Θ of size L, isomorphic to \mathbb{Z}_L .
- A sensible choice for the phase dynamics is to assume that state ℓ_k has transitions with non-zero probability only to states $\ell_{k+1} = \ell_k$, $\ell_{k+1} = \ell_k + 1$, $\ell_{k+1} = \ell_k 1$, modulo *L*.
- By symmetry of the phase noise distribution, we have that

$$P(\ell_k \to \ell_{k+1}) = \begin{cases} P_{\Delta}/2 & \ell_{k+1} = \ell_k - 1\\ 1 - P_{\Delta} & \ell_{k+1} = \ell_k\\ P_{\Delta}/2 & \ell_{k+1} = \ell_k + 1 \end{cases}$$

Phase trellis (2)

Matching the discrete process variance

- The value of P_{Δ} is chosen such that the variance of the phase increment is equal to the variance of the phase difference of the continuous (non-discretized) phase noise process.
- For example, for the Wiener model defined before we have

$$\sigma_{\rm discr}^2 = P_\Delta \left(\frac{2\pi}{L}\right)^2$$

and by letting $\sigma^2_{\rm discr}=\sigma^2_{\Delta}$ we obtain

$$P_{\Delta} = \left(\frac{\sigma_{\Delta}L}{2\pi}\right)^2$$

- Denote the message from p(θ_k|θ_{k-1}) to θ_k, in the log-probability domain, as {α_k(ℓ) : ℓ ∈ Z_L}.
- Denote the message from p(θ_{k+1}|θ_k) to θ_k, in the log-probability domain, as {β_k(ℓ) : ℓ ∈ Z_L}.
- The branch weight for the trellis section (k, k+1) is given by

$$\gamma_k(\ell, m) = \operatorname{LogSum}_{x \in \mathcal{X}} \left\{ \log P_d(x_k = x) - \frac{1}{N_0} \left| y_k - x e^{-j2\pi\ell/L} \right|^2 \right\} + \log P(\ell \to m)$$

where $P(\ell \to m)$ is the trellis transition probability $\ell_k = \ell$ and $\ell_{k+1} = m$.

Phase BCJR: forward recursion

- Initialize $\alpha_0(\ell) = 0$ for all $\ell \in \mathbb{Z}_L$.
- For k = 0, ..., N 1 let

 $\alpha_{k+1}(m) = \operatorname{LogSum}_{\ell \in \mathbb{Z}_L} \{ \gamma_k(\ell, m) + \alpha_k(\ell) \}$

Phase BCJR: backward recursion

- Initialize $\beta_{N-1}(\ell) = 0$ for all $\ell \in \mathbb{Z}_L$.
- For k = N 1, ..., 1 let

 $\beta_{k-1}(m) = \operatorname{LogSum}_{\ell \in \mathbb{Z}_L} \{ \gamma_k(\ell, m) + \beta_k(\ell) \}$

Phase BCJR: output

Finally, the BCJR output is given by the log-probabilities $\{\eta_k(x) : x \in \mathcal{X}\}$, with

$$\eta_k(x) = \operatorname{LogSum}_{\ell \in \mathbb{Z}_L} \left\{ \alpha_k(\ell) + \beta_k(\ell) - \frac{1}{N_0} \left| y_k - x e^{-j2\pi\ell/L} \right|^2 \right\}$$

for k = 0, ..., N - 1.

Gaussian approximation of $p_d(\theta_k)$

• If the messages $P_d(x_k)$ were the exact a posteriori probabilities of the code symbols, it would be

$$p_d(\theta_k) \propto \sum_{x \in \mathcal{X}} P_d(x_k = x) f_k(x_k = x, \theta_k) \propto p(y_k | \theta_k).$$

The pdf $p(y_k|\theta_k) = \sum_{x \in \mathcal{X}} P_d(x_k = x)g_{\mathbb{C}}(xe^{j\theta_k}, N_0, y_k)$ is a linear combination of Gaussian pdfs.

• We approximate $p(y_k|\theta_k)$ by the Gaussian pdf at minimum *divergence*, given by $g_{\mathbb{C}}(\alpha_k e^{j\theta_k}, N_0 + \beta_k - |\alpha_k|^2, y_k)$, where

$$\alpha_k \stackrel{\text{def}}{=} \sum_{x \in \mathcal{X}} x P_d(x_k = x)$$

and

$$\beta_k \stackrel{\text{def}}{=} \sum_{x \in \mathcal{X}} |x|^2 P_d(x_k = x)$$

Tikhonov parameterization

• With the above Gaussian approximation, we obtain

$$p_{d}(\theta_{k}) \propto p(y_{k}|\theta_{k})$$

$$\simeq g_{\mathbb{C}} \left(\alpha_{k} e^{j\theta_{k}}, N_{0} + \beta_{k} - |\alpha_{k}|^{2}, y_{k} \right)$$

$$\propto \exp \left\{ 2 \frac{\operatorname{Re}[y_{k}\alpha_{k}^{*}e^{-j\theta_{k}}]}{N_{0} + \beta_{k} - |\alpha_{k}|^{2}} \right\}$$

• Substituting in the forward and backward recursion, we obtain

$$p_{f}(\theta_{k}) \simeq \int_{0}^{2\pi} \exp\left\{2\frac{\operatorname{Re}[y_{k-1}\alpha_{k-1}^{*}e^{-j\theta_{k-1}}]}{N_{0} + \beta_{k-1} - |\alpha_{k-1}|^{2}}\right\} p_{f}(\theta_{k-1})p_{\Delta}(\theta_{k} - \theta_{k-1}) d\theta_{k-1}.$$

$$p_{b}(\theta_{k}) \simeq \int_{0}^{2\pi} \exp\left\{2\frac{\operatorname{Re}[y_{k+1}\alpha_{k+1}^{*}e^{-j\theta_{k+1}}]}{N_{0} + \beta_{k+1} - |\alpha_{k+1}|^{2}}\right\} p_{f}(\theta_{k+1})p_{\Delta}(\theta_{k} - \theta_{k+1}) d\theta_{k+1}.$$

Facts about Tikhonov pdfs

• Let

 $t(\zeta; x) = \frac{1}{2\pi I_0(|\zeta|)} e^{\operatorname{Re}[\zeta e^{-jx}]}$ denote a Tikhonov pdf with parameter ζ .

• Fact 1.

$$t(\zeta; x + \eta) = t(\zeta e^{-j\eta}; x)$$

• Fact 2.

$$t(\zeta_1; x) t(\zeta_2; x) \propto \frac{\mathbf{I}_0(|\zeta_1 + \zeta_2|)}{2\pi \mathbf{I}_0(|\zeta_1|) \mathbf{I}_0(|\zeta_2|)} t(\zeta_1 + \zeta_2; x)$$

• Fact 3. Let $g(y, \sigma^2; x)$ denote a real Gaussian distribution in x with mean value y and variance σ^2 , then

$$\int t(\zeta;y)g(y,\sigma^2;x)dy \simeq \frac{\mathcal{I}_0\left(\frac{|\zeta|}{1+\sigma^2|\zeta|}\right)}{\mathcal{I}_0(|\zeta|)} \frac{e^{\frac{\sigma^2|\zeta|^2}{1+\sigma^2|\zeta|}}}{\sqrt{1+\sigma^2|\zeta|}} t(\frac{\zeta}{1+\sigma^2|\zeta|};x)$$

Fact 3 can be easily shown by direct calculation, considering the approximation

$$t(\zeta; y) \simeq \frac{e^{|\zeta|}}{\sqrt{2\pi|\zeta|} \mathbf{I}_0(|\zeta|)} g\left(\arg(\zeta), \frac{1}{|\zeta|}; y\right)$$

which holds for values of $|\zeta|$ larger then few units. This is obtained by approximating $\cos(y - \arg(\zeta)) \approx 1 - \frac{1}{2}(y - \arg(\zeta))^2$, i.e., by using its Taylor expansion truncated to the first term.

Tikhonov algorithm: forward and backward recursions

 By using the above facts, we are able to obtain forward and backward recursions in the form:

 $p_f(\theta_k) \propto \exp\left\{\operatorname{Re}[a_{f,k}e^{-j\theta_k}]\right\}, \quad p_b(\theta_k) \propto \exp\left\{\operatorname{Re}[a_{b,k}e^{-j\theta_k}]\right\}$

• The forward and backward parameters $a_{f,k}$ and $a_{b,k}$ can be recursively computed by

$$a_{f,k} = \frac{a_{f,k-1} + u_{k-1}}{1 + \sigma_{\Delta}^2 |a_{f,k-1} + u_{k-1}|}$$
$$a_{b,k} = \frac{a_{b,k+1} + u_{k+1}}{1 + \sigma_{\Delta}^2 |a_{b,k+1} + u_{k+1}|}$$

where

$$u_k = 2 \frac{y_k \alpha_k^*}{N_0 + \beta_k - |\alpha_k|^2}$$

Tikhonov algorithm: output

The ouptut of the Tikhonov algorithm is given by

$$P_u(x_k) \propto \exp\left\{-\frac{|x_k|^2}{N_0}\right\} I_0\left(\left|a_{f,k} + a_{b,k} + \frac{y_k x_k^*}{N_0/2}\right|\right)$$

for all $x_k \in \mathcal{X}$.

Estimating the phasor rather than the phase

- We model the phasor process $h_k \stackrel{\text{def}}{=} e^{j\theta_k}$ as a complex circularly symmetric Gauss-Markov process.
- We treat $\mathbf{h} = (h_0, \dots, h_{K-1})$ and \mathbf{y} as jointly Gaussian, by letting

 $p(y_k|h_k) \simeq g_{\mathbb{C}} \left(\alpha_k h_k, N_0 + \beta_k - |\alpha_k|^2, y_k \right)$

• The underlying dynamical system is given by

$$h_{k+1} = \rho h_k + v_k$$
$$y_k = \alpha_k h_k + w_k$$

where $v_k \sim \mathcal{N}_{\mathbb{C}}(0, 1 - \rho^2)$ and $w_k \sim \mathcal{N}_{\mathbb{C}}(0, N_0 + \beta_k - |\alpha_k|^2)$.

Some facts about Gaussian pdfs (1)

• Fact 1.

$$g_{\mathbb{C}}(A_1, \Sigma_1, x)g_{\mathbb{C}}(A_2, \Sigma_2; x) \propto g_{\mathbb{C}}\left(\frac{\Sigma_2}{\Sigma_1 + \Sigma_2}A_1 + \frac{\Sigma_1}{\Sigma_1 + \Sigma_2}A_2, \frac{\Sigma_1\Sigma_2}{\Sigma_1 + \Sigma_2}; x\right) \ .$$

• Fact 2. Let (x, y) be jointly Gaussian, such that $x \sim g_{\mathbb{C}}(A_1, \Sigma_1; x)$ and $y = A_2 x + z_2$ with $z_2 \sim g_{\mathbb{C}}(0, \Sigma_2)$, independent of x. Then

$$g_{\mathbb{C}}\left(\left[\begin{array}{c}A_{1}\\A_{1}A_{2}\end{array}\right],\left[\begin{array}{cc}\Sigma_{1}&A_{1}^{*}\Sigma_{1}\\A_{1}\Sigma_{1}&\Sigma_{2}+|A_{1}|^{2}\Sigma_{1}\end{array}\right];\left[\begin{array}{c}x\\y\end{array}\right]\right)=g_{\mathbb{C}}(A_{1},\Sigma_{1};x)g_{\mathbb{C}}(A_{2}x,\Sigma_{2};y)$$
$$=g_{\mathbb{C}}(A_{1}A_{2},\Sigma_{2}+|A_{2}|^{2}\Sigma_{1};y)g_{\mathbb{C}}\left(A_{1}+\frac{A_{2}^{*}\Sigma_{1}}{\Sigma_{2}+|A_{2}|^{2}\Sigma_{1}}(y-A_{2}A_{1}),\frac{\Sigma_{2}\Sigma_{1}}{\Sigma_{2}+|A_{2}|^{2}\Sigma_{1}};x\right)$$

It follows that the marginal pdf of y is given by

$$\int g_{\mathbb{C}}(A_1,\Sigma_1;x)g_{\mathbb{C}}(A_2x,\Sigma_2;y)dx = g_{\mathbb{C}}\left(A_1A_2,\Sigma_2+|A_2|^2\Sigma_1;y\right)\,.$$

and that $\mathbb{E}[x|y]$ (MMSE estimation of x given y) is given by

$$A_1 + \frac{A_2^* \Sigma_1}{\Sigma_2 + |A_2|^2 \Sigma_1} (y - A_2 A_1)$$

Moreover, $\mathbb{E}[x|y]$ is Gaussian with variance

 $\frac{\Sigma_2 \Sigma_1}{\Sigma_2 + |A_2|^2 \Sigma_1}$

• Fact 3. Let $X \sim \mathcal{N}_{\mathbb{C}}(A, \Sigma)$ be expressed in magnitude and phase as $X = Re^{j\theta}$. Hence, the joint pdf of R and θ is given by

$$f(R,\theta) = \frac{1}{\pi\Sigma} R \exp\left(-\frac{R^2 + |A|^2}{\Sigma}\right) \exp\left(\frac{2R|A|\cos(\theta - \phi)}{\Sigma}\right)$$

where $A = |A|e^{j\phi}$.

• Fact 4. Let $a, b \in \mathbb{R}_+$. We have,

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left(a\cos(\theta - \alpha) + b\cos(\theta - \beta)\right) d\theta = I_0\left(\sqrt{a^2 + b^2 + 2ab\cos(\alpha - \beta)}\right)$$

where $I_0(z)$ is the modified Bessel function of the first kind and order zero.

Kalman algorithm: forward recursion (1)

- Let $m_{k|k-1} = \mathbb{E}[h_k|\{y_j : j = 0, \dots, k-1\}], \Sigma_{k|k-1} = \operatorname{var}(h_k|\{y_j : j = 0, \dots, k-1\})$ (prediction).
- Let $m_{k|k} = \mathbb{E}[h_k|\{y_j : j = 0, \dots, k\}]$ and $\Sigma_{k|k} = \operatorname{var}(h_k|\{y_j : j = 0, \dots, k\})$ (filtering).
- We let

 $p_{f,k}(h_k) \propto g_{\mathbb{C}}(m_{k|k-1}, \Sigma_{k|k-1}; h_k)$

The forward recursion takes on the form ...

$$\begin{array}{lll} p_{f,k+1}(h_{k+1}) &=& g_{\mathbb{C}}(m_{k+1|k}, \Sigma_{k+1|k}; h_{k+1}) \\ &\propto& \int g_{\mathbb{C}}(m_{k|k-1}, \Sigma_{k|k-1}; h_k) \cdot \\ && \cdot g_{\mathbb{C}}(\alpha_k h_k, N_0 + \beta_k - |\alpha_k|^2; y_k) g_{\mathbb{C}}(\rho h_k, 1 - \rho^2; h_{k+1}) \; dh_k \\ &\stackrel{(a)}{=}& g_{\mathbb{C}}(\alpha_k m_{k|k-1}, |\alpha_k|^2 (\Sigma_{k|k-1} - 1) + N_0 + \beta_k; y_k) \cdot \\ && \cdot \int g_{\mathbb{C}}(m_{k|k}, \Sigma_{k|k}; h_k) g_{\mathbb{C}}(\rho h_k, 1 - \rho^2; h_{k+1}) \; dh_k \\ &\propto& g_{\mathbb{C}}(\rho m_{k|k}, \rho^2 (\Sigma_{k|k} - 1) + 1; h_{k+1}) \end{array}$$

Kalman algorithm: forward recursion (3)

 (a) follows from Fact 2, the last line follows from Fact 1 and where we have identified

$$m_{k|k} = m_{k|k-1} + \frac{\alpha_k^* \Sigma_{k|k-1}}{|\alpha_k|^2 (\Sigma_{k|k-1} - 1) + N_0 + \beta_k} (y_k - \alpha_k m_{k|k-1})$$

and

$$\Sigma_{k|k} = \frac{(N_0 + \beta_k - |\alpha_k|^2)\Sigma_{k|k-1}}{\Sigma_{k|k-1}(1 - |\alpha_k|^2) + N_0 + \beta_k}$$

by the MMSE estimation property stated in Fact 2.

Kalman algorithm: forward recursion summary

$$m_{k|k} = m_{k|k-1} + \frac{\sum_{k|k-1} \alpha_k^*}{|\alpha_k|^2 (\sum_{k|k-1} - 1) + N_0 + \beta_k} (y_k - \alpha_k m_{k|k-1})$$

$$\sum_{k|k} = \frac{N_0 + \beta_k - |\alpha_k|^2}{|\alpha_k|^2 (\sum_{k|k-1} - 1) + N_0 + \beta_k} \sum_{k|k-1}$$

$$m_{k+1|k} = \rho m_{k|k}$$

$$\sum_{k+1|k} = \rho^2 (\sum_{k|k} - 1) + 1$$

for $k = 0, \ldots, N - 1$, with initial conditions $\Sigma_{0|-1} = 1$ and $m_{0|-1} = 0$.

Kalman algorithm: backward recursion summary

$$\mu_{k|k} = \mu_{k|k+1} + \frac{\Xi_{k|k+1}\alpha_k^*}{|\alpha_k|^2(\Xi_{k|k+1} - 1) + N_0 + \beta_k} (y_k - \alpha_k \mu_{k|k+1})$$

$$\Xi_{k|k} = \frac{N_0 + \beta_k - |\alpha_k|^2}{|\alpha_k|^2(\Xi_{k|k+1} - 1) + N_0 + \beta_k} \Xi_{k|k+1}$$

$$\mu_{k-1|k} = \rho \mu_{k|k}$$

$$\Xi_{k-1|k} = \rho^2(\Xi_{k|k} - 1) + 1$$

for $k = N - 1, \ldots, 0$, with initial conditions $\Xi_{N-1|N} = 1$ and $\mu_{N-1|N} = 0$.

Kalman algorithm: output

• The smoothed estimate is given by

$$m_{k} = \frac{\Xi_{k|k+1}}{\Sigma_{k|k-1} + \Xi_{k|k+1}} m_{k|k-1} + \frac{\Sigma_{k|k-1}}{\Sigma_{k|k-1} + \Xi_{k|k+1}} \mu_{k|k+1}$$

$$\Sigma_{k} = \frac{\Sigma_{k|k-1} \Xi_{k|k+1}}{\Sigma_{k|k-1} + \Xi_{k|k+1}}.$$

• We let $h_k = R_k e^{j\theta_k}$ and we obtain

$$P_{u}(x_{k}) \propto \int \exp\left(-\frac{1}{N_{0}}|y_{k}-x_{k}e^{j\theta_{k}}|^{2}\right)g_{\mathbb{C}}\left(m_{k},\Sigma_{k},R_{k}e^{j\theta_{k}}\right)R_{k}\,dR_{k}\,d\theta_{k}$$

$$\propto e^{-\frac{|x_{k}|^{2}}{N_{0}}}\int_{0}^{\infty}e^{-z}I_{0}\left(2\sqrt{\frac{|y_{k}x_{k}^{*}|^{2}}{N_{0}^{2}}}+\frac{z|m_{k}|^{2}}{\Sigma_{k}}+2\frac{\sqrt{z}}{\sqrt{\Sigma_{k}}N_{0}}\operatorname{Re}\{y_{k}x_{k}^{*}m_{k}^{*}\}\right)dz$$

Handling constant carrier frequency offsets

- We propose to handle phase and frequency in two different ways: using canonical parameterization for the phase and discretization for the frequency.
- Frequency is constrained to take values on the grid of points (frequency "states"):

 $\mathcal{V}=\{
u_\ell=\ell\Delta_
uu_{
m max}\ :\ \ell=0,\ldots,2M\}$ with $\Delta_
u=
u_{
m max}/M$.

Brute-force approach: parallel decoders

- Estimate $P_{\text{bit},i}(b|\mathbf{y},\nu_{\ell})$ for all $\ell = 0, \dots, 2M$ by applying any of the BP approximations seen before conditionally to the hypothesis $\nu = \nu_{\ell}$.
- The symbol-by-symbol decisions on the information bits are made using the probabilities

$$P_{\text{bit},i}(b|\mathbf{y}) \approx \frac{1}{2M} \sum_{\ell=0}^{2M} P_{\text{bit},i}(b|\mathbf{y},\nu_{\ell})$$

- This amounts to running 2M + 1 decoders in parallel, one for each frequency value, and combining their soft-output symbol-by-symbol decision metrics.
- It might be an attractive approach if some pre-estimation technique yields a small set of frequency values containing the true value with high probability!

Low-complexity approaches: parallel detectors, single decoder

- We define a new channel state variable $\mu_k = (\theta_k, \nu_k)$.
- We define the function nodes

$$g_k(\theta_k, \theta_{k-1}, \nu_k, \nu_{k-1}) = p_{\Delta}(\theta_k - \theta_{k-1}) \mathbf{1}\{\nu_k = \nu_{k-1}\}$$

The parallel Tikhonov algorithm (1)

• Applying BP we have

$$p_f(\mu_k) = p(\theta_k, \nu | \mathbf{y}_0^{k-1}) = p(\nu | \mathbf{y}_0^{k-1}) p(\theta_k | \nu, \mathbf{y}_0^{k-1})$$

$$p_b(\mu_k) = p(\theta_k, \nu | \mathbf{y}_{k+1}^{N-1}) = p(\nu | \mathbf{y}_{k+1}^{N-1}) p(\theta_k | \nu, \mathbf{y}_{k+1}^{N-1})$$

(notation:
$$\mathbf{y}_i^j \stackrel{\text{def}}{=} \{y_k\}_{k=i}^j$$
, $i < j$).

• With discretization,

$$P(\nu = \nu_{\ell} | \mathbf{y}_{0}^{k-1}) = \gamma_{f,k}^{(\ell)}$$
$$P(\nu = \nu_{\ell} | \mathbf{y}_{k+1}^{N-1}) = \gamma_{b,k}^{(\ell)}$$

The parallel Tikhonov algorithm (2)

• As before, we assume

$$p(\theta_k | \nu_{\ell}, \mathbf{y}_0^{k-1}) \simeq t(a_{f,k}^{(\ell)}; \theta_k)$$
$$p(\theta_k | \nu_{\ell}, \mathbf{y}_{k+1}^{N-1}) \simeq t(a_{b,k}^{(\ell)}; \theta_k)$$

• Hence, in order to update the messages, we have simply to propagate the variables $\gamma_{f,k}^{(\ell)}$, $\gamma_{b,k}^{(\ell)}$, $a_{f,k}^{(\ell)}$, and $a_{b,k}^{(\ell)}$, for all $\nu_{\ell} \in \mathcal{V}$ along the phase trellis.

The parallel Tikhonov algorithm (3)

 As for the standard Tikhonov algorithm, we use the min-divergence Gaussian approximation and let

$$p_d(\theta_k) \simeq t(\frac{2y_k \alpha_k^*}{N_0 + \beta_k - |\alpha_k|^2}; \theta_k)$$

• Also, for notational convenience, we introduce the term

$$u_k = \frac{2y_k \alpha_k^*}{N_0 + \beta_k - |\alpha_k|^2}$$

The parallel Tikhonov algorithm (4)

 By using again the properties of the Tikhonov pdf, after some algebra, we obtain the forward recursion in the form

$$\begin{split} \gamma_{f,k+1}^{(\ell)} t(a_{f,k+1}^{(\ell)};\theta_{k+1}) & \propto & \gamma_{f,k}^{(\ell)} \frac{\mathbf{I}_0\left(\frac{\left|a_{f,k}^{(\ell)}+u_k\right|}{1+\sigma_\Delta^2 \left|a_{f,k}^{(\ell)}+u_k\right|}\right)}{\mathbf{I}_0\left(\left|a_{f,k}^{(\ell)}\right|\right)} \\ & \cdot \frac{e^{\frac{\sigma_\Delta^2 \left|a_{f,k}^{(\ell)}+u_k\right|^2}{1+\sigma_\Delta^2 \left|a_{f,k}^{(\ell)}+u_k\right|}}}{\sqrt{1+\sigma_\Delta^2 \left|a_{f,k}^{(\ell)}+u_k\right|}} t\left(\frac{\left(a_{f,k}^{(\ell)}+u_k\right)e^{j2\pi\nu_\ell}}{1+\sigma_\Delta^2 \left|a_{f,k}^{(\ell)}+u_k\right|};\theta_{k+1}\right) \end{split}$$

- Since $|a_{f,k}^{(\ell)} + u_k|$ is usually larger then a few units and $\sigma_{\Delta}^2 \ll 1$, we use the large argument approximation $I_0(x) \simeq e^x$ and neglect $\sigma_{\Delta}^2 |a_{f,k}^{(\ell)} + u_k|$ with respect to 1 in the square root.
- We obtain

$$a_{f,k+1}^{(\ell)} = \frac{a_{f,k}^{(\ell)} + u_k}{1 + \sigma_{\Delta}^2 |a_{f,k}^{(\ell)} + u_k|} e^{j2\pi\nu_{\ell}}$$
$$\gamma_{f,k+1}^{(\ell)} = \gamma_{f,k}^{(\ell)} \exp\left\{ \left| a_{f,k}^{(\ell)} + u_k \right| - \left| a_{f,k}^{(\ell)} \right| \right\}$$

for each $\ell = 0, \ldots, 2M$.

The parallel Tikhonov algorithm: backward recursion

• Similarly, the backward recursion is given by

$$a_{b,k-1}^{(\ell)} = \frac{a_{b,k}^{(\ell)} + u_k}{1 + \sigma_{\Delta}^2 |a_{b,k}^{(\ell)} + u_k|} e^{-j2\pi\nu_{\ell}}$$
$$\gamma_{b,k-1}^{(\ell)} = \gamma_{b,k}^{(\ell)} \exp\left\{ \left| a_{b,k}^{(\ell)} + u_k \right| - \left| a_{b,k}^{(\ell)} \right| \right\}$$

The parallel Tikhonov algorithm: output

• By applying sum-product algorithm we find

$$P_{u}(x_{k}) = \sum_{\ell} \int p_{f}(\theta_{k}, \nu_{\ell}) p_{b}(\theta_{k}, \nu_{\ell}) p(y_{k}|x_{k}, \theta_{k}) d\theta_{k}$$
$$\propto e^{-\frac{|x_{k}|^{2}}{N_{0}}} \sum_{\ell} \gamma_{f,k}^{(\ell)} \gamma_{b,k}^{(\ell)} \int t(a_{f,k}^{(\ell)}; \theta_{k}) t(a_{b,k}^{(\ell)}; \theta_{k}) e^{\operatorname{Re}\left[\frac{y_{k}c_{k}^{*}}{N_{0}/2}e^{-j\theta_{k}}\right]} d\theta_{k}$$

• This yields

$$P_{u}(x_{k}) \propto e^{-\frac{|x_{k}|^{2}}{N_{0}}} \sum_{\ell} \gamma_{f,k}^{(\ell)} \gamma_{b,k}^{(\ell)} \frac{\mathrm{I}_{0}\left(\left|a_{f,k}^{(\ell)} + a_{b,k}^{(\ell)} + \frac{y_{k}c_{k}^{*}}{N_{0}/2}\right|\right)}{\mathrm{I}_{0}\left(\left|a_{f,k}^{(\ell)}\right|\right) \mathrm{I}_{0}\left(\left|a_{b,k}^{(\ell)}\right|\right)}.$$

The parallel Kalman algorithm (1)

- Using the phasor $h_k = e^{j2\pi\theta_k}$ rather than θ_k itself, the resulting re-defined state variable is given by $\mu_k = (h_k, \nu_k)$ with $h_k \in c$ and $\nu_k \in V$.
- If follows that, for each value $\nu = \nu_{\ell}$, the corresponding conditional estimator for $\{h_k\}$ is given by a Kalman smoother identical to what seen before, when replacing α_k by the rotated version $\alpha_k e^{j2\pi\nu_{\ell}k}$.
- The 2M+1 Kalman smoothers are run in parallel, and produce estimates that are assumed to be Gaussian $\sim \mathcal{N}_{\mathbb{C}}(m_k(\ell), \Sigma_k)$.
- Notice that the covariance sequence of the Kalman smoothers does not depend on ℓ , and hence only one covariance recursion instead of 2M+1 can be implemented.

The parallel Kalman algorithm (2)

- It remains to see how the terms $\gamma_{f,k}(\ell)$ and $\gamma_{b,k}(\ell)$ are recursively calculated.
- By using again the properties fo the Gaussian pdfs:

 $p_{f,k+1}(\mu_{k+1}) = \gamma_{f,k+1}(\ell)g_{\mathbb{C}}(m_{k+1|k}(\ell), \Sigma_{k+1|k}; h_{k+1})$ = $\gamma_{f,k}(\ell)g_{\mathbb{C}}(\alpha_{k}e^{j2\pi\nu_{\ell}k}m_{k|k-1}(\ell), |\alpha_{k}|^{2}(\Sigma_{k|k-1}-1) + N_{0} + \beta_{k}; y_{k})$ $\cdot g_{\mathbb{C}}(\rho m_{k|k}(\ell), \rho^{2}(\Sigma_{k|k}-1) + 1; h_{k+1})$

The parallel Kalman algorithm (3)

• It follows that the forward update is

$$\gamma_{f,k+1}(\ell) \propto \gamma_{f,k}(\ell) \exp\left(-\frac{1}{|\alpha_k|^2 (\Sigma_{k|k-1} - 1) + N_0 + \beta_k} \left| y_k - \alpha_k e^{j2\pi\nu_\ell k} m_{k|k-1}(\ell) \right|^2\right)$$

• Similarly, the backward update is

$$\gamma_{b,k-1}(\ell) \propto \gamma_{b,k}(\ell) \exp\left(-\frac{1}{|\alpha_k|^2 (\Sigma_{k|k+1} - 1) + N_0 + \beta_k} \left| y_k - \alpha_k e^{j2\pi\nu_\ell k} m_{k|k+1}(\ell) \right|^2\right)$$

The parallel Kalman algorithm: output

• The messages to be sent to the decoder are immediately obtained as

$$P_{u}(x_{k}) \propto e^{-\frac{|x_{k}|^{2}}{N_{0}}} \sum_{\ell=0}^{2M} \gamma_{f,k}(\ell) \gamma_{b,k}(\ell)$$

$$\cdot \int_{0}^{\infty} e^{-z} I_{0} \left(2\sqrt{\frac{|y_{k}x_{k}^{*}|^{2}}{N_{0}^{2}}} + \frac{z|m_{k}(\ell)|^{2}}{\Sigma_{k}} + 2\frac{\sqrt{z}}{\sqrt{\Sigma_{k}}N_{0}} \operatorname{Re}\{y_{k}x_{k}^{*}m_{k}^{*}(\ell)e^{-j2\pi\nu_{\ell}k}\}\right)$$

with

$$m_{k}(\ell) = \frac{\Xi_{k|k+1}}{\Sigma_{k|k-1} + \Xi_{k|k+1}} m_{k|k-1}(\ell) + \frac{\Sigma_{k|k-1}}{\Sigma_{k|k-1} + \Xi_{k|k+1}} \mu_{k|k+1}(\ell)$$

$$\Sigma_{k} = \frac{\Sigma_{k|k-1} \Xi_{k|k+1}}{\Sigma_{k|k-1} + \Xi_{k|k+1}}.$$

• We plot

$$\mathcal{M}(\ell) = \sum_{k=0}^{N-1} |m_k(\ell)|^2$$

vs. the frequency values $u_\ell \in \mathcal{V}$, for one snapshot.

- For ν_{ℓ} far from the true value ν^{\star} of the frequency offset, $m_k(\ell) \approx 0$.
- For ν_{ℓ} close to ν^{\star} , $|m_k(\ell)| \approx 1$.

Snapshot: DVB-RCS, TC (frame 1712 bits), rate 1/2, $E_b/N_0 = 2 \text{ dB}$

Some numerical example

Comparisons (binary LDPC (3, 6), N = 4000)

BER

Comparisons (binary LDPC (3, 6), N = 4000)

Effect of pilot symbols placement.

Performance for the DVB-S2 standard

LDPC-coded modulation, binary codign rate 4/5, binary blocklength 64800, bursts of 36 pilots spaced by 1476 symbols.

DVB-RCS standard: Phase BCJR

58

DVB-RCS standard: Tikhonov algorithm

59

DVB-RCS standard: Kalman algorithm

Parallel Kalman algorithm: $\nu_{max} = 0.01$, M = 10

Parallel Kalman algorithm: $\nu_{\rm max} = 0.05$, M = 50

