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1 Introduction
In a digital receiver it is customary to distinguish two main functions: detection and decod-
ing. By “detection”, we mean the function in the receiver that produces symbol-by-symbol
observables for the code symbol, by taking into account the channel statistics but not the code
constraint. By “decoding”, we mean the function in the receiver that consider the sequence of
symbol-by-symbol observables produced by the detector and computes a posterior estimate of
the code symbols by imposing the code constraint. To fix ideas, consider the standard coherent
transmission over a complex baseband equivalent AWGN channel. Let c = (c0, . . . , cK−1) be the
transmitted codeword, belonging to some code C ∈ C

K over a given complex signal set X ∈ C

(e.g., BPSK, QPSK, etc ...). Let rk = ack + nk denote the discrete-time output of some receiver
front-end (sampled matched filter) where a is a deterministic known gain and nk is distributed as
NC(0, N0). Then, an optimal detector produces the sufficient statistics provided by the posterior
symbol-by-symbol probabilities

{Pk(x) = P (ck = x|rk) : x ∈ X}

for all k = 0, . . . , K − 1, and the MAP symbol-by-symbol decoder produces the a posteriori
probabilities

P (ck = x|{rk}, C)
.
= χ(c)Pk(x)

∑

cj∈X:j 6=k

∏

j 6=k

Pj(cj)

where χ(c) = 1{c ∈ C} is the code constraint function, equal to 1 if c is a valid codeword (it
belongs to the code C) and zero elsewhere, and where we define the following notation (used
throughout this report): let A(x) and B(x) be two functions of a variable x. We write A(x)

.
=

B(x) to indicate that A(x) = κB(x) + ζ , where κ > 0 and ζ are constant with respect to the
variable of interest x.

Alternatively, instead of a MAP symbol-by-symbol decoder (which minimizes the average
symbol error probability) we can consider the joint MAP decoder (erroneously referred to as
Maximum Likelihood decoder in most textbooks), that produces the MAP codeword estimate

ĉ = argmax
c∈C

χ(c)
K−1∏

j=0

Pj(cj)

However, since in this work we deal with iterative decoding of LDPC codes, for which the joint
MAP is practically non-feasible because of complexity, we shall restrict to the MAP symbol-by-
symbol decoder.

Notice that since the channel is fully known (meaning that a and the noise statistics are
perfectly known), the probabilities Pk(x) can be computed exactly. In any case, it is important
to remark that if the channel is fully known and the detector produces a sufficient statistics
equivalent to the one given above, the separated approach is, obviously, optimal.

The traditional approaches to detection and decoding for randomly time-varying channels
consist of: i) using training signals that allow the receiver to estimate the channel and succes-
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sively apply techniques for known deterministic channels treating the estimate as if it was exact;
ii) using a noncoherent decoding metric insensitive to the channel knowledge. Both approaches
are based on the separation between detection and decoding. However, when the channel is
affected by some random parameter unknown a priori to the receiver (in particular, when the
channel is randomly time-varying), the separated approach is no longer optimal. In particular,
modern coding schemes such as Turbo Codes and LDPC codes allow to work at very low signal-
to-noise ratio (SNR), under known deterministic channel. In this condition, the conventional
separated approaches fall short to provide satisfactory performance and the presence of a ran-
dom channel severely limits the overall performance. Therefore, a joint detection and decoding
is called for.

The disadvantage of joint detection and decoding is complexity. Hence, iterative techniques
where a detector and a decoder are activated in sequence several times and exchange some
form of information in order to iteratively approach a global optimum are envisaged. In this
report, we describe various techniques for low-complexity iterative joint detection and decoding
schemes. We identify two families of algorithms. The first family is based on the Bayesian ap-
proach. It makes use of the Bayesian network framework to build a factor graph which takes
into account both the code constraint and the statistics of the channel, and build iteratively es-
timates of the a posteriori probabilities of the transmitted symbols by using the sum-product
algorithm. The second family is based on a non-Bayesian approach, namely, on some itera-
tive low-complexity approximation of the Generalized Likelihood Ratio Test (GLRT) obtained
by joining the Expectation-Maximization (EM) algorithm for channel estimation with the sum-
product algorithm applied to the code only.

Although both families of algorithms apply to the general case of coded transmission over a
randomly time-varying channel with memory, this work is particularly focused to the case of an
Additive White Gaussian Noise channel affected by randomly time-varying carrier phase (phase
noise).

Only preliminary works employing a Bayesian approach may be found in the technical lit-
erature. With the exception of [1], in which a general method to embed a parameter description
into the code factor graph is described, all these works are related to the noncoherent channel and
binary modulations. In [2], a simple noncoherent channel model is considered that tries to cap-
ture the phase dynamics. In fact, the unknown carrier phase is considered constant over a block
of N symbols and independent from block to block. In [3] an approximate quantized model for
the unknown phase is considered and both the code and the receiver are designed based on this
model. Finally, in [4], based on the approach in [1], different phase models are considered and
approximate solutions are derived. In all these works, the robustness of the proposed schemes is
not completely addressed nor is the primary requirement.

A non-Bayesian approach is adopted in [5]–[10]. In [5]–[9] the original concept of soft-
decision-directed estimation is introduced. The unknown parameters, modeled as deterministic,
are estimated by using the EM algorithm [5]–[8] or an ad-hoc procedure [9], and this estimation
algorithm is embedded into the iterative decoding process. Finally, in [10] a class of problems is
identified for which the optimal, in the sense of the generalized-likelihood ratio test, generation
of the symbol a posteriori probabilities can be performed with polynomial complexity. For all
these algorithms, when the channel is time-varying, the performance rapidly degrades since the
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receiver is not designed exploiting a statistical knowledge of the channel variations.
The performance of the algorithms examined and developed in this report is analyzed by

computer simulations showing that a time-varying channel phase, with a rate of change typical of
the instabilities of the transmitter and receiver oscillators, does not entail significant degradation
with respect to the case of a time-invariant (but random and unknown) phase. Our results show
that Bayesian algorithms are generally superior to their non-Bayesian counterparts, both in terms
of performance and in terms of complexity.

2 Bayesian algorithms: preview
In recent years, factor graphs (FG) and the sum-product (SP) algorithm [11] have been used
to reinterpret a large number of algorithms widely known in the digital communication field,
such as the Viterbi algorithm [12], the BCJR algorithm [13], the iterative “turbo” decoding algo-
rithm [14], and the belief propagation algorithm for low-density parity-check (LDPC) codes [15].

In this report, we use these tools to face the problem of iterative detection and decoding
of channel codes, described by means of some graphical model, and transmitted over channels
with memory. The adopted approach is Bayesian, i.e., the unknown parameters describing the
channel, possibly time-varying, are modeled as stochastic processes with a known statistical
description. Bayesian methods for joint decoding and channel parameter estimation amount,
roughly speaking, to construct a FG modeling the statistical dependency of the transmitted data,
of the channel parameters to be estimated, and of the observed signal, and by applying the SP
algorithm. The resulting algorithms are naturally iterative, and are well-suited to the decoding of
codes such as LDPC and turbo codes, whose decoding algorithms are typically iterative even in
the fully coherent setting (all channel parameters known).

Our principal goal is the application to LDPC codes. Since these codes are linear block codes
and can be decoded in a fully parallel manner, we are not interested in trellis-based separate
detection—see [16]–[21] for the relevant cases of the intersymbol interference (ISI), noncoher-
ent, and fading channels—if we want simultaneous detection and decoding in a fully parallel
manner. In fact, if separate detection is performed by means of a BCJR algorithm, its serial
structure prevents from a fully parallel algorithm implementation. Nevertheless, the proposed al-
gorithms will use soft informations for code symbol probabilities, available in iterative decoding
schemes, and for this reason they can be also applied to turbo-TCM codes.

In this report, we describe two methods for building a FG which takes into account the chan-
nel model along with the code constraints. In the first one, by means of a factorization of the
joint a posteriori probability of the transmitted symbols, we derive a factor graph representing
both the code constraints and the channel model but not explicitly the channel parameters. The
application of the SP algorithm to this factor graph leads to a scheme for joint detection and
decoding. With respect to decoding schemes over a memoryless channel, we have additional
factor nodes modeling the channel and performing a marginalization without taking into account
the code constraints. This approach is exact in the case of channels with finite memory, such as
a channel with known ISI, and approximate for channels with infinite memory. This latter case
includes a noncoherent channel and a flat fading channel, irrespective of the Doppler rate. For

REPRODUCTION FORBIDDEN WITHOUT ESA AUTHORIZATION



G. Colavolpe and G. Caire: Iterative joint detection and decoding ... 5

these channels, the factorization is approximate in the sense of a finite dependence assumption
only, i.e., only a window of C received samples is considered relevant for the detection of a
code symbol. This finite dependence assumption, in general adopted in all practical detection
schemes, has also the convenient side-effect of allowing time-varying phase models.

When the SP algorithm is applied to a factor graph, the convergence of its output to the exact
marginal probabilities or a good approximation of them is in general determined by the girth of
the graph.1 As an example, in designing LDPC codes, cycles of length 4 must be avoided to
ensure decoding convergence. The graph derived from the above mentioned factorization has,
in general, girth 4. However, we verified by computer simulations that the cycles of length 4,
involving factor nodes which model the channel behavior, often do not affect the convergence
of the algorithm. If this is not the case, as for transmissions over ISI channels, factor graph
transformations can be adopted [22].

By introducing a simple approximation, for equal energy signals, a modified version of the
described factor graphs for noncoherent and flat fading channels may be devised. The appli-
cation of the SP algorithm to these modified graphs has a complexity linear in C, allowing
a low-complexity receiver implementation for all practical values of C. The possibility of an
implementation of the receiver for any value of C is a key point since this parameter has a fun-
damental role in determining the receiver performance. In fact, the optimal value of C must be
chosen as a function of the channel rate of change—the faster the channel, the lower the optimal
value of C.

In a second approach, suggested by [1], variable nodes representing the channel parameters
are explicitly introduced in the FG. The marginalization of the joint distribution of symbols and
channel parameters, a priori performed with respect to the channel parameters in the previous
approach, is now performed by the SP algorithm. The problem with this approach is that, while
the SP algorithm is well-suited to handle probability mass functions (i.e., discrete random vari-
ables), the channel parameters are typically continuous random variables. There are two classical
solutions to this problem. One is based on the use of canonical distributions, i.e., on pdfs that are
efficiently parameterized. Hence, the SP has just to forward the parameters of the distribution.
The other solution is based on the quantization of the parameter space. Obviously, this second
approach becomes “optimal” (in the sense that it approaches the performance of the exact SP
algorithm) for a sufficiently large number of quantization levels, at the expenses of an increased
computational complexity. In the case of the use of canonical distributions, we derive an algo-
rithm with complexity linear in the number of transmitted symbols, which is optimal excepting
for a truncation of the Fourier series used to represent some messages in the graphs. Simplified
low-complexity algorithms are also derived.

We focus on LDPC codes, properly mapped on multilevel constellations and transmitted on
the noncoherent satellite channel. In this case, by using the proposed framework we design
detection schemes robust to oscillator instabilities (generating phase noise) and time-varying fre-
quency offsets (due to possible Doppler shifts). As an example, these schemes may be employed
in the next generation digital video broadcasting satellite transmission systems (DVB-S2) where

1A cycle is a closed path in the graph and its length is defined as the corresponding number of path edges. The
length of the smallest cycle is the girth of the graph.
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these problems of phase and frequency instabilities are of particular relevance due to the use of
Q- and V-bands [23].

The proposed algorithms exhibit a high robustness in the presence of a time-varying channel
phase. This high robustness allows one to reduce the rate of insertion of the pilot symbols added
to the transmitted codeword with the aim of supporting the phase estimation or tracking in more
“classical” receivers.

3 System Model
In the considered transmission system, a sequence of M -ary code symbols {ck} is transmitted
from epoch 0 to epoch K−1. These code symbols are obtained from the encoding of a sequence
of information bits2 and a proper mapping on a multilevel constellation. In addition, to avoid
phase ambiguity problems, pilot symbols or differential encoding may be also inserted in the
sequence {ck}. A sequence of code symbols is denoted in vector notation as

ck2
k1

= (ck1 , ck1+1, . . . , ck2) , k2 > k1 . (1)

For brevity, the entire sequence is denoted by c = cK−1
0 . This sequence is then modulated and

transmitted over a channel which is modeled as a noiseless filter (possibly stochastic) rendered
noisy by additive white Gaussian noise (AWGN) with two-sided power spectral density N0/2.

At the receiver side, by means of a discretization process, the received signal r(t) is converted
into a time-discrete sequence r [24]. We assume that a single sample rk is used for each code
symbol, which is practically sufficient in many cases. In the case of oversampling, the extension
is straightforward—the observation rk must be considered as a vector whose dimensionality is
given by the number of samples per code symbol. With a notation similar to that used for code
symbols, the sequence of observations {rk} is denoted by r = rK−1

0 .
We also assume that the channel is causal, that is the observation sequence rk

0 up to epoch k
depends on the code sequence up to epoch k only. This condition may be formulated in terms of
the following statistical dependence:

p(rk
0|c) = p(rk

0|ck
0) . (2)

This condition characterizes the very general channel model which is assumed in this report
corresponding to the following expression of the observation rk:

rk = g(ck
k−L, θk

0) + nk (3)

where g(.) is a suitable function, θk = (θ
(1)
k , . . . , θ

(β)
k ) is a vector of β channel parameters,

possibly unknown and stochastic, corresponding to epoch k, L is a suitable integer parameter,
and nk is a discrete-time complex AWGN noise sample with each component of variance σ2.
In this model the cases of a noncoherent channel, a flat or a frequency-selective fading channel,

2In the numerical results, LDPC codes are considered.
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and a channel with known and time-invariant ISI are included, by considering both linear or
continuous phase modulations (CPM).

As an example, for a noncoherent channel, which is characterized by an unknown stochas-
tic and possibly time-varying phase θk, considering a linear modulation at the transmitter side
and assuming that one sample per code symbol is adequate (as in the absence of strong phase
variations), if transmit and receive filters are such that there is absence of ISI, we have

rk = cke
jθk + nk . (4)

Hence, in this case L = 0, β = 1. This noncoherent channel will be considered in detail in the
numerical results.

4 Factor Graphs and Sum-Product Algorithm
A FG is a bipartite graph which expresses the factorization of a complicated global function of
many variables, usually a joint probability density function (pdf) or a joint probability mass func-
tion (pmf), as a product of local functions, each of which depends on a subset of the variables.
The SP algorithm works on a factor graph and computes—either exactly or approximately—the
marginal functions derived from the global function. A wide variety of algorithms developed in
artificial intelligence, signal processing and digital communications can be derived as specific
instances of the SP algorithm [11].

Suppose that the global function g(x1, x2, . . . , xn) factors into a product of several local func-
tions, each having some subset of {x1, x2, . . . , xn} as arguments:

g(x1, x2, . . . , xn) =
∏

j∈J

fj(Xj)

where J is a discrete index set, Xj is a subset of {x1, x2, . . . , xn}, and fj(Xj) is a function having
the elements of Xj as arguments. A FG is a bipartite graph that expresses the structure of this
factorization. It has a variable node for each variable xi, a factor node for each local function
fj , and an edge connecting variable node xi to function node fj if and only if xi is an argument
of fj.
Example. Let g be a function of five variables, and suppose that it can be expressed as a product

g(x1, x2, x3, x4, x5) = fA(x1)fB(x2)fC(x1, x2, x3)fD(x3, x4)fE(x3, x5) .

In this case, J = {A, B, C, D, E}, XA = {x1}, XB = {x2}, XC = {x1, x2, x3}, XD = {x3, x4},
and XE = {x3, x5}. The corresponding factor graph is shown in Fig. 1. �

Let us assume that variables {xi} represent discrete random variables and we want to perform
the marginalization of their joint pmf. When the corresponding FG has cycles, the application
of the SP algorithm to this graph leads to a suboptimal iterative detection process which often
converges to a very good approximation of the marginal pmfs. The exchange of messages, rep-
resenting the marginal pmfs of variables xi and hence assuming M values, fulfills the following
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fEfA fB fC fD

x1 x2 x3 x4 x5

Figure 1: An example of factor graph.

rule. Denoting by µx→f(x) a message sent from variable node x to function node f , by µf→x(x)
a message in the opposite direction, and by n(v) the set of neighbors of a given node v, the
message computations performed at variable and factor nodes are, respectively [11]

µx→f(x) =
∏

h∈n(x)\{f}
µh→x(x) (5)

µf→x(x) =
∑

∼{x}


f(X)

∏

y∈n(f)\{x}
µy→f(y)


 (6)

where
∑

∼{x} is a summary operator, i.e., a sum over all variables excluding x.3 It may be
observed that the message sent to an edge does not depend on the message previously received
on the same edge, i.e., only extrinsic information is exchanged.

The messages in eqn. (5) and (6) may be also computed in the logarithmic domain. Defining
µf→x(x) = ln µf→x(x) and µx→f(x) = ln µx→f(x), the message computations performed at
variable and factor nodes become

µx→f(x) =
∑

h∈n(x)\{f}
µh→x(x) (7)

µf→x(x) = ln




∑

∼{x}
exp


ln f(X) +

∑

y∈n(f)\{x}
µy→f(y)





 . (8)

The implementation of this latter rule does not require multiplications but only additions and the
evaluation of a nonlinear function. In fact, by using the Jacobian logarithm [25]–[27], it is well
known that, if x1 and x2 are real numbers

ln(ex1 + ex2) = max(x1, x2) + ln(1 + e−|x2−x1|) (9)

3When variables x represent continuous random variables, the global function represents their joint pdf and
messages on the graph edges represent their marginal pdfs. In this case, the summary operator represents an integral
over all variables excluding x.
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and ln(1 + e−|x2−x1|) is the nonlinear function whose evaluation requires a look-up table. In our
case, the evaluation of ln(ex1 +ex2 +· · ·+exn) can be done recursively [27]. A further simplifica-
tion of the updating rule (8) may be obtained by using the so-called max-log approximation [27]:

µf→x(x) = max
∼{x}


ln f(X) +

∑

y∈n(f)\{x}
µy→f(y)


 . (10)

The most demanding computation is that performed at factor nodes. For this reason, in
order to compare the complexity of the described detection algorithms, we will define a cost per
code symbol per iteration CT . This cost will only take into account the number of evaluations
of the above mentioned nonlinear function that factor nodes, describing the channel behavior,
have to compute to update the messages related to code symbols. Since we will consider factor
graphs having different structures, the definition of the cost CT will be better specified for each
algorithm. Note that it is possible to use as a complexity measure the cost per code symbol per
iteration since the complexity of all the described algorithms is linear with respect to the number
of transmitted symbols.

A message-passing schedule in a factor graph is the specification of the order in which mes-
sages are updated. In general, the so-called flooding schedule is adopted [28]: in each iteration,
all variable nodes and subsequently all factor nodes, pass new messages to their neighbors. As
can be easily understood, this schedule is well suited for a fully parallel implementation of the
detector/decoder. Other schedules may be adopted, serial or mixed serial-parallel, according to
the specific implementation requirements.

5 First Approach: A Priori Average over Channel Parame-
ters

The application of the SP algorithm [11] to a factor graph representing the joint a posteriori prob-
ability (APP) of the transmitted code sequence c conditioned to a given observation sequence r,
allows the exact or approximate computation of the single marginal APPs P (ck|r) [11]. There-
fore, this algorithm may be used to implement the MAP symbol detection algorithm. This code
sequence APP may be expressed as

P (c|r) .
= P (c)p(r|c) = P (c)

K−1∏

k=0

p(rk|rk−1
0 , ck

0)
.
= χ(c)

K−1∏

k=0

p(rk|rk−1
0 , ck

0) (11)

having used the causality condition (2), assumed that the a priori distribution of the transmitted
codewords is uniform, and denoted by χ(c) the code characteristic function (χ(c) = 1 for all
codewords in the codebook, and zero elsewhere).

If the pdf p(rk|rk−1
0 , ck

0), which appears in (11), satisfies the condition

p(rk|rk−1
0 , ck

0) = p(rk|rk−1
0 , ck

k−C) (12)
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c0 c1 c2 c4c3 c5

p(r0|c0) p(r1|r0, c
1

0
) p(r2|r

1

0
, c

2

0
) p(r3|r

2

0
, c

3

1
) p(r4|r

3

0
, c

4

2
) p(r5|r

4

0
, c

5

3
)

Code constraints, χ(c)

Figure 2: Overall factor graph for C = 2.

where C is a suitable parameter, the channel has finite memory [29,30]. For this reason, parameter
C will be nicknamed finite memory parameter. Substituting (12) into (11), the code sequence
APP may be expressed as

P (c|r) .
= χ(c)

K−1∏

k=0

p(rk|rk−1
0 , ck

k−C) (13)

The corresponding factor graph is shown in Fig. 2 for C = 2, and represents both the code
constraints (described by χ(c)) and the channel behavior. With respect to SP-based decoding
schemes for linear block codes (e.g., LDPC codes) over a memoryless channel, additional factor
nodes must be added at the bottom of the graph, as shown in Fig. 2. These additional factor
nodes perform a marginalization, based on the channel model, without taking into account the
code constraints. The complexity of this marginalization is, in general, exponential in C.

The finite memory condition (12) is exactly verified in the case of channels with known ISI.
In fact, in this case it is

p(rk|rk−1
0 , ck

0) = p(rk|ck
k−L) (14)

where L is the length of the discrete-time channel impulse response. This case is not further
considered in this report since analyzed in depth in [22]. If the finite memory condition (12) is
not verified in an exact sense as for a noncoherent or a fading channel (channels with infinite
memory), a factor graph may be devised but the complexity of the message computation at the
factor node p(rk|rk−1

0 , ck
0) modeling the channel grows exponentially with k and thus becomes

impractical. For this reason, considering the channel model (3), an approximation is introduced
assuming that rk depends on the R most recent observations and the most recent C = R + L
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code symbols only. This finite dependence property may be expressed as

p(rk|rk−1
0 , ck

0) ' p(rk|rk−1
k−R, ck

k−C) . (15)

This property, in general adopted in all practical detection schemes, is intuitive in the case of
time-varying channels. In fact, in this case the conditional observations are asymptotically in-
dependent for an increasing index difference. The resulting (approximate) code sequence APP
becomes

P (c|r) ' χ(c)

K−1∏

k=0

p(rk|rk−1
k−R, ck

k−C) (16)

Considering the channel model (3), the pdf p(rk|rk−1
k−R, ck

k−C) which appears in eqn. (16) may be
computed in a closed form as

p(rk|rk−1
k−R, ck

k−C) =
E

θ
k

0

{p(rk
k−R|ck

k−C, θk
0)}

E
θ

k−1

0

{p(rk−1
k−R|ck−1

k−C, θk−1
0 )}

. (17)

The quality of the convergence of the SP algorithm to the exact marginal probabilities is in
general determined by the girth of the graph. As an example, in designing LDPC codes, cycles of
length 4 must be avoided to ensure decoding convergence. The graph derived from the proposed
factorization has, in general, girth 4. However, we verified by computer simulations that these
length-4 cycles involving two factor nodes which model the channel behavior often do not affect
the convergence of the algorithm.4 If this is not the case, as for transmissions over ISI channels,
factor graph transformations can be adopted [22].

For the SP algorithm working on the described factor graphs, the most demanding com-
putation is that performed at factor nodes modeling the channel. In fact, the marginalization
performed by these nodes has in general a complexity which increases exponentially with C.
This complexity may be reduced following a technique similar to reduced-state sequence esti-
mation (RSSE) used for maximum likelihood sequence detection. In fact, by choosing an integer
Q < C, we may compute the marginalization at factor nodes on the Q symbols with lowest
reliabilities while the C −Q symbols with highest reliabilities are hard-quantized on the basis of
the messages on the graph. In this way, the complexity becomes exponential in Q.

For equal energy signals, a modified version of the described factor graphs for noncoherent
and flat fading channels may be devised. In fact, it can be shown that for fading channels the
function p(rk|rk−1

0 , ck
k−C) exactly factors into the product of C functions of two code symbols.

For noncoherent channels this factorization is not exact but involves a simple approximation. The
SP algorithm on these modified graphs has a complexity linear in C, allowing a low-complexity
receiver implementation for all practical values of C. For a noncoherent channel details are given
in Section 5.1.

4A length-4 cycle involving a factor node modeling the channel and a factor node representing a code constraint
may be easily removed by interleaving the code symbols before transmission.
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Figure 3: Overall factor graph for the noncoherent channel and C = 2.

5.1 Noncoherent channel
In this section, we consider the application of the detection approach described in the previous
Section to the case of a noncoherent channel. The system model is given by eqn. (4).

First algorithm. For the time being, we model the channel phase as a time-invariant random
variable θ with uniform distribution in [0, 2π). However, the finite dependence property (15) will
lead to a detection algorithm that can be used for slowly-varying channels also. In this case, it
is R = C and the pdf p(rk|rk−1

k−C, ck
k−C) which appears in eqn. (16) may be expressed, based on

eqn. (17), as

p(rk|rk−1
k−C, ck

k−C)
.
=

I0

(
1
σ2

∣∣∣
∑C

i=0 rk−ic
∗
k−i

∣∣∣
)

I0

(
1
σ2

∣∣∣
∑C

i=1 rk−ic∗k−i

∣∣∣
)e−

|ck|2

2σ2 (18)

where I0(x) is the zeroth order modified Bessel function of the first kind. The corresponding
factor graph is shown in Fig. 3 for C = 2. Based on the SP algorithm, these factor nodes,
perform a marginalization whose computational burden grows exponentially with C. The cost
per code symbol per iteration is CT = (C +1)MC+1, being (C +1) the number of edges entering
a variable node representing a code symbol, M the number of values to be computed for each
message, and MC the number of evaluations of the nonlinear function in (9) for each summary
operation performed by a factor node representing the channel. This cost can be reduced to
CT = (C + 1)MQ+1 if the described reduced complexity technique is adopted. In the following,
this algorithm will be referred to as exponential-complexity algorithm.

Second algorithm. We now introduce some approximations with the aim of further factorizing
the probability density function p(rk|rk−1

k−C, ck
k−C). As a first step, approximating I0(x) ' ex,
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which holds for large values of the argument x ∈ R
+, we have

p(rk|rk−1
k−C, ck

k−C) ' exp

{
1

σ2

[∣∣∣∣∣

C∑

i=0

rk−ic
∗
k−i

∣∣∣∣∣−
∣∣∣∣∣

C∑

i=1

rk−ic
∗
k−i

∣∣∣∣∣−
|ck|2

2

]}
. (19)

For a complex number z, we may express |z| = Re{ze−jarg{z}}, and denoting

θ̂
(C+1)
k = arg

{
C∑

i=0

rk−ic
∗
k−i

}

θ̂
(C)
k−1 = arg

{
C∑

i=1

rk−ic
∗
k−i

}
(20)

with the further approximation θ̂
(C+1)
k ' θ̂

(C)
k−1, we have

p(rk|rk−1
k−C, ck

k−C) ' exp

{
1

σ2
Re

[
C∑

i=0

rk−ic
∗
k−ie

−jθ̂
(C)
k−1 −

C∑

i=1

rk−ic
∗
k−ie

−jθ̂
(C)
k−1 − |ck|2

2

]}

= exp

{
1

σ2
Re

[
rkc

∗
ke

−jθ̂
(C)
k−1 − |ck|2

2

]}
. (21)

Since

ejθ̂
(C)
k−1 =

∑C
i=1 rk−ic

∗
k−i∣∣∣

∑C
i=1 rk−ic∗k−i

∣∣∣
(22)

we may express

p(rk|rk−1
k−C, ck

k−C) ' exp





1

σ2
Re


rkc

∗
k

∑C
i=1 r∗k−ick−i∣∣∣

∑C
i=1 rk−ic∗k−i

∣∣∣
− |ck|2

2





 . (23)

We now consider phase-shift keying (PSK) signals. In this case, |ck| = 1 and we also ap-
proximate

∣∣∣
∑C

i=1 rk−ic
∗
k−i

∣∣∣ ' C which is true for the transmitted sequence at a sufficiently high
signal-to-noise ratio (SNR). Therefore, eqn. (23) becomes

p(rk|rk−1
k−C, ck

k−C) ' exp

{
1

σ2C
Re

[
rkc

∗
k

C∑

i=1

r∗k−ick−i

]}

=

C∏

i=1

exp

{
1

σ2C
Re
[
rkc

∗
kr

∗
k−ick−i

]}

=

C∏

i=1

gi,k(ck−i, ck) (24)
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Figure 4: Simplified overall factor graph for PSK signals and C = 2.

having defined

gk−i,k(ck−i, ck) = exp

{
1

σ2C
Re
[
rkc

∗
kr

∗
k−ick−i

]}
. (25)

This further factorization as an immediate impact on the graph structure. In fact, each factor
node can be decomposed in C simpler degree-2 factor nodes. As an example, for C = 2, the
factor graph in Fig. 3 becomes that in Fig. 4 (for brevity, the argument of functions gi,k(ck−i, ck)
are omitted). Hence, for increasing values of C, the number of factor nodes increases linearly
but the computational burden at each factor node remains the same. The cost per code symbol
per iteration is now CT = 2M2C, being 2C the number of edges entering a variable node rep-
resenting a code symbol, M the number of values to be computed for each message, and M the
number of evaluations of the nonlinear function in (9) for each summary operation performed by
a factor node representing the channel. Note that in this modified factor graph there are no cycles
of length 4. In the following, this algorithm will be referred to as linear-complexity algorithm.

Third algorithm. For a general time-varying phase process θk, assumed stationary, zero-mean
and described by a given autocorrelation sequence of the phasor process hk = ejθk , denoted
by Rh(n) = E{ejθn+ke−jθk}, the approximate linear predictive approach described in [31] for
Viterbi-based maximum-likelihood sequence estimation receivers may be adopted. In this case,
omitting irrelevant constant terms, the pdf p(rk|rk−1

k−C, ck
k−C) may be approximated as (omitting

irrelevant constant terms)

p(rk|rk−1
k−C, ck

k−C) ' exp



− 1

σ2
e

∣∣∣∣∣rk − ck

∑C
i=1 pi

rk−i

ck−i

|∑C
i=1 pi

rk−i

ck−i
|

∣∣∣∣∣

2


 (26)
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where, in this case, C assumes the meaning of prediction order, {pi}C
i=1 are the prediction co-

efficients and σ2
e is the mean square prediction error. The prediction coefficients {pi}C

i=1 in (26)
can be computed by solving a Yule-Walker linear system Rp = b, where R is a square C × C
matrix whose elements have the following expression

[R]`,m =

{
Rh(|` − m|) if ` 6= m

1 + 2σ2

|ck−`|2 if ` = m
(27)

p
∆
= [p1 · · · pC ]T is the unknown vector, and b = [Rθ(1), Rθ(2), · · · , Rθ(C)]T . The mean square

prediction error may be expressed as [31]

σ2
e = 1 +

2σ2

|ck|2
−

C∑

i=1

piRh(i) . (28)

For PSK signals, the prediction coefficients and the mean square prediction error become
independent of the considered sequence. In addition, approximating |

∑C
i=1 pi

rk−i

ck−i
| ' |

∑C
i=1 pi|,

and taking into account that |ck| = 1, we have

p(rk|rk−1
k−C, ck

k−C)
.
= exp

{
2

σ2
e |
∑C

i=1 pi|
Re

[
rkc

∗
k

C∑

i=1

pi

r∗k−i

c∗k−i

]}

=
C∏

i=1

exp

{
2

σ2
e |
∑C

i=1 pi|
Re

[
rkc

∗
kpi

r∗k−i

c∗k−i

]}

=

C∏

i=1

exp

{
2

σ2
e |
∑C

i=1 pi|
Re
[
pirkc

∗
kr

∗
k−ick−i

]
}

(29)

which leads to a graph with structure as in Fig. 4 and a complexity of the SP algorithm linear in
C. Even in this case, in fact, the cost per code symbol per iteration is CT = 2M2C. Note that,
when the phase is time-invariant, it is pi = 1/C and σ2

e = 2σ2, and (29) reduces to (24). In the
following, this algorithm will be referred to as prediction algorithm.

6 Second Approach: Numerical Average over Channel Pa-
rameters

In the previous Section, we built the factor graph of the joint APP P (c|r). This APP was obtained
by an average over the channel parameters (see (17)). In the case of the noncoherent channel, the
result of this average can be given in a closed form if the channel phase is time-invariant only.
For a time-varying phase, we resorted to an approximate solution based on linear prediction.

Another approach to solve the problem may be adopted [1, 3, 4]. By considering the joint
distribution of symbols and unknown parameters P (c|θ, r)p(θ|r) and the corresponding factor
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graph, the application of the SP algorithm to this graph will allow us the computation of the
desired marginal APPs of code symbols by also marginalizing out over channel parameters.
Therefore, the average over the channel parameters is performed by the SP algorithm. A major
difference with respect to the previous approach is that we now have in the factor graph explicit
variable nodes representing the channel parameters. In addition, since the channel parameters
are often continuous random variables, messages sent or received from nodes representing the
channel parameters are arbitrary pdfs. Hence, the implementation complexity of the exact SP
algorithm becomes impractical. Possible solutions for this problem can be the following.

1. Use of canonical distributions. We represent the pdfs, which are the messages sent or
received from nodes representing the channel parameters, with given canonical pdfs, de-
scribed by some parameters. This representation can be exact or, more often, involve some
approximate assumptions. As an example, we could assume that these messages are Gaus-
sian pdfs which can be completely specified by their mean and variance, as in the case of
Kalman filtering [11].5 Hence, the computation of these messages simply reduces to the
computation of the describing parameters.

2. Quantization of the channel parameters. If we quantize the channel parameters, we may
consider the factor graph representing the joint APP P (c, θ|r). The application of the SP
algorithm to this factor graph allows us to compute the desired marginal APPs P (ck|r) and
the collateral ones P (θk|r). From a point of view of the involved approximations, if the
approach described in Section 5 is approximated for the finite dependence only, in this case
we have the quantization of in general continuous channel parameters and their statistics.
Obviously, this second approach becomes “optimal” (in the sense that it approaches the
performance of the exact SP algorithm) for a sufficiently large number of quantization
levels, at the expenses of an increased computational complexity.

6.1 Noncoherent channel: canonical distributions
First algorithm. Modeling the channel phase as a time-invariant random variable θ with uni-
form distribution in [0, 2π), we have

P (c|θ, r)p(θ|r) .
= p(r|c, θ)χ(c)p(θ) =

1

2π
χ(c)

K−1∏

k=0

p(rk|ck, θ)

.
= χ(c)

K−1∏

k=0

fk(ck, θ) (30)

where

fk(ck, θ) = p(rk|ck, θ)
.
= exp

{
− 1

2σ2
|rk − cke

jθ|2
}

. (31)

The corresponding factor graph is shown in Fig. 5.

5This choice must be determined from the observation of the true messages propagating along the graph edges.
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Figure 5: Factor graph corresponding to eqn. (30).

Let us assume that the SP algorithm works in the natural domain. Hence, messages corre-
sponding to variable nodes assume the meaning of pmfs or pdfs, if variables represent discrete
or continuous random variables, respectively. Denoting by P

(n)
d (ck) the message sent at the n-th

iteration from variable node ck to factor node fk, and by P
(n)
u (ck) the message in the opposite

direction, following the rules of the SP algorithm (5) and (6) we may write

P (n)
u (ck) =

∫ 2π

0

[
∏

i6=k

(
∑

ci

fi(ci, θ)P
(n)
d (ci)

)]
fk(ck, θ) dθ . (32)

This integral can be computed in a closed form as

P (n)
u (ck) =

∑

c0

· · ·
∑

ck−1

∑

ck+1

· · ·
∑

cK−1

P
(n)
d (c0) . . . P

(n)
d (ck−1)P

(n)
d (ck+1) . . . P

(n)
d (cK−1) ·

·
∫ 2π

0

∏

i

fi(ci, θ) dθ

=
∑

c0

· · ·
∑

ck−1

∑

ck+1

· · ·
∑

cK−1

P
(n)
d (c0) . . . P

(n)
d (ck−1)P

(n)
d (ck+1) . . . P

(n)
d (cK−1) ·

·I0
(

1

σ2

∣∣∣∣∣
∑

i

ric
∗
i

∣∣∣∣∣

)
∏

i

exp

{
−|ci|2

2σ2

}
(33)

whose computational complexity grows exponentially with K. A further simplification, that can
be useful when the channel is time-varying, can be the computation of the message (33) relative
to symbol ck taking into account the C nearest symbols only. However, in this case we obtain
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an algorithm whose complexity is exponential in C and performance worse than that of the first
algorithm described in Section 5.1. For this reason, we resort to an alternative approximate
approach. The quantity in square brackets in (32) may be expressed as

∏

i6=k

(
∑

ci

fi(ci, θ)P
(n)
d (ci)

)
.
=

∏

i6=k

(
∑

ci

P
(n)
d (ci) exp

{
1

σ2
Re
[
ric

∗
i e

−jθ
]
− |ci|2

2σ2

})

.
= exp

{
∑

i6=k

ln

(
∑

ci

P
(n)
d (ci) exp

{
1

σ2
Re
[
ric

∗
i e

−jθ
]
− |ci|2

2σ2

})}

(34)

where the identity elnx = x has been used. We now adopt the approximations ex ' 1 + x and
ln(1 + x) ' x already used in [5, 6] obtaining

∏

i6=k

(
∑

ci

f(ci, θ)P
(n)
d (ci)

)
' exp

{
1

σ2

∑

i6=k

[
Re
(
r∗i α

(n)
i ejθ

)
− β

(n)
i

2

]}
(35)

having defined, as in [5, 6],
α

(n)
i =

∑

ci

ciP
(n)
d (ci) (36)

and also
β

(n)
i =

∑

ci

|ci|2P (n)
d (ci) . (37)

Note that the introduced approximations correspond to the following one
∑

i

Pie
xi ' e

P

i Pixi . (38)

This is a good approximation when there exists an index j such that Pj � Pi, ∀i 6= j. In this
case, the following approximation can be also adopted:

∑

i

Pie
xi ' Pje

xj (39)

leading to an algorithm with the same complexity.
As expressed by (35), we approximate the generic message at the output of variable node

θ, with a distribution described by some parameters (α(n)
i and β

(n)
i ) which are function of other
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messages. Substituting (35) in (32) and solving the integral, we obtain

P (n)
u (ck)

.
= exp

{
− 1

2σ2

[
∑

i6=k

β
(n)
i + |ck|2

]}
I0

(
|
∑

i6=k r∗i α
(n)
i + r∗kck|

σ2

)

.
= exp

{
−|ck|2

2σ2

}
I0

(
|
∑

i6=k r∗i α
(n)
i + r∗kck|

σ2

)
(40)

having discarded a multiplicative factor independent of ck. This algorithm can be also used when
the channel phase is time-varying. In this case, when message P

(n)
u (ck) is computed, it is more

convenient to take into account the quantities α
(n)
i corresponding to the nearest C symbols ci.

The optimal value of C can be chosen by computer simulations. The cost per code symbol per
iteration is in fact CT = M , being M the number of evaluations of the nonlinear function in (9)
to compute a single α

(n)
i .

The derived algorithm is based on the approximation (38). Better approximations are not
further pursuit here since the case of a constant phase may be seen as a particular case of the
model considered for the derivation of the following second and third algorithms.
Remark. Instead of (35), we may approximate the pdf representing the generic message at the
output of variable node θ as δ(θ − θ̂

(n)
k ) where6

θ̂
(n)
k = argmax

θ

{
exp

{
1

σ2

∑

i6=k

[
Re
(
r∗i α

(n)
i ejθ

)
− β

(n)
i

2

]}}
= arg{

∑

i6=k

riα
(n)∗
i } . (41)

Moreover, if we approximate all values θ̂
(n)
k with a value θ̂(n) = arg{

∑
i riα

(n)∗
i } independent

of k, that is not only the extrinsic information is employed but the overall APP, we obtain the
non-Bayesian approach described in [5,6] which can be shown to be equivalent to the application
of the EM algorithm [7,8].7 When the channel is time-varying, the only possibility is to compute
a different phase estimate for each symbol taking into account the quantities α

(n)
i corresponding

to the nearest C symbols ci. The optimal value of C can be chosen by computer simulations. In
the following, this algorithm will be referred to as windowed Luise algorithm (see more details
in Section 9). �

Second algorithm. For a time-varying channel phase, it is also possible to adopt a more refined
channel model. We assume that the observation rk is described by (4). A realistic model of phase
noise is based on a discrete-time Wiener process θk = θk−1+∆k, characterized by i.i.d. Gaussian
increments ∆k with zero mean and standard deviation σ∆, descriptive of the phase noise intensity.

6δ(x) is the Dirac delta function.
7An approach similar to that in [5, 6] but involving different approximations is described in [9].
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Hence8

p(θk|θk−1, θk−2, . . . , θ0) = p(θk|θk−1) = p∆(θk − θk−1)

=
1√

2πσ2
∆

exp

{
−(θk − θk−1)

2

2σ2
∆

}
, k = 1, . . . , K − 1 (42)

p(θ0) =
1

2π
, θ0 ∈ [0, 2π) . (43)

In this case, we have

P (c|θ, r)p(θ|r) .
= p(r|c, θ)χ(c)p(θ) = χ(c)p(θ0)

K−1∏

k=0

p(rk|ck, θk)
K−1∏

k=1

p(θk|θk−1)

= χ(c)h0(θ0)

K−1∏

k=0

fk(ck, θk)

K−1∏

k=1

hk−1,k(θk, θk−1) (44)

having defined

fk(ck, θk) = p(rk|ck, θk)
.
= exp

{
− 1

2σ2
|rk − cke

jθk|2
}

.
= exp

{
1

σ2
Re[rkc

∗
ke

−jθk ] − |ck|2
2σ2

}

hk−1,k(θk, θk−1) = p(θk|θk−1)

h0(θ0) = p(θ0) . (45)

The corresponding factor graph is shown in Fig. 6.
Omitting the explicit reference to the current iteration and assuming that the SP algorithm

works in the natural domain, as in the previous case let us denote by Pd(ck) the message from
variable node ck to factor node fk, and by Pu(ck) the message in the opposite direction (see Fig.
7). The message pd(θk) from factor node fk to variable node θk can be expressed as

pd(θk) =
∑

ck

Pd(ck)fk(ck, θk) . (46)

We also assume that in the lower part of the factor graph, describing the noncoherent channel, a
forward-backward schedule is adopted. Hence, messages pf (θk) from factor node hk−1,k(θk−1, θk)
to variable node θk, and pb(θk) from factor node hk,k+1(θk, θk+1) to variable node θk, may be re-

8Note that, since the channel phase is defined modulus 2π, the pdf p∆(∆k) can be approximated as Gaussian
only if σ∆ � 2π.
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Figure 6: Factor graph corresponding to eqn. (44).

cursively computed as follows:

pf(θk) =

∫ 2π

0

pd(θk−1)pf(θk−1)hk−1,k(θk−1, θk) dθk−1 (47)

pb(θk) =

∫ 2π

0

pd(θk+1)pb(θk+1)hk,k+1(θk, θk+1) dθk+1 (48)

with the following starting conditions:

pf(θ0) = h0(θ0) (49)

pb(θK−1) =
1

2π
, θK−1 ∈ [0, 2π) . (50)

The probability Pu(ck) can be finally computed as

Pu(ck) =

∫ 2π

0

pf(θk)pb(θk)fk(ck, θk) dθk . (51)

We now show a method for the computation of the probability Pu(ck) in the form of a series
expansion. Note that, differently to [4], we do not approximate the involved pdfs of variables θk,
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ck−1 ck

fk fk+1
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hk−2,k−1 hk−1,k hk,k+1

Pd(ck)

pd(θk)

pb(θk)

Pu(ck)

pb(θk+1)

pf(θk−1) pf(θk)

Figure 7: Part of the factor graph in Fig. 6 with explicit reference to the messages sent on the
edges.

but exactly compute their expression.
The function fk(ck, θk) is periodic in θk. Hence, it can be expanded in Fourier series. We use

the following known result [32, eqn. (9.6.34)]:

ex cos θ = I0(x) + 2

∞∑

`=1

I`(x) cos(`θ) (52)

where I`(x) is the modified Bessel function of the first kind of order ` defined as [32, eqn.
(9.6.19)]

I`(x) =
1

π

∫ π

0

ex cos θ cos(`θ) dθ . (53)

These functions may be recursively computed by observing that I−`(x) = I`(x) and that

I`+1(x) = −2`

x
I`(x) + I`−1(x) . (54)

Defining, for a complex number z, φ(z) = arg(z), after some straightforward manipulations we
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obtain

fk(ck, θk) = e−
|ck|2

2σ2

∞∑

`=−∞
I`

( |rk||ck|
σ2

)
e−j`φ(rkc∗k)ej`θk . (55)

Substituting (55) into eqn. (46), we may express

pd(θk) =

∞∑

`=−∞
A

(`)
k ej`θk (56)

having defined

A
(`)
k =

∑

ck

Pd(ck)e
− |ck|2

2σ2 I`

( |rk||ck|
σ2

)
e−j`φ(rkc∗k)

= −j`φ(rk)
∑

ck

Pd(ck)e
− |ck|2

2σ2 I`

( |rk||ck|
σ2

)
ej`φ(ck)

= e−j`φ(rk)
∑

ck

Pd(ck)e
− |ck|2

2σ2 I`

( |rk||ck|
σ2

)
c`
k

|ck|`
. (57)

Note that for M -PSK signals, the expression of coefficients A
(`)
k , neglecting irrelevant terms,

simplifies to

A
(`)
k = e−j`φ(rk)I`

( |rk|
σ2

)∑

ck

Pd(ck)c
`
k . (58)

In this case, at the first iteration, when the probabilities of symbols P (ck) are all equal to 1/M
(excepting for pilot symbols), these coefficients are zero for ` 6= 0,±M,±2M,±3M, . . . . In
general, a reduced number N of coefficients must be taken into account due to the fact that, for
a given x, functions I`(x) are monotonically decreasing for increasing values of ` as shown in
Fig. 8. When this truncation is performed, it is suitable to apply a window to the truncated coef-
ficients. By means of computer simulations, we found that the Kaiser window with an optimized
parameter β [33] assures the best performance.

Pdfs pf(θk) and pb(θk) will be of the same form, i.e., they will be periodic and can be ex-
panded in Fourier series:

pf (θk) =
∞∑

`=−∞
B

(`)
f,ke

j`θk (59)

pb(θk) =

∞∑

`=−∞
B

(`)
b,ke

j`θk . (60)
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Figure 8: Modified Bessel functions of the first kind.

Substituting (56) and (59) into eqn. (47), we obtain

∞∑

`=−∞
B

(`)
f,ke

j`θk =
∞∑

m=−∞

∞∑

n=−∞
A

(m)
k−1B

(n)
f,k−1

∫ 2π

0

ej(m+n)θk−1p(θk|θk−1) dθk−1

=

∞∑

`=−∞

∞∑

m=−∞
A

(m)
k−1B

(`−m)
f,k−1

∫ 2π

0

ej`θk−1p(θk|θk−1) dθk−1 . (61)

For practical values of σ∆, the pdf p(θk|θk−1) given by (42) is strictly limited to an interval of
duration less than 2π. Hence we may write

∫ 2π

0

ej`θk−1p(θk|θk−1) dθk−1 ' 1√
2πσ2

∆

∫ ∞

−∞
ej`θk−1e

− (θk−θk−1)2

2σ2
∆ dθk−1

= ej`θk
1√

2πσ2
∆

∫ ∞

−∞
ej`xe−x2/2σ2

∆ dx

= D`(σ∆)ej`θk (62)

where we defined

D`(σ∆) =
1√

2πσ2
∆

∫ ∞

−∞
ej`xe−x2/2σ2

∆ dx = e−
σ2
∆`2

2 (63)
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and, for the last equality, a result in [34, p. 1185] has been used. Hence

∞∑

`=−∞
B

(`)
f,ke

j`θk =
∞∑

`=−∞

[
e−

σ2
∆`2

2

∞∑

m=−∞
A

(m)
k−1B

(`−m)
f,k−1

]
ej`θk (64)

obtaining a recursive equation for the computation of the coefficients B
(`)
f,k:

B
(`)
f,k = e−

σ2
∆`2

2

∞∑

m=−∞
A

(m)
k−1B

(`−m)
f,k−1 = e−

σ2
∆`2

2 [A
(`)
k−1 ⊗ B

(`)
f,k−1] (65)

where ⊗ denotes convolution between sequences. From condition (49), we derive the following
starting condition:

B
(`)
f,0 = δ(`) (66)

where δ(`) denotes the Kronecker delta. Similarly, to compute coefficients {B (`)
b,k}, we have the

following backward recursion:

B
(`)
b,k = e−

σ2
∆`2

2 [A
(`)
k+1 ⊗ B

(`)
b,k+1] (67)

with starting condition
B

(`)
b,K−1 = δ(`) . (68)

Note that the computation of these coefficients can be simplified taking into account that A
(−`)
k =

A
(`)∗
k , B

(−`)
f,k = B

(`)∗
f,k , and B

(−`)
b,k = B

(`)∗
b,k . Finally, substituting (55), (59), and (60) into eqn. (51)

and defining

E
(`)
k = e−

|ck|2

2σ2

{
B

(`)
f,k ⊗ B

(`)
b,k ⊗

[
I`

( |rk||ck|
σ2

)
e−j`φ(rkc∗k)

]}
(69)

we have

Pu(ck) =

∞∑

`=−∞
E

(`)
k

∫ 2π

0

ej`θk dθk = E
(0)
k

= e−
|ck|2

2σ2

{ ∞∑

m=−∞
B

(m)
f,k

∞∑

n=−∞
B

(n−m)
b,k In

( |rk||ck|
σ2

)
ejnφ(rkc∗k)

}
. (70)

We now restate the described algorithm in the logarithmic domain. Defining for a complex
number z

z = ln z = ln |z| + jφ(z) (71)

from the knowledge of ln Pd(ck), we first compute

A
(`)

k = −j`φ(rk) + ln

[
∑

ck

exp

(
ln Pd(ck) −

|ck|2
2σ2

+ ln I`

( |rk||ck|
σ2

)
+ j`φ(ck)

)]
. (72)
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In this case the extension of the Jacobian logarithm to complex numbers is necessary: if z1 =
x1 + jy1 and z2 = x2 + jy2 are complex numbers with x1 > x2

ln(ez1 + ez2) = z1 + ln[1 + e−|x2−x1|ej(y2−y1)] (73)

The forward and backward recursions (65) and (67), in the logarithmic domain become

B
(`)

f,k = −σ2
∆`2

2
+ ln

[ ∞∑

m=−∞
exp{A(m)

k−1 + B
(`−m)

f,k−1 }
]

(74)

B
(`)

b,k = −σ2
∆`2

2
+ ln

[ ∞∑

m=−∞
exp{A(m)

k+1 + B
(`−m)

b,k+1 }
]

(75)

and finally, from (70)

ln Pu(ck) = −|ck|2
2σ2

+ln

{ ∞∑

m=−∞

∞∑

n=−∞
exp

[
B

(m)

f,k + B
(n−m)

b,k + ln In

( |rk||ck|
σ2

)
+ jnφ(rkc

∗
k)

]}
.

(76)
Note that we supposed to employ the serial schedule. However, if a parallel implementation

is required, the flooding schedule can be adopted. The extension of the proposed algorithm is
straightforward. In fact, in the forward and backward recursions (65) and (67), the previous
coefficients will be now related to the previous iteration.

As already mentioned, it is sufficient to consider a reduced number N (supposed odd) of
coefficients of the Fourier series. In this case the cost per code symbol per iteration is CT =
M(N + 1)/2 + 3N(N + 1)/2 + MN . In fact, exploiting the Hermitian symmetry of the Fourier
coefficients, for a given k, M(N + 1)/2 is the cost necessary for the computation of coefficients
A

(`)
k for different values of ` , N(N + 1)/2 is the cost for the computation of coefficients B

(`)
f,k

(B(`)
b,k), N(N + 1)/2 the cost for the computation of B

(`)
f,k ⊗ B

(`)
b,k, N the cost associated to the

computation of Pu(ck) = E
(0)
k , and finally M the number of values assumed by each message

computed for each code symbol. In the following, this algorithm will be referred to as Fourier
algorithm.
Remark. Note that, excepting for the truncation of the Fourier coefficients, the algorithm de-
scribed in this Section, whose complexity is linear in the number of transmitted symbols, is
optimal, even for a time-invariant channel phase (that is for σ∆ → 0). This algorithm can be
considered as the Bayesian counterpart of the polynomial complexity algorithm in [10]. In addi-
tion, provided that the channel phase process is Markovian, i.e.,

p(θk|θk−1, θk−2, . . . , θ0) = p(θk|θk−1)

irrespective of the distribution of p(θk|θk−1), the structure of the algorithm described in this
Section does not change—the only modification is the expression of coefficients D` in (63). �
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Third algorithm. Let us consider eqn. (46). If the messages Pd(ck) were the exact a posteriori
probabilities of the code symbols, it would be

pd(θk) =
∑

ck

Pd(ck)fk(ck, θk) = p(rk|ck) . (77)

The pdf p(rk|θk), which is the linear combination of Gaussian functions, can be approximated as
Gaussian with the same mean and variance (first and second moment matching). Being

E{rk|ck, θk} = cke
jθk (78)

E{|rk|2|ck, θk} = 2σ2 + |ck|2 (79)

from direct calculation we have

E{rk|θk} =
∑

ck

E{rk|ck, θk}Pd(ck) = ejθk

∑

ck

ckPd(ck) = αke
jθk (80)

E{|rk|2|θk} =
∑

ck

E{|rk||ck, θk}Pd(ck) = 2σ2 +
∑

ck

|ck|2Pd(ck) = 2σ2 + βk (81)

where αk and βk are given in (36) and (37), respectively. Hence

var{rk|θk} = E{|rk|2|θk} − |E{rk|θk}|2 = 2σ2 + βk − |αk|2 (82)

and

pd(θk) = p(rk|θk) ' exp

{
− |rk − αke

jθk |2
2σ2 + βk − |αk|2

}
.
= exp

{
2

Re[rkα
∗
ke

−jθk ]

2σ2 + βk − |αk|2
}

. (83)

having discarded a multiplicative factor independent of θk. Substituting (83) in the recursive
integral equation (47), we obtain

pf(θk) '
∫ 2π

0

exp

{
2

Re[rk−1α
∗
k−1e

−jθk−1]

2σ2 + βk−1 − |αk−1|2
}

pf (θk−1)hk−1,k(θk−1, θk) dθk−1 . (84)

When the channel phase is slowly-varying, i.e., for σ∆ → 0, we have hk−1,k(θk−1, θk) =
p(θk|θk−1) ' δ(θk − θk−1). In this case, the solution of the integral eqn. (84) is a pf(θk)
with Tikhonov distribution, i.e., of the form

pf(θk) = exp
{
Re[af,ke

−jθk ]
}

(85)

and af,k can be recursively computed as

af,k = af,k−1 + 2
rk−1α

∗
k−1

2σ2 + βk−1 − |αk−1|2
(86)
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with the starting condition af,0 = 0. Similarly, the solution for the recursive integral equation
(48) is a pb(θk) of the form

pb(θk) = exp
{
Re[ab,ke

−jθk ]
}

(87)

and ab,k can be recursively computed as

ab,k = ab,k+1 + 2
rk+1α

∗
k+1

2σ2 + βk+1 − |αk+1|2
(88)

with the starting condition ab,K−1 = 0. Hence,

Pu(ck) ∼ exp

{
−|ck|2

2σ2

}
I0

(∣∣∣∣af,k + ab,k +
rkc

∗
k

σ2

∣∣∣∣
)

. (89)

When the phase is rapidly-varying, the approximation hk−1,k(θk−1, θk) ' δ(θk − θk−1) does
not hold. However, we found that good approximations of functions pf(θk) and pb(θk) are still
of the form (85) and (87) but coefficients af,k and ab,k must be updated as

af,k =

[
af,k−1 + 2

rk−1α
∗
k−1

2σ2 + βk−1 − |αk−1|2
]
· γ
(

σ2
∆,

∣∣∣∣af,k−1 + 2
rk−1α

∗
k−1

2σ2 + βk−1 − |αk−1|2
∣∣∣∣
)

(90)

ab,k =

[
ab,k+1 + 2

rk+1α
∗
k+1

2σ2 + βk+1 − |αk+1|2
]
· γ
(

σ2
∆,

∣∣∣∣af,k+1 + 2
rk+1α

∗
k+1

2σ2 + βk+1 − |αk+1|2
∣∣∣∣
)

(91)

where the real function γ(x1, x2), of real arguments x1 and x2 can be numerically computed and
stored in advance. This choice derives from the observation that the result of the integral

1√
2πσ2

∆

∫ 2π

0

eRe[ze−jx]e
− (x−y)2

2σ2
∆ dx

where z is a complex number and x and y are real numbers, excepting for an irrelevant ampli-
tude factor, looks like the function eγRe[ze−jy], where γ is a real number which depends on |z| and
σ2

∆, since the integral does not change the position of the maxima and minima of the function
eRe[ze−jy]. For some values of σ2

∆, a plot of γ(σ2
∆, |z|) versus |z| is shown in Fig. 9. The details

on the computation of γ(σ2
∆, |z|), along with its heuristic closed-form expression, are given in

the Appendix A. For this algorithm, that in the following will be referred to as recursive algo-
rithm, the cost per code symbol per iteration is CT = 2M , being 2M the cost associated to the
computation of a single couple (αk, βk).
Modification in the case of long pilot fields. When the pilot symbols are arranged in long fields
separated by long blocks of code symbols, as in the case of the DVB-S2 system, it is necessary to
slightly modify the algorithm in order to speed-up the convergence process and to avoid the risk
of a phase ambiguity. In fact, after the first iteration, in the recursive integral equations (47) and
(48), if the product pd(θk)pf(θk) (considering the exact expression of pd(θk)) is characterized by
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Figure 9: Coefficient γ(σ, |z|).

a dominant exponential term, i.e., if there exists a value ck such that

ln Pd(ck) +

∣∣∣∣af,k +
rkc

∗
k

σ2

∣∣∣∣ > δ + ln Pd(ck) +

∣∣∣∣af,k +
rkc

∗
k

σ2

∣∣∣∣ , ∀ck 6= ck (92)

where δ is a real parameter to be optimized by computer simulation for the particular pilot sym-
bol distribution and phase noise intensity, it is preferable to choose αk = ck and βk = |ck|2.
Otherwise, we choose αk and βk as in (36) and (37), i.e., αk =

∑
ck

Pd(ck)ck and βk =∑
ck

Pd(ck)|ck|2. In the numerical results related to the DVB-S2 system settings, parameter δ
has been chosen equal to 1.5.
Summary of the algorithm. As shown in the numerical results (see Section 8), the recursive
algorithm represents the best solution from both the complexity and performance point of view.
For this reason, we now summarize this algorithm.

1. Given the messages Pd(ck), k = 0, 1, . . . , K−1, ck ∈ X, sent by the decoder to the detector
at the n-th iteration, for k = 0, 1, . . . , K − 1 compute

αk =

{
ck from the 2nd iteration on, if there exists a value ck such that (92) holds∑

ck
Pd(ck)ck otherwise

and

βk =

{
|ck|2 from the 2nd iteration on, if there exists a value ck such that (92) holds∑

ck
Pd(ck)|ck|2 otherwise.
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2. Forward recursion. Let af,0 = 0. For all k = 1, 2, . . . , K − 1 compute

af,k =

[
af,k−1 + 2

rk−1α
∗
k−1

2σ2 + βk−1 − |αk−1|2
]
· γ
(

σ2
∆,

∣∣∣∣af,k−1 + 2
rk−1α

∗
k−1

2σ2 + βk−1 − |αk−1|2
∣∣∣∣
)

where the function γ is defined in the appendix.

3. Backward recursion. Let ab,K−1 = 0. For all k = K − 2, . . . , 1, 0 compute

ab,k =

[
ab,k+1 + 2

rk+1α
∗
k+1

2σ2 + βk+1 − |αk+1|2
]
· γ
(

σ2
∆,

∣∣∣∣af,k+1 + 2
rk+1α

∗
k+1

2σ2 + βk+1 − |αk+1|2
∣∣∣∣
)

.

4. The messages to be sent from detector to the decoder for a new decoder iteration will be,
for all k = 0, 1, . . . , K − 1, ck ∈ X

Pu(ck) ∼ exp

{
−|ck|2

2σ2

}
I0

(∣∣∣∣af,k + ab,k +
rkc

∗
k

σ2

∣∣∣∣
)

.

6.2 Noncoherent channel: quantization of channel parameters
First algorithm. Considering a time-invariant noncoherent channel, we assume, as in [35], that
the channel phase θ may take on the following L values: Θ = {0, 2π/L, . . . , 2π(L − 1)/L}.9

In this case, a factorization as in (30) still holds, the only difference is that pdfs p(θ|r) and p(θ)
are now pmfs. As a consequence, omitting the explicit dependence on the current iteration and
defining

ηk(`) =
∑

ck

fk(ck, 2π`/L)Pd(ck) (93)

the integral which appears in (32) becomes

Pu(ck) '
L−1∑

`=0

fk(ck, 2π`/L)
∏

i6=k

ηi(`) (94)

that can be easily numerically computed. As already mentioned, when the channel phase is
time-varying, it is more convenient to compute the probabilities Pu(ck) by taking into account
the contribution of the nearest C symbols ci only. In this case, expressing (93) and (94) in the

9In [35], the authors state that for M -PSK signals, L = 8M values are sufficient to have no performance loss.
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logarithmic domain, we have (assuming C even)

ηk(`) = ln ηk(`) = ln
∑

ck

exp{ln fk(ck, 2π`/L) + ln Pd(ck)} (95)

ln Pu(ck) ' ln
L−1∑

`=0

exp





fk(ck, 2π`/L) +

k+C/2∑

i=k−C/2

i6=k

ηi(`)





. (96)

The cost per code symbol per iteration is CT = 2LM , being, for a given k, LM the cost associ-
ated to the computation of ηk(`) for all values of `, L the cost associated to the computation of
each value of ln Pu(ck), and finally M the number of values assumed by each message computed
for each code symbol.

Second algorithm. We now apply the quantization approach to a more refined time-varying
noncoherent channel model (channel model given by eqn. (4)). Even in this case, we assume
that the channel phase θk may take on the following L values: {0, 2π/L, . . . , 2π(L − 1)/L}. As
already mentioned, a realistic model of phase noise is based on a discrete-time Wiener process.
As a consequence, we may compute the recursive equations (47) and (48) by approximating the
integrals with a sum on the considered L values. However, we adopt another approach. Since we
need a quantized phase model, we approximate the real continuous distribution with a discrete
random walk with phase differences of ±2π/L occurring with probability P∆.10 Hence, the pmf
of the random variable ∆k is

P∆(∆k) =

{
1 − P∆ for ∆k = 0
P∆/2 for ∆k = ±2π

L

(97)

and it is also
P (θk|θk−1, θk−2, . . . , θ0) = P (θk|θk−1) = P∆(θk − θk−1) . (98)

The value of P∆ can be chosen in such a way the variance of the discrete random walk increments
equals the variance σ2

∆ of the increments in the Wiener model, i.e.,

P∆ = σ2
∆

(
L

2π

)2

. (99)

With this phase model, the joint APP P (c, θ|r) may be expressed as (assuming that the

10This model is sufficient in most cases. Otherwise, a more refined model can be adopted if large values of L are
necessary, due to the use of a dense constellation, or large values of σ∆ occur.
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Figure 10: Factor graph corresponding to eqn. (100).

transmitted symbols and the channel parameters are independent)

P (c, θ|r) .
= χ(c)P (θ)p(r|c, θ)

.
= χ(c)P (θ0)

K−1∏

k=1

P (θk|θk−1)

K−1∏

k=0

fk(ck, θk) (100)

where fk(ck, θk) is defined as in (45). The random variable θ0 can be assumed to take on all dis-
crete values with the same probability. Hence, its pmf is P (θ0) = 1/L, θ0 = 0, 2π/L, . . . , 2π(L−
1)/L. The factor graph corresponding to eqn. (100) is shown in Fig. 10. The complexity of the
SP algorithm applied to this factor graph depends exclusively on the number of phase quantiza-
tion levels L.

Omitting the explicit reference to the current iteration and assuming that the SP algorithm
works in the natural domain, as in the previous case let us denote by Pd(ck) the message from
variable node ck to factor node fk, and by Pu(ck) the message in the opposite direction (see Fig.
11). The message ηk(`) from factor node fk to variable node θk can be expressed as in (93).
Messages Pf,k(`) from factor node P (θk|θk−1) to variable node θk, and Pb,k(`) from factor node
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ηk(`)

Figure 11: Part of the factor graph in Fig. 10 with explicit reference to the messages sent on the
edges.

P (θk+1|θk) to variable node θk, may be recursively computed as follows:

Pf,k(`) = (1 − P∆)Pf,k−1(`)ηk−1(`)

+
P∆

2
Pf,k−1(` − 1)ηk−1(` − 1)

+
P∆

2
Pf,k−1(` + 1)ηk−1(` + 1) (101)

Pb,k(`) = (1 − P∆)Pb,k+1(`)ηk+1(`)

+
P∆

2
Pb,k+1(` − 1)ηk+1(` − 1)

+
P∆

2
Pb,k+1(` + 1)ηk+1(` + 1) . (102)

Finally

Pu(ck) =
L−1∑

`=0

Pf,k(`)Pb,k(`)fk(ck, 2π`/L) . (103)
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Algorithm CT

Sect. 5.1, 1st (exponential-complexity algorithm) (C + 1)MQ+1

Sect. 5.1, 2nd (linear-complexity algorithm) 2M 2C
Sect. 5.1, 3rd (prediction algorithm) 2M 2C

Sect. 6.1, 1st M
Sect. 6.1, 2nd (Fourier algorithm) M(N + 1)/2 + 3N(N + 1)/2 + MN

Sect. 6.1, 3rd (recursive algorithm) 2M
Sect. 6.2, 1st 2LM

Sect. 6.2, 2nd (quantization-based algorithm) 2LM + 6L

Table 1: Cost per code symbol per iteration for the proposed algorithms.

In the logarithmic domain

ln Pf,k(`) = ln
[
eln(1−P∆)+ln Pf,k−1(`)+ηk−1(`)

+eln(P∆/2)+ln Pf,k−1(`−1)+ηk−1(`−1)

+eln(P∆/2)+ln Pf,k−1(`+1)+ηk−1(`+1)
]

(104)

ln Pb,k(`) = ln
[
eln(1−P∆)+ln Pb,k+1(`)+ηk+1(`)

+eln(P∆/2)+ln Pb,k+1(`−1)+ηk+1(`−1)

+eln(P∆/2)+ln Pb,k+1(`+1)+ηk+1(`+1)
]

(105)

ln Pu(ck) = ln

L−1∑

`=0

elnPf,k(`)+ln Pb,k(`)+ln fk(ck,2π`/L) (106)

where ηk(`) is given by (95). The cost per code symbol per iteration is CT = 2LM + 6L, being,
for a given k, LM the cost associated to the computation of ηk(`) for all values of `, 3L the cost
associated to the computation of Pf,k(`) (Pb,k(`)) for all values of `, and LM the cost associated
to the computation of all values of lnPu(ck). In the following, this algorithm will be referred to
as quantization-based algorithm.

7 Complexity
In Table 1, the cost per code symbol per iteration of the described algorithms is reported. Consid-
ering the numerical results shown in the next Section, the algorithm exhibiting the best trade-off
between complexity and performance is the recursive algorithm.
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Figure 12: Performance of the exponential-complexity algorithm in the case of a noncoherent
time-invariant channel.

8 Numerical Results
In this Section, the performance of the described detection schemes is assessed by computer
simulations in terms of bit error rate (BER) versus Eb/N0, Eb being the received signal energy
per information bit and N0/2 the two-sided noise power spectral density. The considered code
is a (3,6)-regular LDPC code with codewords of length 4000. The BPSK modulation is used
and a maximum of 200 iterations of the SP algorithm on the overall graph is allowed. A pilot
symbol every 19 code bits is added in order to make the iterative decoding algorithms bootstrap.
This corresponds to a decrease in the effective transmission rate, resulting in an increase in the
required signal-to-noise ratio of about 0.223 dB which has been introduced artificially in the
curve labeled “known phase” for the sake of comparison. Hence, the gap between the “known
phase” curve and the others is uniquely due to the need for phase estimation/compensation, and
not to the rate decrease due to pilot symbols insertion.

8.1 A priori average over channel parameters
In Fig. 12 and 13, the performance of the exponential- and linear-complexity algorithms de-
scribed in Section 5.1 is shown for different values of C in the case of a noncoherent time-
invariant channel. In Fig. 12, the exponential-complexity algorithm is considered and compared
with an ideal coherent receiver (curve labeled “known phase”). Complexity reduction is also
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Figure 13: Performance of the linear-complexity algorithm in the case of a noncoherent time-
invariant channel.

considered to increase the phase memory C without an increase in complexity. As intuitively
expected, the performance of the ideal coherent receiver is approached with a very limited com-
plexity. In fact a value of Q = 1 is in practice sufficient to attain the performance of the full-
complexity receiver. For the linear-complexity algorithm similar considerations do not hold. In
fact, it can be observed that larger values of C are required with respect to the exponential-
complexity algorithm to obtain a given performance and, in addition, from Fig. 13 it seems that
this algorithm is not able to reach the optimal “known phase” performance.

We also considered (see Fig. 14) a time-varying noncoherent channel. As already mentioned,
the phase noise is modeled as a discrete-time Wiener process with incremental variance over a
signaling interval equal to σ2

∆. We considered the linear-complexity algorithm with C = 10.
Note that an optimization of the phase memory parameter C was not performed for each con-
sidered channel rate of change—we simply assessed the performance of the linear-complexity
algorithm for different values of σ∆. From Fig. 14 we may observe that a phase noise standard
deviation up to 10 degrees (per signaling interval) does not significantly degrade the receiver per-
formance demonstrating the high robustness of the proposed detection schemes. For high values
of σ∆, a performance improvement may be also obtained by using the prediction algorithm.

For a phase noise standard deviation of 6 degrees we optimized, by means of computer sim-
ulations, the value of C for the exponential- and linear-complexity algorithms. In Fig. 15 we
show the BER versus C of the exponential-complexity algorithm (Q = 1) for Eb/N0 = 2 dB,
and that of the linear-complexity algorithm for Eb/N0 = 2.5 dB. In both cases, we may ob-
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Figure 14: Performance of the linear-complexity and prediction algorithms in the case of a time-
varying channel phase.

serve that for this channel rate of change, the optimal value of C is around C = 20. For this
reason, in Fig. 16 we reported, for σ∆ = 6 degrees, the performance of the algorithms for the
optimized value of C. Despite the fact that, being Q = 1, the complexity is approximately the
same, the exponential-complexity algorithm has a better performance of about 0.2 dB. As al-
ready mentioned, an improved may be obtained by using the prediction-based algorithm. In Fig.
17 we compare the performance of the algorithm with exponential complexity with that of the
prediction-based algorithm. Different values of σ∆ have been considered and the value of C is
optimized in each case by computer simulation.
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Figure 15: Performance of the exponential- and linear-complexity algorithms versus C for σ∆ =
6 degrees and a given value of Eb/N0.
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Figure 16: Performance of the exponential- and linear-complexity algorithms for the optimized
value of C and σ∆ = 6 degrees.
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Figure 17: Performance of the exponential-complexity and prediction-based algorithms for dif-
ferent values of σ∆. The values of C have been optimized by means of computer simulations.
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Figure 18: Performance of the Fourier algorithm for σ∆ = 6 degrees and different values of the
number N of considered Fourier coefficients.

8.2 Canonical distributions
We now consider the algorithms described in Section 6.1.

In Fig. 18, the performance of the Fourier algorithm is shown for σ∆ = 6 degrees and dif-
ferent values of the number N of considered Fourier coefficients. Values of N > 17 are not
considered since they do not produce any performance improvement. Therefore, the value of
N = 17 can be considered as optimal and the relevant performance shown in the figure can be
considered as the optimal performance for σ∆ = 6 degrees. The gap of about 0.2 dB with respect
to the curve labeled “known phase” is only due to the loss in channel capacity for a time-varying
channel phase.

In Fig. 19, the performance of the recursive algorithm is shown for different values of σ∆. As
it can be observed from the figure, despite its very low complexity, this algorithm performs as
well as the ideal “known phase” algorithm when the channel is time invariant. For a time-varying
channel phase with σ∆ = 6 degrees, this algorithm has practically the same performance of the
Fourier algorithm. Hence this algorithm has the best performance-complexity trade-off. It is also
almost insensitive to the distributions of the pilot symbols as can be observed from Fig. 20. In
this figure, in fact, two different pilot symbols distributions have been considered. In the first
one, we have one pilot symbol in each block of 20 consecutive bits. In the second one we have a
block of 20 pilot symbols in each block of 400 consecutive bits (hence the effective transmission
rate is the same). Note that not all the considered algorithms have the same insensitivity to the
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Figure 19: Performance of the recursive algorithm for different values of σ∆.

pilot symbols distribution and in general, the best distribution has to be designed after the choice
of the detection algorithm.

The performance of the recursive algorithm has been also assessed for different phase models.
In fact, in Fig. 21 the DVB-S2 compliant ESA model [36] has been also considered. This model
is not Markovian and therefore the exact FG is not that in Fig. 6. Nevertheless, the recursive
algorithm, which has been designed for the Wiener model, works well. From a practical point
of view, in the case of the ESA model, in the forward and backward computations (90) and (91),
parameter σ∆ has been chosen equal to σ∆ = 0.3 degrees. In other words, the ESA model has
been considered as it were a Wiener phase model with σ∆ = 0.3 degrees.
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Figure 20: Performance of the recursive algorithm for σ∆ = 6 degrees and different distributions
of the pilot symbols.
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Figure 21: Performance of the recursive algorithm for different phase noise models.
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Figure 22: Performance versus L of the quantization-based algorithm for σ∆ = 6 degrees and
Eb/N0 = 2 dB.

8.3 Quantization of the channel parameters
Finally, we consider the performance of the quantization-based algorithm described in Sec-
tion 6.2. In Fig. 22 we show the performance of the algorithm for different values of L, σ∆ = 6
degrees, and Eb/N0 = 2 dB. It can be notice that a number of quantization levels L = 16 is
practically optimal, i.e., no improvement can be observed for increasing values of L. The perfor-
mance versus Eb/N0 of this algorithm that can be regarded as a “practically optimal” benchmark,
is shown in Fig. 23.
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Figure 23: Performance of the quantization-based algorithm for L = 16 and σ∆ = 6 degrees.
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8.4 EXIT Charts
Let the ensemble of LDPC codes be determined by the left and right degree sequences λ(x) =∑

i λix
i−1, ρ(x) =

∑
i ρix

i−1. For later use, we also define the bitnode-wise degree sequence

Λ(x) =
∑

i

Λix
i =

∫ x

0
λ(z)dz

∫ 1

0
λ(z)dz

(107)

such that Λi = λi/i
P

j λj/j
is the fraction of bitnodes of degree i.

Let X, Y be jointly distributed random variables with X ∈ {0, 1}, and let

L = log
P (X = 0|Y )

P (X = 1|Y )
(108)

denote the posterior log-likelihood ratio for estimating X from Y . The mutual information
I(X; L), assuming that L is conditionally distributed as N(µ, 2µ) given X = 0, is given by
the function

J(µ) = 1 − 1√
π

∫ +∞

−∞
e−z2

log2

(
1 + e−2

√
µz−µ

)
dz . (109)

We are interested in approximating the Extrinsic Information Transfer (EXIT) function [37] of
the LDPC decoder. We assume that the input messages (from the channel) are Gaussian log-
likelihood ratios, distributed as N(µ0, 2µ0), where µ0 = J−1(Iin), and Iin is the mutual infor-
mation of the channel (input to the decoder). We let the decoder run for an infinite number of
iterations, until it reaches an equilibrium point. Then, the extrinsic output message for each bitn-
ode of degree i is given by the sum of the i messages it receives from the i adjacent checknodes.

We assume that all messages exchanged over all edges of the graph are Gaussian distributed,
and we denote by IL the mutual information between a leftbound message (from checknode
to bitnode) and the binary symbol associated to the destination bitnode, and by IR the mutual
information between a rightbound message (from bitnode to checknode) and the binary symbol
associated to the departure bitnode.

Since the message output by a bitnode over an edge is the sum of all messages incoming over
the other incident edges, from the Gaussian assumption we obtain

IL =
∑

i

λiJ
(
(i − 1)J−1(IR) + J−1(Iin)

) ∆
= Fλ(IL, Iin) (110)

The input-output relationship of the checknodes is much more complicated. However, it has
been observed that the following approximate duality holds for a great variety of message distri-
butions, including the Gaussian distribution [38]. A checknode with incident mutual information
IR and output mutual information IL can be replaced by a bitnode with incident mutual infor-
mation 1 − IR and output mutual information 1 − IL. Eventually, we obtain the approximate
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checknode transfer as

IL = 1 −
∑

i

ρiJ
(
(i − 1)J−1(1 − IR)

)
= 1 − Fρ(1 − IR, 0) (111)

Putting together (110) and (111), we obtain the fixed-point equation

IR = Fλ(1 − Fρ(1 − IR, 0), Iin) (112)

where IR plays the role of the state of a dynamical system, and Iin is the external excitation.
Let I?

R denote the unique solution of (112) in the interval (0, 1). The output mutual informa-
tion at the equilibrium (fixed-point of the state equation) is given by

Iout =
∑

i

ΛiJ(iJ−1(I?
R)) = FΛ(I?

R, 0) (113)

This is the mutual information between the code symbols and their extrinsic messages after
an infinite number of iterations. The LDPC decoder EXIT function is given implicitly by the
fixed-point state equation (112) and by the output equation (113) and expresses the relationship
between Iin and Iout.

When the LDPC decoder work jointly with a channel parameter estimator, we can obtain the
EXIT function of the channel estimator by Monte Carlo simulation and study the fixed points
of the iterative joint decoding and channel estimation algorithm. For the channel parameter esti-
mator, we model the distribution of the messages that the LDPC decoder sends to the parameter
estimator about the code symbols (in both the FG-based Bayesian and the EM non-Bayesian ap-
proaches given above) as conditionally Gaussian distributed as N(µ, 2µ), where µ = J−1(Iout).
By letting Iout varying in [0, 1], we can measure by Monte Carlo simulation the mutual infor-
mation between the code symbols and the output of the virtual channel induced by a specific
channel parameter estimator algorithm. This mutual information yields Iin at the LDPC decoder
input.

By studing the intersections of the LDPC and the channel estimator EXIT functions, we ob-
tain some (approximated) information about the SNR required by the overall system to converge
to small bit-error probability, in the limit of large block length. We observed that the EXIT func-
tion approximation is able to predict accurately the threshold SNR. A specific example for the
new recursive Bayesian algorithm is given in the following.

Fig. 24 shows the EXIT functions for the recursive algorithm and the (3, 6) LDPC ensemble
(the inverse EXIT function of the LDPC ensemble is shown, plotting Iin as function of Iout) in the
absence of pilot symbols. The phase noise has σ∆ = 6 degrees. We notice that in the absence of
pilot symbols the algorithm cannot bootstrap, since all curves intersect at Iout = 0. This clearly
identifies the role of pilot symbols in iterative joint decoding and phase estimation: they serve
as “doping” symbols in order to remove the zero fixed point. In principle, a very small number
of pilot symbols is sufficient in order to make the algorithm start (see Fig. 25 which shows the
case of 1 pilot every 100 bits). The EXIT curves of the recursive algorithm are shown for Eb/N0

ranging from 1.0 dB to 2.4 dB. We observe that for Eb/N0 roughly above 1.5 dB, the curves

REPRODUCTION FORBIDDEN WITHOUT ESA AUTHORIZATION



G. Colavolpe and G. Caire: Iterative joint detection and decoding ... 49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1

I o
ut

 d
et

ec
to

r, 
I in

 d
ec

od
er

Iin

Recursive algorithm
@ E

b
/N

0
=1.5 dB

 detector, 

LDPC (3,6)

Iout decoder

Figure 24: Exit chart for the recursive algorithm considering the (3, 6) LDPC ensemble and
σ∆ = 6 degrees. No pilot symbols.

do not intersect the LDPC curve any longer. Hence, the iterative decoding threshold for this
noncoherent detector/decoder is around 1.5 dB. We notice that the iterative decoding threshold
of the (3, 6) ensemble over the coherent binary-input AWGN channel is ≈ 1.1 dB. This shows
that an inherent degradation of 0.4 dB (plus the degradation due to the insertion of pilot symbols)
is to be expected because of the presence of phase noise. This prediction is in full agreement with
the best simulated performance of the algorithms in Fig. 19. In principle, this degradation could
be lower if the LDPC code is designed jointly with the used detection algorithm.

9 Non-Bayesian algorithms: preview
In the non-Bayesian framework, we treat the channel parameters as deterministically unknown,
i.e., no a priori probability distribution is assumed on the parameters. Generally speaking, de-
coding in the presence of unknown channel parameters falls in the class of composite Hypothesis
testing problems [39]. A popular heuristics consists of the so-called Generalized Likelihood Ra-
tio Test (GLRT) [39]. For each codeword c ∈ C we compute the Maximum-Likelihood (ML)
parameter estimate

θ̂(c, r) = arg max
θ

P (c)p(r|c, θ) (114)
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Figure 25: Exit chart for the recursive algorithm considering the (3, 6) LDPC ensemble and
σ∆ = 6 degrees. 1 pilot every 100 bits.

Then, we find the MAP codeword as

ĉ = arg max
c∈C

P (c)p(r|c, θ̂(c, r)) . (115)

The GLRT has not a general theoretical explanation, beyond the fact that it works well in many
situations and that its asymptotics can be analyzed in some cases).

The GLRT can be seen as the solution of the augmented ML/MAP detection problem

(ĉ, θ̂) = arg max
c∈C,θ

{P (c)p(r|c, θ)} (116)

where the parameter and the codeword are estimated/detected jointly, according to the ML prin-
ciple. Notice that the explicit estimate of θ is a by-product of the approach, not an ultimate
goal.

A low-complexity approach to approximate the GLRT consists of replacing (114) by the
simpler ML estimation

θ̂(r) = arg max
θ

p(r|θ) (117)
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obtained by averaging out the code data, i.e., by letting

p(r|θ) =
∑

c∈C

P (c)p(r|c, θ)

and then let
ĉ = arg max

c∈C

P (c)p(r|c, θ̂(r)) . (118)

Let us focus on the ML estimation problem (117). The likelihood equation for θ is given by

∂

∂θ
log p(r|θ) = 0 . (119)

We have

∂

∂θ
log p(r|θ) =

1

p(r|θ)

∑

c∈C

P (c)
∂

∂θ
p(r|c, θ)

=
1

p(r|θ)

∑

c∈C

P (c)p(r|c, θ)
∂

∂θ
log p(r|c, θ)

=
∑

c∈C

P (c|r, θ)
∂

∂θ
log p(r|c, θ) (120)

where we have defined the codeword a posteriori probability (APP)

P (c|r, θ) =
P (c)p(r|c, θ)

p(r|θ)
. (121)

The difficulty of solving (119) consists of the fact that in the last line of (120) the argument θ

appears in both the APP P (c|r, θ) and in the conditional log-likelihood function log p(r|c, θ).
Instead of solving (117) directly, we can approximate the solution iteratively following the

Expectation-Maximization (EM) approach [40]. For some initial value θ(0), for ` = 0, 1, 2, . . .
we define the E-step:

Q
(
θ, θ(`)

)
=
∑

c∈C

P
(
c|r, θ(`)

)
log p(r|c, θ) (122)

and the M-step
θ(`+1) = arg max

θ
Q
(
θ, θ(`)

)
. (123)

General results (see [40] and references therein) state that if the EM recursion converges to a
finite value, this is the ML solution of (117). In order to compute Q

(
θ, θ(`)

)
in (122), we need

the posterior probability distribution (121) for θ = θ(`). This can be provided by a MAP decoder
for the code C with observation r and assuming the parameter value θ(`).

The above EM approach is particularly suited when it is possible to implement easily a
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symbol-by-symbol MAP decoder for the code C. In this case, the joint APP P (c|r, θ(`)) needed
in the E-step can be approximated as the product of the symbol-by-symbol (marginal) APPs
P (ck|r, θ(`)). Moreover, in several cases of interest the log-likelihood function log p(r|c, θ) is a
quadratic form in c. Hence, only the first and second moments of the posterior distribution are
needed at each step. If the quadratic form does not contain cross-terms (i.e., products ckc

∗
j for

k 6= j), then the a posteriori marginals are sufficient to evaluate exactly Q
(
θ, θ(`)

)
exactly, via

the a posteriori mean and the a posteriori second moment of the code symbols, defined as

α
(`)
k = E[ck|r, θ(`)]

β
(`)
k = E[|ck|2|r, θ(`)] (124)

Another important remark is the following: the iterative EM algorithm given by (122) and (123)
requires the re-evaluation of the joint APP P (c|r, θ(`)) (or of its marginals P (ck|r, θ(`))) at each
iteration `. Since P (c|r, θ)

.
= P (c)p(r|c, θ), the MAP decision (118) is then given by

ĉ = argmax
c∈C

P
(
c|r, θ̂(r)

)
. (125)

Alternatively, if the decoder is symbol-by-symbol MAP, this can be replaced by the symbol-by-
symbol decision

ĉk = arg max
ck∈X

P
(
ck|r, θ̂(r)

)
(126)

where in both cases θ̂(r) is the parameter estimate after a suitable number of EM iterations. This
makes the EM approach particularly suited to the case where C is a Turbo or an LDPC code,
since for this class of codes the symbol-by-symbol APPs necessary to the EM recursion and for
the final MAP decision are computed easily, along the iterations of the EM detector.

10 Noncoherent channel: the standard EM algorithm
The iterative EM approach has been used in [41] in the context of phase estimation in multiuser
CDMA and in [5] for phase estimation in turbo-coded transmission, and it is illustrated in general
in the tutorial work [7] (see also the references in [7, 41]).

For the case of unknown time-invariant phase (θk = θ), the EM approach has proved to
provide excellent performance with LDPC and turbo codes [5]. In brief, we have,

log p(r|c, θ) .
= 2Re

{
e−jθcHr

}
− |c|2 . (127)

By taking the conditional expectation of the above log-likelihood function with respect to c,
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given r and θ = θ(`), we obtain

Q
(
θ, θ(`)

) .
= 2Re

{
e−jθ

∑

k

(α
(`)
k )∗rk

}
−

K−1∑

k=0

β
(`)
k

= 2 cos

(
arg

{
∑

k

(α
(`)
k )∗rk

}
− θ

) ∣∣∣∣∣
∑

k

(α
(`)
k )∗rk

∣∣∣∣∣−
K−1∑

k=0

β
(`)
k (128)

where we have defined the conditional mean and second moments of the data symbols in (124)
explicitly by

α
`)
k = E[ck|r, θ(`)] =

∑

a∈X

aP (ck = a|r, θ(`)) (129)

and by
β

(`)
k = E[|ck|2|r, θ(`)] =

∑

a∈X

|a|2P (ck = a|r, θ(`)) . (130)

The M-step yields

θ(`+1) = arg

{
∑

k

(α
(`)
k )∗rk

}
. (131)

In order to compute the symbol posterior probabilities P (ck|r, θ(`)) at each iteration, the detector
produces the symbol-by-symbol observables

P (ck|rk, θ
(`))

.
= E

[
p(rk|ck, θ)| θ = θ(`)

]

.
=

∫ π

−π

exp

(
− 1

σ2

∣∣rk − ejθck

∣∣2
)

p(θ|θ`))dθ (132)

The problem with the above decoding metric is that we have to guess the conditional distribution
of p(θ|θ`)). The EM approach [5] assumes p(θ|θ`)) = δ(θ − θ(`)), i.e.,

P (ck|rk, θ
(`))

.
= exp

(
− 1

σ2

∣∣∣rk − ejθ(`)

ck

∣∣∣
2
)

.
= exp

(
1

σ2

(
2Re

{
rke

−jθ(`)

c∗k

}
− |ck|2

))
(133)

11 Extensions to time-varying phase
Generally speaking, non-Bayesian estimation methods are suited to parameter estimation, but
not to random signal estimation. Unfortunately, the case of a random time-varying phase (phase-
noise) falls into the class of signal estimation. Hence, we have to find an efficient parameter-
ization of the phase noise process such that an arbitrary realization of the phase {θk} can be
expressed through a small number of deterministically unknown variables (parameters). This
parameterization must be driven by some a priori knowledge on the “typical behavior” of the
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process we want to estimate.
The already introduced windowed Luise algorithm (denoted here as Sliding-Window EM

(SW-EM)) is based on the a priori knowledge that the phase noise process is lowpass, i.e., phase
variations are slow in comparison to the symbol rate. Hence, it assumes that the phase is constant
over a window of C symbols, and estimates the phase at time k by applying (128) and (131) over
a window of size C centered around time k.

In the reminder of this section we outline a new non-Bayesian EM-based algorithm that
takes into account some more accurate a priori knowledge of the phase time variations. We seek
a useful parameterization of the phase noise signal θ = (θ0, . . . , θK−1)

T . To this purpose, we
define the complex phasor process hk = ejθk . Assuming the discrete-time Wiener process model
introduced before, the autocorrelation function of hk is given by

Rh(k) = E[hi+kh
∗
i ] = exp(−|k|σ2

∆/2) . (134)

This yields an exponentially correlated (non-Gaussian) process with parameter ρ = exp(−σ2
∆/2)

and power spectral density

Sh(f) =
1 − ρ2

1 − 2ρ cos(2πf) + ρ2
.

Knowing the autocorrelation function of {hk}, we can parameterize h
∆
= (h0, . . . , hK−1)

T by
using the Karhunen-Loeve expansion h = UΛ1/2w, where we define the covariance matrix
Rh = E[hhH ] = UΛUH , where U is unitary and Λ is diagonal with non-negative non-
increasing diagonal elements λi.

In the non-Bayesian framework we are not concerned with the probability distribution of w.
On the contrary, we treat w as a deterministically unknown vector of parameters. The advantage
of the K-L parameterization is that if the phase noise rate of variation (roughly speaking, the
bandwidth of the spectrum Sh(f)) is much less than the symbol rate, we can estimate a small
number m � K of parameters w and then use the K-L basis (the columns of U) to interpolate
the time-varying phase.

We define wm as the first (most significant) m K-L coefficients, i.e., we assume the model

h = UmΛ1/2
m wm

where Um is a K × m matrix formed by the first m columns of U and Λm as is the m × m
left-upper submatrix of Λ. With this parameterization, we write the channel model as

r = CUmΛ1/2
m wm + n (135)

where C = diag(c0, . . . , cK−1). The joint log-likelihood function is given by

log p(r|c, θ)
.
= −

∣∣∣r − CUmΛ1/2
m wm

∣∣∣
2

.
= 2Re

{
wH

mΛ1/2
m UH

mCHr
}
− wH

mΛ1/2
m UH

mCHCUmΛ1/2
m wm . (136)
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By taking the conditional expectation of the above log-likelihood function with respect to c,
given r and wm = w

(`)
m , we obtain

Q
(
wm,w(`)

m

) .
= 2Re

{
wH

mΛ1/2
m UH

m(α(`))Hr
}
− wH

mΛ1/2
m UH

mβ(`)UmΛ1/2
m wm (137)

where we have defined α(`) = diag(α
(`)
0 , . . . , α

(`)
K−1) and β(`) = diag(β

(`)
0 , . . . , β

(`)
K−1).

The M-step consists of the maximization of the quadratic form (137) with respect to wm.
The solution is easily obtained as

w(`+1)
m = Λ−1/2

m

[
UH

mβ(`)Um

]−1

UH
m(α(`))Hr . (138)

In the important case of PSK modulation, β(`) = IK and since UH
mUm = Im we obtain directly

the estimate of h at the EM step ` + 1

h(`+1) = UmUH
m(α(`))Hr . (139)

This estimator has the following nice interpretation: first, the effect of the modulation symbols is
removed from the received signal by componentwise premultiplication by α∗

k; then, the resulting
modulation-free signal is orthogonally projected on the space spanned by the phase noise process
via the orthogonal projector of rank m given by UmUH

m.
Remark: choice of the KL model order. In the above estimator we have the degree of freedom
of choosing the order m of the KL model. Assuming that all symbols are perfectly known, i.e.,
α

(`)
k = ck, it is not difficult to show that the overall estimation mean square error of the phasor

process h is given by

MSE = E[|h − ĥ|2] = mσ2 +
K∑

i=m+1

λi (140)

The first term in (140) is due to the noise, and increases linearly with m. The second term in
(140) is due to the truncation, i.e., to the fact that we have used only the first most significant m
KL eigenfunctions to represent the phasor process. The above MSE is minimized by choosing

m = max
{
1 ≤ i ≤ K : λi > σ2

}

In other words, we explicitly estimate only the KL eigenmodes whose energy λi is above the
noise level σ2. This choice, of course, is optimal only if all symbols are perfectly known, i.e., in
the convergence condition of the overall EM-KL iterative detector/decoder to small symbol error
probability. At the beginning, for small iteration index ` or small SNR, a lower value of m might
be beneficial.
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Figure 26: Windowed Luise algorithm versus C for σ∆ = 6 degrees and Eb/N0 = 2.1 dB.

11.1 Performance comparison
We now compare all the described detection algorithms for a phase noise standard deviation of
σ∆ = 6 degrees. The performance of the algorithm described in [10] (Anastasopoulos algorithm)
and that of the windowed-Luise algorithm, is also shown for comparison. In the latter case, the
value of C has been optimized by means of computer simulations. As shown in Fig. 26, for
σ∆ = 6 degrees and Eb/N0 = 2.1 dB, the optimal value is C = 60.

Quantized-based, Fourier and recursive algorithms exhibit a practically optimal performance.
Among them, the recursive algorithm, with its very low complexity, represents the best candidate
for this detection scenario. The KL-EM algorithm outperforms generally the windowed Luise al-
gorithm (EM-SW) especially for high SNR (low BER). In our simulations, the KL-EM algorithm
was simulated with m = 5 and applied over windows of 100 symbols, shifted by 50 symbols
in order to maintain phase continuity. The complexity of this algorithm is roughly equivalent to
the windowed Luise algorithm. In any case, it is apparent that both in terms of complexity and
performance the Bayesian recursive algorithm is preferable.
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Figure 27: Performance comparison among all the considered algorithm for σ∆ = 6 degrees.
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Figure 28: Performance of the recursive algorithm in the case of 8-PSK and 32-APSK modula-
tions.

12 Numerical results for the DVB-S2 system
We now consider the application of the recursive algorithm in the DVB-S2 system. We consider
two standardized LDPC codes with codewords of length 64800 [42]. The first one has rate 2/3
and is mapped on an 8-PSK modulation. The second one has rate 4/5 and is mapped on a 32-
APSK modulation. A maximum number of 50 iterations is considered and 36 pilot symbols every
1476 symbols are included as described in the standard [42]. The above mentioned phase noise
ESA model is considered. In Fig. 28 the relevant performance is shown. The curves labeled
“known phase” have been artificially translated to take into account the effective transmission
rate due to the insertion of pilots. The loss due to the presence of phase noise is less than
0.1 dB in both cases as can be also observed from Fig. 29 and 30. In Fig. 29, for the 8-PSK
modulation we also show the performance in the case of absence of joint detection/decoding
when a carrier recovery algorithm is used based on a data-aided ML phase estimate performed on
each pilot field, and a linear interpolation of these estimates. Notice that a further improvement
in performance may be obtained if the maximum number of iterations is not limited to 50. In
Fig. 28, we also show the performance that can be obtained in the case of 32-APSK when a
different mapping is considered. This mapping is obtained from the standardized mapping by
a simple reversal of the label bits. A performance improvement of 0.2 dB could be obtained
(obviously not only for the known phase curve but also for the recursive algorithm) and this fact
should be considered in the final implementation.
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Figure 29: Performance of the recursive algorithm in the case of an 8-PSK modulation.
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Figure 30: Performance of the recursive algorithm in the case of a 32-APSK modulation.
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13 Conclusions
In this report, the problem of joint detection and decoding of LDPC codes transmitted over
an AWGN channel affected by phase noise has been considered. Bayesian and non-Bayesian
approaches have been considered. The Bayesian approaches are essentially based on various
applications of the factor graph and of the sum-product algorithm. Non-Bayesian approaches are
essentially based on the approximation of the GLRT by the EM method.

In a first Bayesian approach, the expectation over channel parameters is a priori performed.
In this case, for time-invariant noncoherent channels two algorithms have been derived. The first
one has a complexity growing exponentially with the phase memory C. Hence, complexity re-
duction is necessary for large values of phase memory which allow to approach the performance
of an ideal coherent receiver. On the contrary, the second one has a complexity which grows
linearly with C. These proposed algorithms exhibit a high robustness in the presence of a time-
varying channel phase. This robustness can be increased by using a linear predictive approach in
which the statistic description of the phase process is taken into account.

In a second Bayesian approach, the average over channel parameters is performed by the
sum-product algorithm since channel parameters are explicitly represented in the overall factor
graph. To overcome the problem of an exchange of messages in the graph representing the
probability density functions of continuous random variables, we considered two methods, the
quantization of channel parameters and the use of canonical distributions. In the latter case, the
above mentioned probability density functions are represented by means of a finite number of
parameters which become the messages to exchange.

The non-Bayesian EM methods have all the problem of “guessing” an efficient parameteriza-
tion of the phase noise process, since non-Bayesian parameter estimation techniques are gener-
ally not suited to track time-varying processes and need ad-hoc modifications. We have reviewed
the sliding-window EM approach and introduced a new parameterization based on an orthogonal
basis expansion given by the KL decomposition. The KL estimator generally outperform the
sliding-window estimator, but it is generally inferior to the best Bayesian methods.

In conclusions, we recommend the simple Bayesian recursive algorithm due to its practically
optimal performance and extremely low complexity.

Appendix A
In this appendix, we will show that the function

f(y) =
1√

2πσ2
∆

∫ 2π

0

eRe[ze−jx]e
− (x−y)2

2σ2
∆ dx =

1√
2πσ2

∆

∫ π

−π

eRe[ze−j(x+y)]e
− (x)2

2σ2
∆ dx

where z is a complex number and x and y are real numbers, can be well approximated, discarding
irrelevant multiplicative factors, by the function g(y) = eγ(σ2

∆ ,|z|)Re[ze−jy], where γ(σ2
∆, |z|) is a

real function of |z| and σ2
∆.

For |σ∆| � 1, since both functions are periodic of period 2π, for given values of |z| and
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σ2
∆, we may compute in a period the mean square error ε(γ, |z|, σ∆) between these functions,

normalized to unit area. We chose the real function γ(σ2
∆, |z|) as the value of γ which minimizes

the mean square error and is represented in Fig. 9 for different values of σ∆.
A good closed-form approximation is represented by the expression

γ(σ2
∆, |z|) =

1

1 + σ2
∆|z|

.

This result can be derived by using the following approximation which holds for large values of
x ∈ R

+ (in practice x > 5)

ea cos(x−y)

2πI0(a)
' 1√

2π/a
e−

a
2
(x−y)2 = g(x, y,

1

a
) (141)

having denoted by g(x, y, 1
a
) a Gaussian pdf with mean x and variance 1

a
. In fact, for sufficiently

large values of x, the Tikhonov pdf ea cos(x−y)

2πI0(a)
has its support in a small interval around y. Hence,

by using a second-order Taylor expansion, we have cos(x − y) ' 1 − (x−y)2

2
. A normaliza-

tion constant has been further added to obtain a pdf. Parameter γ can be derived by using the
approximation (141). In fact, we may express

f(y) =
1√

2πσ2
∆

∫ 2π

0

eRe[ze−jx]e
− (x−y)2

2σ2
∆ dx

(a)'
∫ ∞

−∞
eRe[ze−jx]g(y, x, σ2

∆) dx

(b)' 2πI0(|z|)
∫ ∞

−∞
g(x, φ(z),

1

|z|)g(y, x, σ2
∆) dx

(c).
= g(y, φ(z),

1

|z| + σ2
∆)

(d)' 1

2πI0(
|z|

1+σ2
∆|z|)

exp

{
1

1 + σ2
∆|z|

Re[ze−jy]

}
. (142)

Step (a) derives from the observation that for σ∆ � 1 the function e
− (x−y)2

2σ2
∆ has its support in a

small interval around y. Steps (b) and (d) derive from the approximation (141). Finally, step (c)
derives from the equality

∫ ∞

−∞
g(x, η1, σ

2
1)g(y, η2x, σ2

2) dx = g(y, η1η2, η
2
2σ

2
1 + σ2

2) .

Hence
γ(σ2

∆, |z|) =
1

1 + σ2
∆|z|

.
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Figure 31: Function ε
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min (σ∆).

We now consider the minimum mean square error εmin(|z|, σ∆) defined as

εmin(|z|, σ∆) = ε(γ(σ2
∆, |z|), |z|, σ∆) .

Assuming a maximum values of |z| equal to 200, we consider the function

ε
(max)
min (σ∆) = max

|z|≤200
εmin(|z|, σ∆) .

This function is plotted in Fig. 31 along with the maximum mean square error corresponding to
the described heuristic closed form approximation. As it can be observed, this error is negligible
for all values of σ∆ of practical significance.
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