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Performance Analysis of Space-Time Coding With
Imperfect Channel Estimation
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Abstract—We analyze the error performance of a space-time
coding system using transmit and receive antennas with im-
perfect channel estimation in flat Rayleigh fading. A least-squares
estimate of the channel matrix is obtained by using a sequence of
pilot code vectors. The estimate is found to be perturbed by an

perturbation matrix with zero-mean circular Gaussian
entries. Using the characteristic function of the decision variable,
we derive a closed-form expression for the pairwise error proba-
bility (PEP). From the same expression, the PEP in case of perfect
channel estimation is also obtained. Numerical results show the
degradation in performance due to imperfect channel estimation
that can be compensated by increasing the number of receive
antennas.

Index Terms—Imperfect channel estimation, pairwise error
probability, pilot code vectors, Rayleigh fading, space-time
coding.

I. INTRODUCTION

SPACE-TIME coding [1], [2], which uses the advantage of
transmitter diversity, is an effective technique to improve

the performance of wireless communication systems. In space-
time coding, different signals are simultaneously transmitted
from different transmit antennas. The signal which is received
is the superposition of the different transmitted signals, and the
detection process needs estimates of the channel parameters [3].
Performance analysis methods often consider perfect channel
estimates under the assumption that the estimation errors are
negligible. Although perfect estimates are desirable, channel es-
timation methods used in practice give rise to imperfections [4],
[5]. It is therefore of considerable relevance to study the effect of
imperfect channel estimation on performance. One convenient
method of estimation of channel parameters in a space-time
coding system is by using pilot code sequences. Owing to the
presence of additive noise in the received signal, we apply in
this paper a least-squares based channel estimation technique to
a space-time coding system using multiple transmit and receive
antennas in flat Rayleigh fading and analyze its error perfor-
mance. The estimate of the channel matrix is obtained from a
sequence of pilot code vectors. Using the characteristic func-
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tion (cf.) of the decision variable, we derive a closed-form ex-
pression for the pairwise error probability (PEP). From the same
expression, the PEP in case of perfect channel estimation is also
obtained. We apply our result to an example of a system using
the Alamouti code [2] with binary phase-shift keying (BPSK).

The paper is organized as follows. Section II gives the basic
model for a wireless communication system employing space-
time coding. We then present the channel estimation technique
in Section III. Section IV discusses the performance criterion
with imperfect channel estimation. Section V analyzes the error
performance in terms of the PEP. As an example, the perfor-
mance of a system using the Alamouti code with two transmit
antennas and BPSK for imperfect as well as perfect channel es-
timation is presented in Section VI. Section VII gives some con-
cluding remarks.

II. MODEL

Consider a communication system that employs space-time
coding [1] with transmit and receive antennas. At time
index , the space-time encoder encodes the information symbol

into code symbols , which are
transmitted by the antennas at the same time.

The complex baseband signal received at time index by the
th antenna after matched filtering is given by [1], [6]

(1)

where is the average energy of the baseband signal con-
stellation, the complex fading channel gain from the
transmit antenna to the receive antenna, and the ad-
ditive white Gaussian noise with power spectral density .
Since the noise is white, the noise samples for different time in-
dexes, denoted as , are independent and identically dis-
tributed (i.i.d.) zero-mean complex circular Gaussian random
variables, each having a distribution. We also as-
sume that and are independent for

.
The code vector transmitted from the antennas at

time index is denoted as

(2)

where denotes transpose, and the corresponding
channel vector from the transmit antenna to the receive
antennas as

(3)
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In addition, let

(4)

be the noise vector at the receive antennas. Note that the
noise vectors for different time indexes, represented as ,
are i.i.d. complex circular Gaussian random vectors, each
having a distribution, where denotes
the identity matrix.

The channel matrix , which is independent of
the noise, is given by ,
and the received signal vector by

. We can therefore rewrite (1)
in matrix form as [1]

(5)

Owing to flat fading, the channel matrix is assumed to be
constant over the time indexes which span the pilot transmission
phase followed by the encoded data transmission phase. Hence,
we denote the channel matrix as

(6)

Further, we consider a Rayleigh fading channel, with entries of
the channel matrix being i.i.d. zero-mean complex circular
Gaussian random variables each having a distribu-
tion.

III. CHANNEL ESTIMATION

We use a sequence of pilot code vectors
which form the pilot code matrix given by

(7)

When the pilot code matrix is transmitted, we receive

(8)

where are i.i.d. complex circular Gaussian
random vectors, each having a distribu-
tion.

Let the received pilot signal matrix and the pilot noise
matrix be given by

(9)

(10)

Using (9) and (10), we can rewrite (8) as

(11)

From (11), we obtain a least-squares estimate of the channel
matrix [4], [5] which is given by

(12)

where denotes the Hermitian (conjugate transpose) oper-
ator. Note that we need to choose such that is invert-
ible, which implies that . Combining (12) and (11), we
get

(13)

Note that the estimate of is perturbed by an pertur-
bation matrix with zero-mean circular Gaussian entries, which
are uncorrelated if is chosen such that is a scaled
version of , and correlated otherwise.

IV. PERFORMANCE CRITERION

Let denote the set of code matrices used for
transmission. Suppose that the code matrix

(14)

is transmitted after the channel has been estimated. At the re-
ceiver, we choose the code matrix

(15)

using the minimum distance rule, which results in

(16)

where denotes the -norm or Euclidean norm of a vector.
Substituting (5) and (13) in (16), we get the PEP, which is given
by

(17)

where the complex Gaussian vectors are
independent of the complex Gaussian matrix .

When the channel estimate is perfect, we have , and
the PEP is given by

(18)
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From the Gaussian distribution of , it can be easily shown
that the conditional PEP, conditioned on the channel matrix ,
is given by

(19)

where denotes the Gaussian- function. The PEP can be
obtained by averaging the conditional PEP over the statistics of

, as in [7].
When the channel has an imperfect estimate given by (13),

we can write

(20)

where the perturbation matrix is given by

(21)

Denoting the random vector as

(22)

we can express (17) in the form

(23)

which can be simplified to yield

(24)

When the channel estimate is perfect, we have ,
resulting in

(25)

and (23) reduces to (18). When we substitute (25) in (24), and
find the conditional PEP, conditioned on , we obtain (19), be-
cause and are independent. On the other hand, when
the channel estimate is imperfect, although , and
are independent, we see from (20) and (22) that both and

depend on , and are therefore, not independent. We

can choose appropriate space-time codes such that the marginal
statistics of becomes the same as the statistics of and the
marginal statistics of becomes the same as the statistics
of . However, owing to the dependence on , the joint
statistics of and is not the same as the joint statistics
of and . As a result, none of

, or , will have a form similar to
(19). This calls for an alternative analysis of the PEP.

V. PERFORMANCE ANALYSIS

Instead of obtaining first the conditional PEP when the
channel estimate is given by (13) and then averaging it over the
statistics of to get the PEP, we will derive an expression for
the PEP given by (17) from the cf. of the decision variable
which is defined as

(26)

Define random vectors , and as

(27)

Further, define matrices and as

(28)

From (27), we can rewrite the decision variable in (26) as

(29)

The vectors are jointly
complex Gaussian. Define the composite vector as

...

...

(30)

From the Gaussian statistics of , and , we
find that is a zero-mean complex circular Gaussian random
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vector having a distribution, where the co-
variance matrix is given by

(31)

denoting the Kronecker product, and denoting complex
conjugation. The decision variable in (29) can be written as

(32)

which is a Hermitian quadratic form in complex Gaussian
random variables. Using the result of [8], we can express the
cf. of as

(33)

Substituting (31) in (33), we get

(34)

where is a matrix given by

(35)

If are the eigenvalues of , then the cf. of
can be simply written as

(36)

The PEP is given by

(37)

We now obtain the PEP from the cf. of using the inversion
theorem [9]. After changing the variable to in
(36), we get [9]

(38)

Note from (36) that the poles of are given by
, , all of which may not be distinct. Some of

these poles will be on the left half -plane. Let be a pole of
order . The PEP can then be expressed using (38) as

(39)

Since is a rational function in ,
its derivative can be conveniently obtained using Faa
di Bruno’s formula [10]. Thus, (39) provides us with a means of
computing the PEP without the use of any integral.

We now consider the case when we use orthogonal codes for
channel estimation and transmission [2], [11]. This results in,
without loss of generality, the conditions

(40)

Note that (40) also implies and . In addition,
we consider , which implies the condition

(41)

Substituting (40) and (41) in (35), we get

(42)

To obtain the eigenvalues of in (42), we look at the char-
acteristic equation

(43)

Let denote the distinct real positive eigenvalues
of the positive definite Hermitian matrix

such that has multiplicity for . Thus,
. Defining , the average SNR per diversity branch, as

(44)



GARG et al.: PERFORMANCE ANALYSIS OF SPACE-TIME CODING 261

where is the variance of the complex channel gain , we can
simplify the characteristic equation after some algebra, resulting
in

(45)

Both the roots of

which we denote as and , are real, one being positive and
the other negative. Let and . We can rewrite
(36) as

(46)

where

(47)

The poles of which are on the left-half
-plane are .
Define the functions and as

(48)

From (39), the PEP is given by

(49)

where denotes the derivative of
evaluated at .

Now the derivative of can be expressed as

(50)

Using Faa di Bruno’s formula [10], the derivative
of can be expressed as

(51)

where the summation is over all -tuples
of integers in the range sat-

isfying . Substituting (51) and (50)
in (49), we obtain (52), as found at the bottom of the page,where

are given by (47). Thus, (52) is a closed-form
expression for the PEP in terms of the distinct real positive
eigenvalues of the matrix .

To numerically compute the PEP from this expression, we
need a precalculated lookup table of enumerations of the indexes

in the composite summation of (52) and the eigen-
values . The lookup table generation, the eigenvalue
computation, and the subsequent simple operations which yield
the PEP can be easily performed using a mathematical software
like MATLAB.

Let the number of enumerations of for
which the equality

holds when be denoted as
a function . For given , and , the total
number of summations in (52), denoted as , is then given
by

(53)

(52)
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TABLE I
NUMBER OF ENUMERATIONS OF l ; . . . ; l IN (52)

This number of summations is bounded by two extremes. At the
lower bound, we have the case

while at the upper bound we have the case

Therefore, from (53), we can write

(54)

Values of for are shown in Table I.
Table II shows the lower and upper bounds on the total number

of summations in (52) for some typical values of and
.
When the channel estimate is perfect, we have in

(13), implying in the matrix given by (35).
This also implies the condition . By putting
in (45), the characteristic equation of can now be written as

(55)

Let and be the roots of , where
is defined in (44), with and . Thus

(56)

Therefore, the PEP for perfect channel estimation is given by
(52) with replaced by and by .

TABLE II
LOWER AND UPPER BOUNDS ON THE TOTAL NUMBER S OF

SUMMATIONS IN (52)

VI. AN EXAMPLE

Consider a system using the Alamouti code [2] with
. A codeword is given by

(57)

Take the case of BPSK, where . We
have four possible code matrices. Assuming all code matrices
are equally likely, the matrix takes the
values with probability and with probability .
Thus, we have either or . Therefore,

and . Denoting , and
, we get from (52) the PEP

(58)

where, from (47)

(59)

We can replace in (58) by , respectively, to get the
PEP with perfect channel estimation. Note from (56) that

(60)

The average PEP is given by

(61)
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Fig. 1. Average PEP versus � for the Alamouti code with BPSK, 2 transmit antennas (N = 2), 2 symbol intervals (L = 2), 2 pilot code vectors (L = 2),
and number of receive antennas M = 2; 3; 4.

Fig. 2. Comparison of computed and simulated average PEP versus � for the Alamouti code with BPSK, 2 transmit antennas (N = 2), 2 symbol intervals
(L = 2), 2 pilot code vectors (L = 2), and number of receive antennas M = 2; 3.

Plots of the average PEP both with imperfect and perfect
channel estimation, computed using (58) and (61), are shown

in Fig. 1. We find that the degradation in performance due to
imperfect channel estimation can be compensated by increasing
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Fig. 3. Average PEP obtained by simulation versus� for a nonorthogonal space-time code with BPSK, 3 transmit antennas (N = 3), 3 symbol intervals (L = 3),
and 3 pilot code vectors (L = 3).

the number of receive antennas. For example, at dB,
the average PEP with and imperfect channel estimation
is the same as that with and perfect channel estimation.

Comparison of the average PEP obtained by computation
using (58) and (61) with that obtained by simulation is shown
in Fig. 2(a) for and in Fig. 2(b) for . In case
of perfect channel estimation, the simulation results obtained
by averaging (19) over the statistics of are also included.
The simulation results are found to match closely with the
computed results. In case of imperfect channel estimation, it is
not possible to obtain a characterization of the PEP similar to
(19).

Plots of the average PEP obtained by simulation for a
nonorthogonal space-time code with , is
shown in Fig. 3. Here a codeword is given by [12]

(62)

We again take the case of BPSK with . It
is found that an increase in the number of receive antennas can
compensate for the degradation in performance due to imper-
fect channel estimation. For example, at dB, using 4
receive antennas with imperfect channel estimation can achieve
the same average PEP as with 2 receive antennas and perfect
channel estimation. This behavior is the same as that seen in Fig.
1 with the Alamouti code, which is an orthogonal space-time
code.

VII. CONCLUSION

We have analyzed the error performance of a space-time
coding system with imperfect channel estimation in flat
Rayleigh fading. Using the cf. of the decision variable, we
have derived a closed-form expression for the PEP. The same
expression can also be used to obtain the PEP in the case of
perfect channel estimation. We have considered an example
of a system using the Alamouti code. Numerical results show
the degradation in performance due to imperfect channel esti-
mation that can be compensated by increasing the number of
receive antennas.
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