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Closed-Form BER Results for MRC Diversity With Channel
Estimation Errors in Ricean Fading Channels
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Abstract—Closed-form expressions for computing the average
bit error rate (BER) for a class of modulation schemes in Ricean
flat fading channels with maximal-ratio combining diversity and
channel estimation errors are derived. The results are valid for
a general multichannel model that includes Ricean and Rayleigh
fading channels. The results are applicable to channel estimators
that are jointly Gaussian with the channel gain. The BER perfor-
mance of pilot symbol-assisted modulation is studied. The effects
of estimation error on the diversity system are examined as well
as the influences of varying the Ricean factor K and changing the
number of diversity branches L.

Index Terms—Diversity, estimation error, fading channels,
maximal-ratio combining, pilot symbol-assisted modulation.

I. INTRODUCTION

TWO-DIMENSIONAL (2-D) signaling constellations with
perfect coherent detection have been well studied by many

researchers [1]–[3]. Less work has considered the case where
the coherent detection is subject to channel estimation errors.
References [4]–[6] provided results for the symbol error rate
(SER) when the estimation error is considered. The bit error
rate (BER) for maximal-ratio combining (MRC) 16-quadrature
amplitude modulation (16-QAM) with pilot symbol-assisted
modulation (PSAM) estimation error in Rayleigh fading chan-
nels was derived in [4]. The results from [5] apply to both
Rayleigh and Ricean fading channels but are limited to the
case where the channel estimate is a minimum mean squared
error (MMSE) estimate. Expressions for the SER of 2-D sig-
naling in Rayleigh fading with MRC diversity and in Ricean
fading without diversity were obtained in [6]. In this paper, we
derive an exact BER expression for a class of 2-D signaling
with MRC diversity in Ricean fading channels with estimation
error. Our analysis can be applied to a general multichannel
model [7].

II. SYSTEM MODEL

Consider an MRC diversity system operating over L in-
dependent Ricean flat fading channels where the fading is
assumed to be constant during a symbol duration T . The
multichannel fading model follows the definition in [7]. The
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complex channel gain sample on the kth diversity branch can
be expressed as

gk = gIk + jgQk = αkejθk + βkejφk (1)

where gIk and gQk are the I and Q components of gk, αkejθk is a
line of sight (LOS) component with amplitude αk and phase θk

and can be considered as the mean mgk
of gk, and βkejφk is the

multipath scatter component where βk is a Rayleigh-distributed
amplitude with variance σ2

g and φk is uniformly distributed
over [0, 2π). Both Rayleigh and Ricean fading channels are
included, and the LOS components of the branches can be
different but the variances of the scatter components must be
the same for different fading channels.

A received signal sample on the kth branch at the output of
the matched filter is given by

rk = gkSi + nk (2)

where Si is the transmitted complex signal sample and nk

is an additive white Gaussian noise (AWGN) sample with
variance σ2

n in both real and imaginary parts. We assume perfect
synchronization and symbol timing recovery. The combiner
output is a sum of L branch samples given by [8]

R =
L∑

k=1

ĝ∗krk =
L∑

k=1

ĝ∗k(gkSi + nk) (3)

where ĝk is the complex channel estimate with mean mĝ and
second moment σ2

ĝ . We assume that ĝk and gk are correlated
complex Gaussian random variables. The combiner output pha-
sor can also be presented in terms of the I component RI and
the Q component RQ as

R = RI + jRQ (4a)

RI =
R + R∗

2
(4b)

RQ = − j
R − R∗

2
. (4c)

Combining (4b) and (4c) with (3), we obtain

RI =
L∑

k=1

[
1
2
ĝ∗krk +

1
2

(ĝ∗krk)∗
]

(5a)

RQ =
L∑

k=1

[−j

2
ĝ∗krk +

−j∗

2
(ĝ∗krk)∗

]
. (5b)

We consider 2-D modulation formats which have the property
that the I and Q branches can be demodulated separately.
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TABLE I
THE ERROR RATE FOR BINARY SIGNALS AFTER [9, eqs. (B-6), (B-7), AND (B-22)]

Then every transmitted bit corresponds to W decision in-
tervals on a one-dimensional (1-D) axis. The value of W
depends on the transmitter modulation constellation. Every
interval is delineated by two values d1w and d2w (1-D deci-
sion boundaries) with w = 1, . . . , W , where d1w < d2w, d1w

can be −∞, and d2w can be +∞, corresponding to a particular
symbol. In the receiver, after diversity combining, the
decision boundaries are

∑L
k=1 |ĝk|2d1w and

∑L
k=1 |ĝk|2d2w,

respectively.
Our analysis will use a method for calculating the probability

that a random variable D assumes values less than zero given
in [9, Appendix B]. This method will be used in the sequel in
the BER derivations. Denote

Pr = P (D < 0) =

0∫
−∞

p(D)dD (6)

where p(D) is the probability density function (pdf) of D. The
pdf is derived by using the characteristic function of D. The
variable D is a special case of the general quadratic form [9]

D =
L∑

k=1

(
A|Xk|2 + B|Yk|2 + CXkY ∗

k + C∗X∗
kYk

)
(7)

where A, B, and C are complex constants, Xk and Yk are
correlated complex Gaussian random variables, and the L pairs
{Xk, Yk} are independent. A closed-form expression for Pr

is given in [9, eq. (B-21)], which requires the means X̄k and
Ȳk and the second (central) moments µxx, µxy and µyy of Xk

and Yk. Note that the means of Xk and Yk can be different for
different channels, but the second (central) moments must be
the same. Table I lists simplified expressions for Pr when Xk

and Yk both have zero means as well as the L = 1 case.
Observe that (5) and the decision boundaries

∑L
k=1 |ĝk|2di,

where di = d1w or d2w, can be expressed in the form of D
in (7) by assigning Xk = rk and Yk = ĝk, where A = 0,
B = di, and C = 1/2 for the I component or −(j/2) for the Q
component. As we see, A and C are fixed; we only need to find
the values of B that are decided by the decision boundaries
for different constellations. As the constellations we consider
are all symmetrical, we can examine only the I component RI.
Combined with (5a), the decision variable D can be written as

D =
L∑

k=1

B|ĝk|2 + RI =
L∑

k=1

(
B|ĝk|2 +

1
2
rkĝ∗k +

1
2
r∗kĝk

)
.

(8)



1442 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 4, NO. 4, JULY 2005

The first- and second-order statistics of rk and ĝk can be
obtained once an estimation technique is specified. The most
common estimation methods that give an estimate having a
joint Gaussian distribution with the estimated quantity are
PSAM [4], [10], [11] and MMSE [5]. In this paper, we use the
Doppler shift LOS model [12] to describe the Ricean fading
channel and PSAM for estimation.

In a PSAM system, the channel estimate obtained from the
pilot symbol in the mth frame p̂m is given by [11]

p̂m = pm +
nm

sp
(9)

where pm is the complex channel gain, nm is an AWGN sample
corrupting the received pilot symbol in the mth frame, and
sp is the known symbol inserted periodically into the first slot
of a frame with length N . The fading at the nth symbol in the
current frame on the kth diversity branch is estimated from M
adjacent pilot symbols with M1 pilot symbols from previous
frames, one from the current frame, and M2 pilot symbols
from subsequent frames on the kth diversity branch, where
M1 + M2 + 1 = M [4]

ĝl
k =

M2∑
m=−M1

hl
mp̂m =

M2∑
m=−M1

hl
m

(
pm +

nm

sp

)
(10)

and where hl
m, l = 0, 1, . . . , N − 1, are the interpolation coef-

ficients of the estimation filter [13]. The symbol location l has
been omitted in the following equations for notational brevity.

In the Doppler shift LOS model [12]

mgk
= αkejθk

= αk exp(2πfmT l cos θ0k + φ0k) (11a)

ΦgIkgIk(∆l) = σ2
gJ0(2πfm∆lT )

+
α2

k

2
cos(2πfm∆lT cos θ0k) (11b)

ΦgIkgQk
(∆l) =

α2
k

2
sin(2πfm∆lT cos θ0k) (11c)

Ωk = α2
k + 2σ2

g (11d)

Kk =
α2

k

2σ2
g

(11e)

γ̄bk =
ΩkEb

2σ2
n

(11f )

where J0(·) is the zero-order Bessel function of the first kind
[14], fm is the maximum Doppler frequency, fm cos θ0k is
the Doppler shift, φ0k is the random phase offset on the kth
diversity branch, ∆lT is the time distance between the two
symbols, Ωk is the second moment of gk, Kk is the Rice factor
on the kth diversity branch, Eb is the average energy per bit, and
γ̄bk is the signal-to-noise ratio (SNR) per bit on the kth channel.
Note that the amplitude of the mean of every diversity channel
remains constant though the phase is rotating in the model.

In the case of PSAM, the means mrk
and mĝk

and the second
central moments µrkrk

, µĝkĝk
, and µrkĝk

of rk and ĝk are
given as

mrk
= mgk

Si

= αk exp(2πfmT l cos θ0k + φ0k)si (12a)

mĝk
= αk

M2∑
m=−M1

hl
m exp(2πfmTmN cos θ0k + φ0k) (12b)

µrkrk
= σ2

g |Si|2 + σ2
n (12c)

µĝkĝk
= σ2

gHXH +
|H|2σ2

n

|sp|2 (12d)

µrkĝk
= σ2

gSi

M2∑
m=−M1

hl
mJ0 (2πfm|mN − l|T cos θ0k) (12e)

H =
[
hl
−M1

, . . . , hl
M2

]
(12f )

Xij = σ2
gJ0 (2πfm|i − j|NTs) (12g)

where H is the coefficient vector of the interpolation filter and
Xij is the ijth element of the covariance matrix X. When there
is no estimation error, the first and second central moments of
ĝk are given as

mĝk
=mgk

(13a)

µĝkĝk
=σ2

g (13b)

µrkĝk
=σ2

gsi. (13c)

In the following section, we derive BER expressions for binary
phase-shift keying (BPSK), M-ary pulse-amplitude modulation
(M-PAM), quaternary phase-shift keying (QPSK), and M-ary
quadrature amplitude modulation (M-QAM).

III. BIT ERROR PROBABILITY

Refer to the detailed analysis in [9, Appendix B].

A. BPSK

Recall that BPSK is a 1-D modulation and the 1-D signal
coordinate is either s0 = −√

Eb or s1 =
√

Eb. The decision
threshold is zero. Thus, B = 0. Assuming that signal s1 is
transmitted, an error occurs when RI < 0. Recalling (5a), the
BER for BPSK is then PBPSK = PBPSK|s1 = Pr(RI < 0) =
Pr(D1 < 0) with S1 = s1 =

√
Eb and B = 0.

B. PAM

Fig. 1 shows a 4-PAM constellation with Gray mapping
in which s1 = −3d, s2 = −d, s3 = d, and s4 = 3d, where
d = (EsPAM/5)1/2 is the decision distance and EsPAM = 2Eb

is the average 4-PAM symbol energy. Every symbol is repre-
sented by two bits, one most significant bit (MSB) and one
least significant bit (LSB). Assume that s3 = d or s4 = 3d
has been sent. It is seen in Fig. 1 that the threshold for the
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Fig. 1. 4-PAM/16-QAM I and Q bit demappings (after [11, Fig. 5]).

TABLE II
COEFFICIENTS IN THE BER EXPRESSION (16) FOR 4-PAM

MSB is zero. Thus, B = 0. When s3 has been sent, the BER
of MSB is Pr(D1 < 0), where S1 = s3 = d and B = 0 for
decision variable D1. When s4 has been sent, the BER of MSB
is Pr(D2 < 0), where S2 = s4 = 3d and B = 0 for decision
variable D2. The average error rate for MSB is then

PMSB =
1
2

[Pr(D1 < 0) + Pr(D2 < 0)] . (14)

For the LSB, it is seen in Fig. 1 that when s3 = d is
sent, an error occurs when RI|(s3 = d) >

∑L
k=1 2d|ĝk|2 or

RI|(s3 = d) < −∑L
k=1 2d|ĝk|2. Due to the symmetry of the

constellation, the probability Pr(RI >
∑L

k=1 2d|ĝk|2) when
s3 = d is transmitted is equal to Pr(RI < −∑L

k=1 2d|ĝk|2)
when s2 = −d is transmitted, again seen in Fig. 1. The proba-
bility that an error occurs is obtained as Pr(RI|(s2 = −d) <

−∑L
k=12d|ĝk|2) + Pr(RI|(s3 = d) < −∑L

k=12d|ĝk|2). We set
D3 = RI|(s2 = −d) +

∑L
k=1 2d|ĝk|2 where S3 = s2 = −d

and B = 2d, and D4 = RI|(s3 = d) +
∑L

k=1 2d|ĝk|2 where
S4 = s3 = d and B = 2d. When s4 = 3d is transmitted,
an error occurs when −∑L

k=1 2d|ĝk|2 < RI <
∑L

k=1 2d|ĝk|2.
The probability of error is then Pr(RI|(s4 = 3d) <∑L

k=1 2d|ĝk|2)−Pr(RI|(si = 3d) < −∑L
k=1 2d|ĝk|2). We set

D5 = RI|(s4 = 3d) − ∑L
k=1 2d|ĝk|2 where S5 = s4 = 3d and

B = −2d, and D6 = RI|(s4 = 3d) +
∑L

k=1 2d|ĝk|2 where
S6 = s4 = 3d and B = 2d.

Thus, the average BER for the LSB is

PLSB =
1
2
{[Pr(D3 < 0) + Pr(D4 < 0)]

+ [Pr(D5 < 0) − Pr(D6 < 0)]} . (15)

Combining (14) and (15), the BER for 4-PAM can be ex-
pressed as

P4−PAM =
1
2
(PMSB + PLSB) =

1
4

6∑
i=1

wiPr(Di < 0) (16)

TABLE III
COEFFICIENTS IN THE BER EXPRESSION (17) FOR 16-QAM

where Si = xid in (2), Bi = zid in decision variable Di, and
wi, xi, and zi are listed in Table II.

C. QPSK

A QPSK symbol can represent four signal constellation
points with 2 bits, “01,” “11,” “10,” and “00,” corresponding
to four different phases, for example, π/4, 3π/4, 5π/4, and
7π/4. The complex representation of a QPSK signal point is
st = (EsQPSK)1/2 exp{j[(2t − 1)/4]π}, where t = 1, 2, 3, 4
and EsQPSK = 2Eb is the average QPSK symbol energy. It
can be implemented by transmitting two BPSK signals at the
same time on the I and Q branches. Thus, the demodulation
and decision on each branch are the same as for the BPSK
described in Section III-A. The BER for QPSK is then very
similar to that for BPSK and is given by PQPSK = Pr(D1 < 0)
with S1 = s1 = (EsQPSK)1/2 exp[j(1/4)π] and B = 0. Note
that the cross-quadrature intersymbol interference caused by
imperfect estimation has been accounted for in (5a), (5b),
and (8).

D. M-QAM

An M-QAM signal is obtained by transmitting M-PAM
signals on the I and Q channels. Here, we use 16-QAM as an
example. The complex signal point can be represented as st =
xtd + jytd, where xt, yt = ±1 or ± 3 and t = 1, 2, . . . , 16,
d = (EsQAM/10)1/2 is the decision distance, and EsQAM =
4Eb is the average 16-QAM symbol energy. We consider only
the symbols in the first quadrant due to constellation symmetry
[15, Fig. 3.3]. Note that this method is only applied to con-
stellations with Gray mapping. The decision criterion on each
quadrature channel is the same as that of 4-PAM, described
in Section III-B, but we need to consider the cross-quadrature
interference component due to the imperfect estimation. When
the value of xt is fixed, there are two choices for the value of
yt, 1 or 3. Thus, the BER for 16-QAM can be obtained as

P16−QAM =
1
8

12∑
i=1

wiPr(Di < 0) (17)

where Si = xid + jyid in (2), Bi = zid in decision variable
Di, and wi, xi, yi, and zi are listed in Table III.
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Fig. 2. BER of BPSK and QPSK with L = 1 and K = 5 dB.

Fig. 3. BER of 4-PAM and 16-QAM with L = 1 and K = 5 dB.

Some examples are given in the next section; the computed
BERs include the influences of estimation error, MRC diversity,
and the LOS component on the system performances.

IV. EXAMPLES

All the theoretical results and simulations are implemented
in Matlab. For convenience of computation and discussion,
we set Kk = K, θ0k = 0, and φ0k = 0 for all the diversity
branches. Thus, the average SNR γ̄bk is the same on all the

diversity channels. Note importantly that our results are applied
to the multichannel with different specular components but with
the same scattering variance. The system parameters are set
as follows: frame length N = 15, interpolation order M = 30
with M1 = 14 and M2 = 15, symbol location l = 8, maximal
normalized Doppler shift fmT = 0.03, and the fading variance
σ2

g = 1. The sinc interpolator is implemented with a Hamming
window [13].

Figs. 2 and 3 show the BERs of BPSK, QPSK, 4-PAM,
and 16-QAM for single-branch reception over a Ricean flat
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Fig. 4. BER of single-branch reception 16-QAM for different values of K.

Fig. 5. BER of single-branch reception 16-QAM for different values of K when the means of all diversity branches are constant.

fading channel with Rice factor K = 5 dB. Both theoretical
and simulation results are presented and are in excellent agree-
ment. The BER performances are the same for BPSK and
QPSK, as they are also for 4-PAM and 16-QAM, respectively,
when the channel is perfectly known. However, it is seen

in Figs. 2 and 3 that when there is an estimation error,
the BERs of QPSK and 16-QAM are worse than those of
BPSK and 4-PAM, particularly as γ̄b increases due to the
cross-quadrature interference caused by the imperfect channel
estimation.
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Fig. 6. BER of single-branch reception 16-QAM for different values of K.

Fig. 7. BER of diversity 16-QAM with K = 5 dB.

We use 16-QAM as an example. Fig. 4 shows the BERs
of single-branch reception 16-QAM for different values of K
with imperfect channel estimation for the range of SNR values
(0–60 dB).We compare the BER in Rayleigh fading (K = 0)
with that in Ricean fading. When the values of K are less
than about 7 dB, the BER in Ricean fading is better (smaller)
for small to large values of SNR but becomes worse (larger)
than that in Rayleigh fading for very large SNR when the error
floor occurs. This result may seem surprising and contrary

to previous results. It is not; rather, it is a consequence of
the Ricean fading model that we have employed that has a
mean with constant amplitude but a rotating phase. Most past
work assumes a simpler Ricean fading model that has constant
(amplitude and phase) mean. In Fig. 5, we show the BER
performance where we use the simple Ricean model [12]. In
this model, the mean of the channel gain is fixed instead of
having a constant amplitude and rotating phase as was the case
in Fig. 4. In this case, the performance when an LOS component
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exists is always better than the Rayleigh case. It appears that the
errors introduced by estimating a changing mean (rather than
a constant mean) cause the system performance with a weak
LOS component to become worse than that in Rayleigh fading
channels.

Fig. 6 shows the BERs of 16-QAM for different values of
K. The BER in an AWGN channel (K = ∞) is also presented
for comparison. When there is no channel estimation error, the
BER in an AWGN channel is the same as that in Ricean fading
with a very large K, as expected. However, there is always a
gap between the BER in the Ricean fading channel and that in
the AWGN channel when estimation error exists, no matter how
large K is.

Fig. 7 presents the BER performance of MRC 16-QAM
with K = 5 dB. Both BERs for perfect channel estimation
and imperfect channel estimation are shown for comparison.
As expected, the diversity gain increases in both perfect and
imperfect cases with increasing numbers of diversity branches
and shows diminishing returns as the diversity order increases.
However, we can see in Fig. 7 that the differences between
the BERs with perfect channel estimation and imperfect chan-
nel estimation increase with increasing numbers of diversity
branches.

V. CONCLUSION

Closed-form expressions for the BERs of MRC BPSK,
QPSK, 4-PAM, and 16-QAM with PSAM channel estimation
in Ricean flat fading channels have been derived. The results
can be extended to other estimation methods when the channel
estimate is jointly Gaussian with the channel gain. They can
also be applied to general M-QAM. The system performance
has been analyzed for different values of Ricean factor K
and numbers of diversity branches. The effects of channel
estimation error have also been studied.
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