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Abstract—The optimal diversity-combining technique is inves-
tigated for a multipath Rayleigh fading channel with imperfect
channel state information at the receiver. Applying minimum
mean-square error channel estimation, the channel state can
be decomposed into the channel estimator spanned by channel
observation, and the estimation error orthogonal to channel
observation. The optimal combining weight is obtained from the
first principle of maximum a posteriori detection, taking into
consideration the imperfect channel estimation. The bit-error
performance using the optimal diversity combining is derived and
compared with that of the suboptimal application of maximal ratio
combining. Numerical results are presented for specific channel
models and estimation methods to illustrate the combined effect of
channel estimation and detection on bit-error rate performance.

Index Terms—Diversity combining, imperfect channel estima-
tion, Rayleigh fading.

I. INTRODUCTION

D IVERSITY-combining techniques have often been used to
combat the deleterious effect of channel fading [1], [2]. If

the channel state is known perfectly at the receiver, maximum
ratio combining (MRC) can be applied to minimize system bit-
error rate (BER) [2]. However, in practice, since the channel es-
timation at receiver is often imperfect, the estimation error will
degrade the BER performance. While such a problem has long
been studied [3], [4], the current development of high-data-rate,
multiple-input multiple-output mobile communication systems
has renewed the interest in understanding the impact of im-
perfect channel estimation on diversity techniques [5]–[7]. In
[4] and [5], the BER performance of MRC of independent and
identically distributed (i.i.d.) diversity branches with Rayleigh
fading is studied. In [6], the distribution of signal-to-noise ratio
(SNR) is given for similar scenario. In [7], the BER performance
of MRC with independent but not identically distributed (i.n.d.)
branches is studied.

In this paper, we apply the techniques developed in [8]
and study the impact of imperfect channel estimation on a
general correlated Rayleigh fading channel. We assume that
an imperfect channel observation is available at the receiver
through a pilot scheme, which is jointly Gaussian distributed
with the channel state. With the imperfect channel observation,
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Fig. 1. Diversity combiner with imperfect channel state information.

minimum mean-square error (MMSE) channel estimation is
performed where the channel state is decomposed into the
MMSE channel estimator spanned by channel observation,
and the estimation error orthogonal to channel observation.
The optimal detection rule is derived based on maximum a
posteriori (MAP) detection, given the channel observation
and the decision variable. The detection error performance is
analyzed, and we show that the channel-estimation error should
be treated as an additional source of noise, which might not be
white. Therefore, MMSE combining with reliable channel esti-
mation should be used, instead of MRC with imperfect channel
observation. Furthermore, since the combiner output SNR is
quadratic, the error performance can be calculated analytically
as a function of the eigenvalues of certain covariance matrices.
As examples of the theory put forth, BER performance of fre-
quency- and space-diversity systems with pilot-symbol-aided
channel estimation [9] are analyzed and simulated to verify the
combined effect of channel estimation and diversity combining.

II. SYSTEM MODEL AND OPTIMAL DETECTION RULE

A. System Model

The system model is shown in Fig. 1. is the transmitted
signal and is, in general, complex-valued. In this paper, we
use binary phase-shift keying (BPSK) modulation, where

is drawn from an i.i.d. source with equal
symbol probability. The fading channel is modeled with a
correlated Rayleigh fading model, where the channel state

is a proper complex Gaussian random
vector [10] with zero mean and covariance matrix

(1)

Here, denotes the Hermitian of , which is the complex-con-
jugate transpose for complex vectors, and reduces to transpose
operator for real vectors. We denote the channel state as

. The channel noise
is also zero-mean proper complex white Gaussian with
covariance matrix

(2)
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and is denoted as . At the receiver, a random
vector is received, where

(3)

Using a combiner with weight vector ,
we create a combined decision random variable , where

(4)

If the channel state is known at the receiver, MRC can be
applied to maximize the combiner output SNR, thus minimizing
BER. However, the channel state is usually not known perfectly,
and only an imperfect channel observation is available at the
receiver through the pilot scheme. The imperfect channel ob-
servation is also assumed to be proper
complex Gaussian and zero mean with covariance matrix

(5)

and is denoted as . Furthermore, we assume
that the channel observation and the channel state are jointly
proper and have the cross-correlation

(6)

In this paper, while we do not assume the perfect knowl-
edge of the channel state, we do assume that perfect channel
statistics are available at the receiver. Such an assumption is
made since the channel statistics vary much more slowly than
the channel state itself, and thus can be obtained at the ini-
tialization stage using a long training sequence, and continu-
ously improved during the whole communication period. The
channel statistics depend on the channel-state model and pilot
scheme, which is kept generic here. Numerical results with spe-
cific models will be given as examples at the end of this paper.

B. Optimal Detection Rule

Given the channel observation , the MMSE estimation of
the channel state is [11]

(7)

where is zero-mean Gaussian distributed
with covariance matrix

(8)

The channel state is the combination of the linear estimator
and the estimation error

(9)

where (hence, ) and are orthogonal, and

(10)

Since the channel state is not available at the receiver, the
MAP detection is performed conditioning on the channel obser-
vation and combiner output

(11)

Given and , has a complex Gaussian distribution with mean
and variance

(12)

(13)

We write the conditional probability density function (pdf) as

(14)
Assuming that the transmitted symbol has equal probability and
the channel observation is independent of the transmitted sym-
bols, the decision rule is simply the minimum-distance decision
rule, where

(15)

With BPSK modulation, the decision rule reduces to a threshold
test

(16)

where denotes the real part of a complex number. The com-
bining weight vector is determined such that the average BER
can be minimized, which we derive in the next section.

III. OPTIMAL COMBINING AND CORRESPONDING

ERROR PERFORMANCE

The system error performance is measured by the average
BER over additive noise , channel state , channel obser-
vation , and transmitted symbol

(17)
Define the average error probability conditioned on the trans-
mitted symbol and channel observation as

(18)

and assuming that the channel observation is independent of
the transmitted symbol , the average bit error can be expressed
as

(19)

A. Optimal Combining With Perfect Channel Knowledge

When channel state information is perfect ( ),
(19) becomes

(20)
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where is the average error due to the additive
Gaussian noise , given the perfect channel knowledge. When
the MAP detection rule is applied, it can be shown that the
conditional error probability is

(21)

We also get due to the symmetry
in BPSK. The conditional error probability is minimized when

. After averaging over , we get

(22)

This is just MRC, which is optimal when the channel state is
known perfectly at the receiver, and the noise is white.

If we define the performance parameter as the combiner
output SNR with perfect channel knowledge

(23)

then

(24)

B. Optimal Combining With Imperfect Channel Knowledge

When the channel state is not perfectly known, but the
channel statistics (i.e., , , ) are known, MMSE es-
timation can be applied to the channel observation to obtain the
channel estimate . Then, the channel state can
be decomposed as , where is the
estimation error independent of . Applying MAP detection
as before, the conditional error probability can be expressed as

(25)

Again, , and the that minimizes
is

(26)

After averaging over

(27)

It can be seen that when performing MAP detection condi-
tioned on the channel observation , only the MMSE estimator

portion of the channel state is known to the receiver, and
the estimation error is independent of , thus, not observable.
Therefore, we need to treat as additive noise on top of .
The total noise, taking into account the imperfect observation,
is with zero mean and covariance

(28)

Since is often not white, MMSE combining should be applied
with as the observable channel state, and as the total
noise to get the appropriate weighting coefficients .

As before, we can define the combiner output SNR with op-
timal combining as

(29)

then

(30)

C. Evaluation of Optimal Combining Performance

Once the conditional detection error probability is
determined, the error performance is evaluated by averaging
the conditional error over all possible channel observations, as
in (30). The approach used traditionally [4], [5] is to use (29) to
derive the distribution of SNR and then calculate

(31)

However, as shown in [8], when the combiner output SNR is
in quadratic form, can be alternatively calculated by using

(32)

Using this analytical expression of as in [12], for optimal
combining with imperfect channel knowledge, of (30) can be
written as shown in (33) at the bottom of the page, where we use
the fact that is zero-mean proper complex Gaussian. Denote

(34)

and let denote the set of eigenvalues of , then, after
integration with respect to , we get

(35)

(33)
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The last step follows from the partial-fraction expansion
method, where is the number of distinct eigenvalues,
is the eigenvalue’s multiplicity, and is the th residue
associated with the th power in the partial-fraction expansion.
The term can be calculated using the residue theorem, and
the bit-error probability (BEP) can be further simplified using
the following closed-form integral [8]:

(36)

where

(37)

In the case where all the eigenvalues are equal to , partial ex-
pansion is not necessary, and directly from (35), we have

(38)

In the case where the eigenvalues are distinct

(39)

(40)

Other cases of eigenvalues with multiplicity can be calculated
accordingly [8].

Similarly, it can be shown [12] that the error performance
of (24) under perfect channel knowledge is in the same form as
(35), except the parameters should be replaced by the
eigenvalues of

(41)

IV. SUBOPTIMAL COMBINING AND CORRESPONDING

ERROR PERFORMANCE

Due to implementation simplicity or other constraints, some-
times suboptimal combining is used instead of the optimal
weights. For example, one common case of suboptimal com-
bining is to treat as the true channel state and use it for MRC
combining. In this case, the combining weight is set to ,
and the real part of the decision variable is
used for a threshold test

(42)

It is interesting to compare the the suboptimal-combining error
performance with the optimal case.

Following the previous development, it can be shown that the
suboptimal BER is

(43)

where

(44)

In this case, the combiner output SNR can be defined as

(45)

For such combining, the error performance is difficult to eval-
uate, since the effective combiner output SNR is not itself a
quadratic form, but rather a quotient of quadratic forms. How-
ever, using the Cauchy–Schwartz inequality, we can find a lower
bound on error performance

(46)

Therefore, the suboptimal BEP is lower bounded by the optimal
performance.

V. EXAMPLES AND NUMERICAL RESULTS

In the previous sections, we have considered the detec-
tion error probability with imperfect channel estimation and
perfect channel statistics. However, the correlation between
channel state and channel observation is determined by the
pilot scheme, and is, in general, complicated. In this section, a
simple example of pilot-symbol-aided channel estimation [9] is
given to illustrate the concept of analyzing BER while taking
into consideration the channel-estimation uncertainty.

A. Pilot-Symbol-Aided Channel Estimation

The pilot-symbol-aided channel estimation refers to the gen-
eral scheme where predetermined special symbols are trans-
mitted over the same channel as the data symbols, and the re-
ceived signals are used for channel estimation. For example, in
frequency-diversity systems, such as multicarrier code-division
multiple access (MC-CDMA), it could be sending pilot sym-
bols over different frequency subcarriers; or in a space-diversity
system, it could simply be transmitting pilot symbols over mul-
tiple antennas.

Using pilot-symbol-aided channel estimation, we assume that
the pilot symbol has energy

(47)

The corresponding received signal is

(48)
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where is the additive noise at the receiver. The channel obser-
vation can be expressed as

(49)

It can be seen that, under the pilot-symbol scheme, the covari-
ance matrices and can be diagonalized by the same
unitary matrix as

(50)

(51)

We define

(52)

(53)

then one can show that

(54)

where (55)

where (56)

(57)

(58)

Furthermore, we define

(59)

then

(60)

B. Optimal Combining

In the case with imperfect channel knowledge, the combiner
output SNR can be written as

(61)

Then, it can be shown that

(62)

For the two channel models of frequency and space diversity
that we will consider, the eigenvalues of the channel-state co-
variance matrix are distinct. Therefore, we can calculate

as in (39) and (40) with the eigenvalues of (34) as

(63)

It is interesting to compare this result with combining using
perfect channel knowledge, where

(64)

(65)

Applying a similar technique, we get the eigenvalues of (41) as

(66)

Comparing with , we notice that can be factored in two
parts. The first term is the same as , indicating
the SNR gain of the decorrelated subchannel. The second term

shows the loss due to channel estima-
tion. Notice that at low SNR, this loss could be significant, due
to the poor quality of channel estimation. Furthermore, when

is large, we get

(67)

which shows that for high transmission SNR, the case with im-
perfect channel knowledge still has dB power
loss, compared with the case with perfect channel knowledge.

C. Suboptimal Combining

For suboptimal combining with pilot-symbol-aided channel
estimation, it can be shown that

where (68)

Although the above expression of is complicated, it is inter-
esting to compare it with the expression of in (61).

It can be seen that when the eigenvalues of are identical,
the suboptimal combining SNR is the same as . This implies
that if the multipath channel can be diagonalized into parallel
subchannels with i.i.d. (as in rich scattering environment), then
there is no difference between optimal and suboptimal com-
bining. Furthermore, as the transmission SNR ( ) rises,
also approaches the optimal combining SNR . This should not
be surprising, since at high SNR, the channel observation is very
close to the channel state and the MMSE channel estimation,
thus making the optimal and suboptimal combining weights
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similar to each other. Although the optimal and suboptimal com-
bining performances are similar under high SNR or identical
eigenvalue conditions, the performances are indeed different
for practical situations. Compared with combining with perfect
channel knowledge, there are also performance losses due to
pilot-symbol power.

D. Channel Models and Simulation Results

Aside from detection and estimation methods, the system
BER is fundamentally determined by the underlying channels,
where correlation between channel state can be over time,
frequency, or space, or their combinations. In this paper, we
consider two examples of correlated Rayleigh fading channels,
where the correlation is either between subcarriers at different
frequencies or between antennas at different space locations.

The first example we consider is to combine over frequency
diversity, such as in MC-CDMA systems. The correlation for
the channel state is modeled as [13]

(69)

is the channel delay spread and is set to 25 ns. is the
frequency separation between two adjacent subcarriers. We
allocate a total bandwidth of 20 MHz and divide the bandwidth
into either 8 or 16 subcarriers. Thus, MHz for

and MHz for . From Fig. 2(a),
we can see that when perfect channel knowledge is available,
using more subcarriers increases BER performance because of
the increased frequency diversity. However, when the channel
knowledge is not perfect, the system designer can choose to
improve BER performance by either improving the channel
observation quality (e.g., increasing the ratio of pilot power
to symbol power ( ) in this case) or increasing system
diversity (e.g., increasing the number of subcarriers from 8 to
16). When SNR is low or the subcarriers are highly correlated,
the diversity gain is not as effective as improved channel
observation. Therefore, even with more combining branches,
the BER performance could be worse than system with fewer
combining branches but better channel observation. In this
situation, to improve system BER, it would be more cost
effective and less complex to implement systems with better
channel observation and fewer combining branches. As shown
by Fig. 2(b), compared with the case with perfect channel
knowledge, imperfect channel knowledge degrades system
performance, even with optimal combining, and BER is further
reduced when suboptimal combining is used. In this case, the
loss due to suboptimal combining is significant, and can be
attributed to inaccurate estimation of channel state.

The second example we consider is to combine over space di-
versity. In this example, we allocate a fixed length of 0.05 m and
assign this space to either two ( ) or three ( ) an-
tennas. The antennas are assumed to be placed in line and spaced
equally. The normalized covariance matrix for the channel state
is modeled as [14]

(70)

Fig. 2. Example of frequency-diversity model (� = 25 ns). (a) Comparing
the analytical error performance of optimal combining with perfect channel
knowledge and imperfect channel knowledge, using different estimation power
for N = 8 and N = 16. (b) Analytical error performance and Monte Carlo
simulation results for the perfect channel knowledge, optimal combining with
imperfect channel knowledge and the suboptimal combining performance with
N = 16 and E = E .

where is the distance between two adjacent antennas,
GHz is the carrier frequency, and is the light speed. is
the zeroth-order Bessel function of the first kind. In the case
of , cm, and the two antennas are uncorrelated.
In the case of , cm, and the three antennas
are correlated. From Fig. 3(a), we can see a similar tradeoff
between combining diversity and channel observation quality.
More antennas provide more space diversity, which improves
system BER performance. However, such improvement can be
achieved by better channel observation, which could be more
cost-effective to implement. In Fig. 3(b), the analytical error
performance of optimal combining with perfect and imperfect
channel knowledge are compared with Monte Carlo simula-
tion and are shown to be in good agreement. It is somewhat
surprising that simulation also shows that the suboptimal com-
bining in this example has only slightly worse performance than
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Fig. 3. Example of spatial diversity model (f = 2:4 GHz). (a) Comparing
the analytical error performance of optimal combining with perfect channel
knowledge and imperfect channel knowledge using different estimation power
for N = 2 and N = 3. (b) Analytical error performance and the Monte Carlo
simulation results for the perfect channel knowledge, optimal combining with
imperfect channel knowledge, and the suboptimal combining performance with
N = 3 and E = E .

optimal combining. However, by applying the corresponding
parameters into (70), we get the eigenvalues ,

, . It can be seen that the eigen-
value is either “off” ( ) or “on.” For the eigenvalues
that are “on,” their values are quite close ( ). Applying
these eigenvalues in (61) and (68), we can see that the combiner
output SNR and are very close. Hence, the suboptimal per-
formance is very close to that of the optimal combining. In this

case, the channel can be approximated by two parallel subchan-
nels with i.i.d. distributions of channel states. However, in gen-
eral, the optimal combining has better performance and should
be applied.

VI. CONCLUSION

In this paper, we investigate the effect of imperfect channel
estimation on diversity combining. For Rayleigh fading
channel, when the channel observation at the receiver is im-
perfect, MMSE channel estimation should be performed. The
channel state is the sum of the channel estimator and estimation
error, where the estimation error mixed with transmitted signal
contributes an additional source of noise. Since this noise
is usually not white, MMSE combining should be used for
optimal diversity combining, with the adjusted channel state
and noise model. The optimal combining error performance
is calculated and compared with MRC with perfect channel
knowledge and suboptimal combining with imperfect channel
knowledge cases. Numerical results with specific models show
good agreement with Monte Carlo simulations.

REFERENCES

[1] W. C. Jakes, Microwave Mobile Communications. New York: Wiley,
1974.

[2] J. G. Proakis, Digital Communications, 4 ed. New York: McGraw-
Hill, 2000.

[3] , “Probabilities of error for adaptive reception ofM -phase signals,”
IEEE Trans. Commun., vol. COM-16, no. 2, pp. 71–81, Feb. 1968.

[4] M. Gans, “The effect of Gaussian error in maximal ratio combiners,”
IEEE Trans. Commun., vol. COM-19, no. 8, pp. 492–500, Aug. 1971.

[5] B. R. Tomiuk, N. C. Beaulieu, and A. A. Abu-Dayya, “General forms for
maximal ratio diversity with weighting errors,” IEEE Trans. Commun.,
vol. 47, no. 4, pp. 488–492, Apr. 1999.

[6] S. Roy and P. Portier, “Maximal-ratio combining architectures and per-
formance with channel estimation based on a training sequence,” IEEE
Trans. Wireless Commun., vol. 3, no. 7, pp. 1154–1164, Jul. 2004.

[7] J. S. Thompson, “Antenna array performance with channel estimation
errors,” in Proc. ITG Workshop Smart Antennas, Munich, Germany, Mar.
2004, pp. 75–78.

[8] M. K. Simon and M.-S. Alouini, Digital Communication Over Fading
Channel: A Unified Approach to Performance Analysis. New York:
Wiley, 2000.

[9] J. K. Cavers, “An analysis of pilot symbol assisted modulation for
Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 40, no. 6,
pp. 686–693, Nov. 1991.

[10] F. D. Neeser and J. L. Massey, “Proper complex random processes with
applications to information theory,” IEEE Trans. Inf. Theory, vol. 39, no.
7, pp. 1293–1302, Jul. 1993.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall PTR, 1993, vol. I, Estimation Theory.

[12] V. V. Veeravalli, “On performance analysis of signaling on correlated
fading channels,” IEEE Trans. Commun., vol. 49, no. 11, pp. 1879–1883,
Nov. 2001.

[13] M. D. Yacoub, Foundations of Mobile Radio Engineering. Boca
Raton, FL: CRC, 1993.

[14] G. Stuber, Principles of Mobile Communication. Norwell, MA:
Kluwer, 1996.



1662 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 53, NO. 10, OCTOBER 2005

Roy You (S’98–M’03) received the B.S. and Ph.D.
degrees in electrical engineering from the De-
partment of Electrical Engineering and Computer
Sciences, University of California, Berkeley, in 1997
and 2003, respectively.

Since 2003, he has been an Assistant Professor of
Electrical and Computer Engineering with the New
Jersey Institute of Technology, Newark. In his pre-
vious research, he applied communication techniques
to analyze an optical wireless channel’s information
capacity, developed new techniques to reduce power

requirements of optical wireless systems, and investigated the application of
trellis-coded modulation for fiber-optic systems with optical amplifiers. His cur-
rent research includes analysis and design of multicarrier CDMA systems, study
of diversity combining performance under channel uncertainty, and application
of hybrid-ARQ to fading channels.

Dr. You received the UC Regents Fellowship in 1997 and NASA Faculty Fel-
lowship in 2004. He serves as faculty advisor for the IEEE student branch at
NJIT.

Hong Li (S’04) received the B.S. degree in electrical
engineering from Shanghai Jiao Tong University,
Shanghai, China, in 1997, and the M.S. degree in
communication and electronic systems from the
Second Academy of China Aerospace Science
and Industry Corp., Beijing, China, in 2000. He is
currently working toward the Ph.D. degree at the
New Jersey Institute of Technology (NJIT), Newark.

From 2000 to 2001, he was a R&D Engineer with
Alcatel Shanghai Bell, Shanghai, China. Since 2001,
he has been a Research Assistant with the Center for

Communication and Signal Processing Research at the Department of Electrical
and Computer Engineering, NJIT. His research interests include channel estima-
tion, signal detection, and modulation classification.

Yeheskel Bar-Ness (M’69–SM’78–F’89) received
the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion, Haifa, Israel, and the Ph.D. de-
gree in applied mathematics from Brown University,
Providence, RI.

Currently, he is a Distinguished Professor of
Electrical and Computer Engineering, and the
Foundation Chair of the Center for Communication
and Signal Processing Research at the New Jersey
Institute of Technology (NJIT), Newark. Previously,
he was with the Rafael Armament Development Au-

thority, Israel, working in the field of communications and control; and with the
Nuclear Medicine Department, Elscint Ltd., Haifa, Israel, as a Chief Engineer
in the field of control, and image and data processing. In 1973, he joined the
School of Engineering, Tel-Aviv University, Tel Aviv, Israel, where he was
an Associate Professor of Control and Communications. Between September
1978 and September 1979, he was a Visiting Professor with the Department of
Applied Mathematics, Brown University. He was on leave with the University
of Pennsylvania and Drexel University, both in Philadelphia, PA. He came to
NJIT from AT&T Bell Laboratories in 1985. Between September 1993 and
August 1994, he was on sabbatical with the Telecommunications and Traffic
Control Systems Group, Faculty of Electrical Engineering, Delft University
of Technology, Delft, The Netherlands. Between September 2000 and August
2001, he was on sabbatical at Stanford University, Stanford, CA. His current
research interests include adaptive multiuser detection, array processing and
interference cancellation, and wireless mobile and personal communications.

Dr. Bar-Ness was an Area Editor for the IEEE TRANSACTIONS ON

COMMUNICATIONS (Transmission Systems), and Editor for Adaptive Processing
Systems. He is the Founder and Editor-in Chief for IEEE COMMUNICATIONS

LETTERS. He is also Editor for the journal Wireless Personal Communications.
He was Chairman of the Communication Systems Committee, and currently
is the Vice Chair of the Communications Theory Committee of the IEEE
Communication Society. He served as the General Chair of the 1994 and 1999
Communication Theory Mini-Conference. He was also the Technical Chair for
the IEEE Sixth International Symposium on Spread Spectrum Techniques and
Applications. He is a recipient of the Kaplan Prize (1973), which is awarded
annually by the government of Israel to the ten best technical contributors.


	toc
	Diversity Combining With Imperfect Channel Estimation
	Roy You, Member, IEEE, Hong Li, Student Member, IEEE, and Yehesk
	I. I NTRODUCTION

	Fig.€1. Diversity combiner with imperfect channel state informat
	II. S YSTEM M ODEL AND O PTIMAL D ETECTION R ULE
	A. System Model
	B. Optimal Detection Rule

	III. O PTIMAL C OMBINING AND C ORRESPONDING E RROR P ERFORMANCE
	A. Optimal Combining With Perfect Channel Knowledge
	B. Optimal Combining With Imperfect Channel Knowledge
	C. Evaluation of Optimal Combining Performance

	IV. S UBOPTIMAL C OMBINING AND C ORRESPONDING E RROR P ERFORMANC
	V. E XAMPLES AND N UMERICAL R ESULTS
	A. Pilot-Symbol-Aided Channel Estimation
	B. Optimal Combining
	C. Suboptimal Combining
	D. Channel Models and Simulation Results


	Fig. 2. Example of frequency-diversity model ( $\tau _{d}=25$ ns
	Fig. 3. Example of spatial diversity model ( $f_{c} = 2.4$ GHz).
	VI. C ONCLUSION
	W. C. Jakes, Microwave Mobile Communications . New York: Wiley, 
	J. G. Proakis, Digital Communications, 4 ed. New York: McGraw-Hi
	M. Gans, The effect of Gaussian error in maximal ratio combiners
	B. R. Tomiuk, N. C. Beaulieu, and A. A. Abu-Dayya, General forms
	S. Roy and P. Portier, Maximal-ratio combining architectures and
	J. S. Thompson, Antenna array performance with channel estimatio
	M. K. Simon and M.-S. Alouini, Digital Communication Over Fading
	J. K. Cavers, An analysis of pilot symbol assisted modulation fo
	F. D. Neeser and J. L. Massey, Proper complex random processes w
	S. M. Kay, Fundamentals of Statistical Signal Processing . Engle
	V. V. Veeravalli, On performance analysis of signaling on correl
	M. D. Yacoub, Foundations of Mobile Radio Engineering . Boca Rat
	G. Stuber, Principles of Mobile Communication . Norwell, MA: Klu



