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Optimal Pilot-to-Data Power Ratio for Diversity
Combining with Imperfect Channel Estimation

Yong Peng, Shengshan Cui, and Roy You

Abstract— The bit error probability for BPSK modulation
over correlated Rice fading channel is derived for minimum
mean square error channel estimation using pilot symbol assisted
modulation and diversity combining at the receiver. The optimal
pilot-to-data power ratio is studied for different Rice K factors.
The theoretical result is verified by Monte-Carlo simulation with
space diversity fading model.

Index Terms— Diversity combining, imperfect channel estima-
tion, correlated fading, Rice fading.

I. INTRODUCTION

D IVERSITY combining has often been used to combat the
deleterious effect of channel fading where the channel

state varies randomly over time, space and frequency [1].
When the channel state information (CSI) is known perfectly
at the receiver, various diversity combining techniques can be
used to improve the bit error rate (BER) of the system [2].
However, in real practice, the CSI available at the receiver is
usually imperfect, thus degrading the combining performance.
In [3], the effect of imperfect channel estimation on BPSK
modulation with maximal ratio combining (MRC) is inves-
tigated. In [4], the optimal combining for BPSK modulation
over correlated Rayleigh fading channels with minimum mean
square error (MMSE) channel estimation is derived and the
BER performance is presented in analytical form, which
generalizes the special cases of diversity combining with im-
perfect channel estimation for uncorrelated diversity branches
in [5] and diversity combining for correlated branches but with
perfect channel estimation in [6]. In this letter, we further
apply the framework developed in [4] to investigate the BER
performance of diversity combining of BPSK modulation with
imperfect CSI over correlated Rice fading channel, where
line of sight (LoS) paths exist between the transmitter and
the receiver. Furthermore, for channel estimation using pilot
symbol assisted modulation (PSAM) scheme [7], we study
the pilot-to-data power ratio to optimize the BER performance
under fixed total transmitting power.

This letter is organized as follows. In Section I, the system
model is introduced and the optimal combining technique
under Rice fading channel is derived. In Section III, the
analytical BER expressions are given for both perfect and
imperfect CSI. The optimal pilot-to-data power ratio is studied
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Fig. 1. A general single user diversity combiner.

in Section IV. Section V presents the numerical results using a
space diversity fading model. Section VI concludes the letter.

II. OPTIMAL DIVERSITY COMBINING WITH MMSE

A diversity combining system is shown in Fig.1, where
a BPSK symbol s ∈ {√Es,−

√
Es} with equal probability

is transmitted over a correlated Rice fading channel with
N diversity branches. The additive white Gaussian noise
n = [n1, n2, . . . , nN ]H is assumed to be proper complex [8]
with n ∼ CN (0, N0IN ) where [·]H denotes the Hermitian
operator and IN denotes the identity matrix. The channel state
g = [g1, g2, . . . , gN ]H is also assumed to be proper complex
Gaussian, with g ∼ CN (u, Cgg). u = [u1, u2, . . . , uN ]H is
the LoS component. The channel covariance matrix Cgg =
UΛggUH can be diagonalized by the unitary matrix U with
eigenvalue matrix Λgg = diag(σ2

ḡ1
, σ2

ḡ2
, . . . , σ2

ḡN
). Without

loss of generality, we assume that uHu+tr(Cgg) = 1, where
tr(·) denotes the trace of a matrix. The Rice K factor is
defined as the ratio between the total LoS and total diffuse
power

K � uHu
tr(Cgg)

. (1)

We further assume that the mean channel gain is the same for
each diversity branch (|un|2 = (K/N)

∑N
i=1 σ2

ḡi
for all n).

The channel is also assumed to be block fading with block
length L = �1/2fDTs�, where fD is the Doppler frequency
spread and Ts is the symbol duration.

Using PSAM, M pilot symbols with amplitude
√

Ep are
inserted in each fading block for channel estimation. We define
γb � Eb

N0
as the effective SNR per bit, where

Eb � (L − M)Es + MEp

L − M
. (2)

The normalized channel observation is

h = g +
n√
MEp

, (3)
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where h ∼ CN (u, Chh). Chh = U(Λgg+(N0/MEp)IN )UH

can also be diagonalized by unitary matrix U. Using MMSE,
the estimation of the channel state is

m = u + CghC−1
hh (h − u). (4)

Cgh = E[(g − u)(h − u)H ] = UΛghUH is the cross-
covariance matrix and m ∼ CN (u, Cmm), where Cmm =
CghC−1

hhCH
gh = UΛmmUH . The channel estimation error

e = g − m also has Gaussian distribution with zero-mean
and covariance matrix of

Cee = Cgg − Cmm = U(Λgg − Λmm)UH . (5)

Applying diversity combining by multiplying each diversity
branch with weight coefficients w = [w1, w2, . . . , wN ]H , the
combiner output is

r = wH(gs + n). (6)

With maximum likelihood detection, the decision rule is

|r − wHms0|2
ŝ=s0

≶
ŝ=s1

|r − wHms1|2. (7)

Following similar steps as in [4], the conditional error proba-
bility can be derived as

Pr(e|s,h) = Q

(√
2|wHm|2Es

(wH(CeeEs + N0IN )w)

)
, (8)

where the optimal weighting coefficients is

w = (CeeEs + N0IN )−1m. (9)

The corresponding BER is

Pe =
∫

Q(
√

2mH(CeeEs + N0IN )−1mEs ) p(m) dm.

(10)

III. BER EVALUATION

To evaluate the BER, we use the approach in [2] with the
alternative expression for the Q(·) function

Q(x) =
1
π

∫ π
2

0

exp
(
− x2

2 sin2 θ

)
dθ. (11)

A. Evaluation for Perfect Channel Estimation

When the CSI is perfectly known, m = h = g. Using
Eqs.(10) and (11), Pe can be written as

Pe =
1
π

∫
g

∫ π/2

0

exp
[
−gH(N0IN )−1gEs

sin2 θ

]
1

πN det (Cgg)

· exp
[
−(g − u)H

C−1
gg (g − u)

]
dθ dg

=
1
π

∫ π/2

0

{
det

[
(Es/N0)Cgg

sin2 θ
+ IN

]}−1

(12)

· exp{−uH [Cgg + (Es/N0)−1 sin2 θIN ]−1u} dθ.

In Rayleigh fading where u = 0, the BER has a close-form
solution [3]

Pe =
1
2

N∑
n=1

⎛
⎜⎝ N∏

i=1
i�=n

(
1 − λ′

i

λ′
n

)⎞
⎟⎠

−1 [
1 −

√
λ′

n

1 + λ′
n

]
(13)

where

λ′
n �

σ2
ḡn

Es

N0
. (14)

In Rice fading where u �= 0, Pe can not be simplified any
further. However, Since (12) is a finite-range integral, the BER
can easily be evaluated numerically for any given u.

B. Evaluation for Imperfect Channel Estimation

With imperfect channel estimation, using Eqs.(10) and (11),
the BER can be expressed as

Pe =
1
π

∫
m

∫ π/2

0

exp
[
−mHΣ−1mEs

sin2 θ

]
1

πN det (Cmm)

· exp
[
−(m − u)H

C−1
mm(m − u)

]
dθ dm

=
1
π

∫ π/2

0

{
det

[
CmmΣ−1Es

sin2 θ
+ IN

]}−1

· exp
{−uH [Cmm + ΣE−1

s sin2 θ]−1u]
}

dθ. (15)

where Σ = CeeEs + N0IN . The closed form expression of
BER in Rayleigh correlated fading is given in [4]

Pe =
1
2

N∑
n=1

⎛
⎜⎝ N∏

i=1
i�=n

(
1 − λi

λn

)⎞
⎟⎠

−1 [
1 −

√
λn

1 + λn

]
(16)

where

λn �
σ2

ḡn
Es

N0
· MEp

Es + MEp + N0/σ2
ḡn

. (17)

Again, (15) must be evaluated by numerical integration when
the channel is Rice correlated fading with u �= 0.

IV. PILOT-TO-DATA POWER RATIO OPTIMIZATION

For pilot symbol assisted modulation, a trade-off exists for
the pilot and data symbol power. While more pilot power
leads to better channel estimation, the overhead imposed by
pilot symbol reduces the effective SNR γb. In this section, we
study the power ratio between pilot and data symbol power
for optimal BER performance.

We define the ratio between the pilot power and the total
transmitted power as

β � MEp

MEp + (L − M)Es
, β ∈ (0, 1). (18)

For Rayleigh fading case, substituting Eb and β into (17) and
assuming high SNR (γb � 1), we have

λn =
σ4

ḡn
(L − M) β(1 − β)γ2

b

σ2
ḡn

[β (L − M) + (1 − β)] γb + 1

≈ (L − M)β(1 − β)
(L − M) β + (1 − β)

· σ2
ḡn

· γb. (19)

Since Pe decreases monotonically with increasing λn, lower
BER can be obtained by maximizing (L−M)β(1−β)

(L−M)β+(1−β) . The
optimal β value is approximately

β ≈
√

L − M − 1
(L − M) − 1

. (20)
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Fig. 2. Comparison of the analytical and simulation results of BER Pe vs.
SNR γb with different Rice K factors using spatial diversity model (N =
3, d = .15m, fDTs = .05, L = 10, M = 1, Ep = 3Es).

Substituting (18) into (20), we get

MEp

(L − M)Es
≈ 1√

L − M
. (21)

With typical fDTs parameters, e.g. fDTs = .05, L = 10. If
we want to use Ep = Es, we should have M ≈ 3. If we want
to use M = 1, then we should have Ep ≈ 3Es.

For Rice fading case, since there is no closed form expres-
sion for Pe, the optimal β can only be obtained by numerical
simulation, which is demonstrated in next section.

V. NUMERICAL RESULTS

For simulation, a spatial diversity fading model is used [9]

Cgg(m,n) = σ2
gJ0

(
2π

|m − n| d · fc

c

)
, (22)

where d is the distance between two adjacent antennas, fc

is the carrier frequency, and c is the speed of light. J0 (·)
is the zeroth-order Bessel function of the first kind. In our
case, three antennas (N = 3) are spaced inline equally with
separation distance d = .15m. We also assume that fDTs =
.05, which implies L = 10. One pilot symbol per fading block
(M = 1) is used and the pilot-to-data power ratio is set to
Ep = 3Es, which gives the optimal β = .25 for Rayleigh
fading at high SNR. Fig. 2 shows both the analytical and the
Monte-Carlo simulation results of the BER performance for
the optimal diversity combining using PSAM and the maximal
ratio combining with perfect channel knowledge for K = 1
and K = 5. It can be seen that the analytical results agree with
the Monte-Carlo simulations quite well. As expected, the BER
decreases with larger Rice K factor since there is stronger LoS
component and less channel uncertainty.

The trade-off between pilot and data symbol power is
investigated numerically with respect to Rice K factor and
effective SNR γb. The result is plotted in Fig. 3. With large
Rice K factor, since there is less channel uncertainty, less pilot
symbol energy is needed for channel estimation. The optimal β
value is also dependent on the effective SNR γb. At high SNR,
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Fig. 3. The optimum value of β vs. SNR γb with Rice factors K = 0, 1, 2, 5
(N = 3, d = .15m, fDTs = .05, L = 10, M = 1).

the channel estimation error dominates. Therefore, the optimal
proportion should be used to achieve the balance between
estimation overhead and accuracy. At low SNR, the BER
performance is dominated by channel noise and the channel
estimation can not be significantly improved even if more
power is allocated. Therefore, if a reliable LoS component
exists, less power is needed on channel estimation.

VI. CONCLUSION

In this letter, we have shown that the diversity combining
performance over Rice correlated fading channel is dependent
on the Rice K factor as well as the power ratio between the
pilot and data symbols. When more signal propagate through
the LoS path between transmitter and receiver, there is less
channel uncertainty and less resource is needed for channel
estimation.
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