
166 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 5, NO. 1, JANUARY 2006

Frame-Frequency Estimation in
Ultrawideband Systems

Antonio A. D’Amico and Umberto Mengali, Life Fellow, IEEE

Abstract—This paper investigates the estimation of the frame
frequency in ultrawideband (UWB) communication systems. An
estimation method is proposed that exploits the transmission of a
periodic pulse sequence at the frame frequency. The samples of
the received waveform are used to compute a cost function that
depends on a trial value of the incoming pulse frequency. The
location of the maximum provides an estimate of the transmitted
frequency. The performance of the estimator is assessed theoreti-
cally and is compared to the Cramer–Rao lower bound. It is shown
that in certain conditions the estimator achieves the bound at high
SNR values. Simulations validate the theory and show the degra-
dations in the estimation performance caused by multiple-access
interference. They also give an idea of the estimation accuracy
needed in a correlation receiver.

Index Terms—Frame-frequency estimation, least-squares meth-
od, synchronization, ultrawideband (UWB) communications.

I. INTRODUCTION

U LTRAWIDEBAND (UWB) communications are cur-
rently the focus of intense research activity aiming at

the exploitation of the vast unlicensed spectrum from 3.1
through 10.6 GHz made available by the Report and Order of
the Federal Communications Commission (FCC). A promising
technology in this area is impulse radio, in which the signal
bandwidth is expanded by transmitting subnanosecond pulses.
The interest for commercial applications of impulsive radio
stems from many favorable features [1], [2]. First, signal echoes
with differential delays of nanoseconds can be resolved and
combined to take advantage of the multipath channel diversity.
Secondly, the same transmission medium can be shared by
hundreds of users. Finally, as UWB communications operate at
very low power spectral densities, they can overlay traditional
narrowband systems with limited interference. To realize these
attractive features, however, some formidable technological
problems must be addressed. These include: 1) high detector
sensitivity to timing errors [3], [4]; 2) complexity of the receiver
architectures [5]–[7] and of the channel-estimation algorithms
[8]–[11]; 3) strict limitations on the emitted power to minimize
the interference over existing services that already use the same
spectrum [12], [13].
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Intuitively, the sensitivity to timing arises from the extremely
narrow pulses employed in impulse radio. Sampling errors as
small as a fraction of a nanosecond markedly affect the receiver
performance [3]. Even if less intuitive, the pulse shortness and
the sparseness of the pulse replicas at the output of a multi-
path channel make channel estimation a challenging task [8],
[14]. Further complications in synchronization and channel-
estimation operations stem from the frequency instabilities in
the transmit/receive clocks. In impulse radio, the information
is conveyed by a pulse stream and a single data symbol is
associated to Nf consecutive pulses, each located in a frame
of Tf seconds. The ratio of Tf to the pulse duration Tp is on the
order of 100 or more. Now, suppose that the frame length Tf at
the transmitter is slightly different from that T ′f at the receiver
(as a consequence of the thermal drifts of the oscillators). On
the receiver time scale, which ticks at multiples of T ′f , the
arriving pulses are seen to drift leftward or rightward according
to whether T ′f ≷ Tf . Clearly, the drift undermines the data-
detection process unless it is compensated.

To cope with this problem, two solutions are available
[15], [16]: 1) feedforward synchronizers, in which the receiver
clock is free running but the drift is periodically measured and
accounted for in computing the decision statistic; 2) feedback
synchronizers, in which the receiver clock is locked to the
incoming pulse rate, meaning that the drift is continuously
measured and updated. In traditional narrowband communi-
cations, both types of synchronizers are implemented with no
particular requirements on the oscillator stabilities. Vice versa,
as we shall see soon, in UWB systems, the requirements are
rather stringent. To illustrate this point, we concentrate on
feedforward schemes, but the essence of our arguments holds
with feedback schemes as well.

The difficulty in measuring the drift arises from two con-
flicting constraints. On one side, the interval over which the
measurement is performed must be sufficiently long to achieve
a good accuracy. On the other, as is explained soon, it must be
short enough so that the overall drift across the interval is small
compared to the pulse duration. More precisely, suppose that
the first condition is satisfied with an interval of Ns symbols
and call

θ =

(
T ′f − Tf

)
Tf

(1)

the normalized drift per frame. As a symbol has Nf frames, the
total drift over Ns symbols is NsNfTfθ and this quantity must
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be much smaller than Tp, i.e., the following condition must hold

θ � Tp
NsNfTf

. (2)

Before explaining why this is so, we point out the difference
between narrowband and UWB systems in meeting (2). In the
former, there is a single frame per symbol and its duration
is comparable to the pulsewidth, i.e., Nf = 1 and Tf � Tp.
For example, for Ns = 50, from (2) we have θ � 2× 10−3,
which is easily satisfied, even with low-cost oscillators. On
the contrary in impulsive radio Nf may be a few tens and
Tf/Tp is much greater than unity. For example, for Tf/Tp =
100, Nf = 25, and Ns = 50, we have θ � 8× 10−6, which
is rather stringent if we bear in mind that θ is the sum of the
frequency stabilities of the transmit and receive clocks and that,
even with temperature-compensated crystal oscillators, such
stabilities may be some parts per million.

To gain a physical insight into (2), suppose that a periodic
train of pulses is transmitted

s(t) =
N−1∑
i=0

g(t− iTf ) (3)

where g(t) is a short pulse of duration Tp < Tf . The channel
has a single path with unity gain and unknown delay τ ∈
[0, Tf ) and the disturbance v(t) is additive white Gaussian
noise (AWGN). Thus, the received waveform is

r(t) = s(t− τ) + v(t). (4)

Assuming that g(t) is known, we want to estimate τ , ignoring
the mismatch between T ′f and Tf , i.e., taking T ′f as the true
pulse-repetition period. Note that this scenario is simplified
for illustration purposes. With a realistic UWB channel, the
received signal corresponding to a single excitation pulse is the
superposition of many distorted replicas of the pulse, each with
its own amplitude and delay [17].

In Appendix A, it is shown that the maximum-likelihood
estimate of τ is computed as follows. First, r(t) is folded N
times with period T ′f to form

rfold(t) =
1
N

N−1∑
i=0

r
(
t+ iT ′f

)
. (5)

Next, rfold(t) is fed to the matched filter g(−t) to compute the
convolution x(t) = rfold(t) ∗ g(−t). Finally, the maximum of
x(t) is sought and its location provides the desired estimate.

The impact of θ on the estimation accuracy is qualitatively
assessed from the shape of the noise-free component of x(t) in
the interval [0, Tf ). In Appendix A, it is shown that

x(t) = p(t− τ) + n(t), t ∈ [0, Tf ) (6)

where n(t) represents the noise contribution, while p(t) is
given by

p(t) =
1
N

N−1∑
i=0

γ(t+ iθTf ) (7)

Fig. 1. Pulse p(t) for some values of θ.

with γ(t) = g(t) ∗ g(−t). Note that γ(t) is an even function,
with a maximum in the origin, and p(t) is the superposition
of N time-shifted versions of γ(t). Thus, for θ = 0, we have
p(t) = γ(t) and (in the absence of noise) the maximum of
x(t) occurs exactly at t = τ . On the contrary, for θ �= 0, the
maximum is shifted from τ and (what is worse) its height is
reduced. This increases the chance that the noise moves the
peak of x(t) further away from τ , thereby generating large
estimation errors. Fig. 1 illustrates the shape of p(t) for N =
1250, corresponding to an observation interval of 50 symbols,
each of 25 frames. The frame period is Tf = 100 ns and g(t) is
the second derivative of a Gaussian function of 1-ns duration. It
is seen that the height of the peak decreases as θ increases and
the reduction becomes substantial for θ = 4× 10−6.

The above discussion indicates that frame-frequency syn-
chronization in UWB systems is a difficult task, even with
good oscillators. Some results on this problem are reported in
[18], where a time-locked loop is used to acquire and track
the incoming pulses. The channel has a dominant path and the
pulses from that path are correlated with a template waveform
timed by the voltage-controlled oscillator of the receiver. Unfor-
tunately, this approach is not suitable with realistic multipath
channels where there are hundreds of paths and a correlator
matched to one of them would capture only a small fraction
of the received power.

In the present paper, we take a different approach that ex-
ploits the whole received power. The idea is to transmit a se-
quence of pulses at frame rate and measure the period of the
incoming waveform. The result can be used to trim the fre-
quency of the receiver oscillator [19]. We focus on the esti-
mation problem and we derive an algorithm that, in certain
conditions, achieves the Cramer–Rao lower bound at high
signal-to-noise ratio (SNR).

The rest of the paper is organized as follows. The next
section describes the signal model and the estimation algorithm.
The estimator performance is investigated in Section III, while
simulations are discussed in Section IV. As we shall see, they
validate the theory and indicate the degradations in estimation
accuracy due to the interference from other UWB users. Some
conclusions are drawn in Section V.
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II. FRAME-FREQUENCY ESTIMATION

A. Signal Model

For convenience, we assume that the transmitted signal is still
periodic, as indicated in (3). The problem of the interference
of its spectral lines on other systems operating in the same
bandwidth deserves investigation, but is not addressed in the
sequel. The propagation channel is modeled as a tapped-delay
line with impulse response

c(t) =
Lp∑
l=1

αlδ(t− τl) (8)

where Lp is the total number of paths, each with gain αl and
delay τl, and δ(t) is the Dirac delta function. Letting h(t) be
the convolution of g(t) with c(t) and the receive filter response,
the overall channel output becomes

x(t) =
∞∑

i=−∞
h(t− iTf ) + n(t) (9)

where n(t) accounts for the thermal noise and the interference
from the other users, and the summation limits have been
extended to infinity to indicate that the pulse sequence is
sufficiently long that it can be viewed as a periodic function
over a suitable interval near the origin. Expressing this function
as a Fourier series yields

∞∑
i=−∞

h(t− iTf ) =
∞∑

k=−∞
Hke

j2πkt
Tf (10)

in which

Hk =
1
Tf

H

(
k

Tf

)
(11)

and H(f) is the Fourier transform of h(t). Then, bearing in
mind that H(f) is limited within some bandwidth (0, B], we
have

x(t) =

L
2 −1∑

k=−L
2 +1

Hke
j2πkt

Tf + n(t) (12)

where L/2− 1 = 
BTf� and 
x� is the integer part of x.
We want to estimate 1/Tf from the samples of x(t) taken

at rate 1/Ts = L/T ′f . For brevity, we let x[i] = x(iTs + t0)
and n[i] = n(iTs + t0), where t0 is an arbitrary constant. Then,
exploiting (1) to express Ts in the form

Ts =
Tf (1 + θ)

L
(13)

from (12) we get

x[i] =

L
2 −1∑

k=−L
2 +1

wke
j2πki(1+θ)

L + n[i] (14)

with

wk = Hke
j2πkt0

Tf . (15)

Some unknown parameters appear in (14), the normalized drift
θ and the coefficients {wk}, collectively represented by the
vector

w =
(
w−L

2 +1, . . . , w0, . . . , wL
2 −1

)T

. (16)

In the following, we concentrate on θ because, as is seen
from (1), the frequency offset between the transmitter and the
receiver is proportional to θ

1
Tf
− 1

T ′f
=

θ

T ′f
. (17)

In particular, we look for an algorithm that estimates θ based
on the observation of x[i] over an interval of M frames (LM
samples), say 0 ≤ i ≤ LM − 1.

B. Least-Squares Estimation

Assume that M can be factorized as P ×Q and divide the
observation interval into Q segments, each of LP samples.
Also, collect the samples from the qth segment into a vector

xq = (x[qLP ], x[qLP + 1], . . . , x[qLP + LP − 1])T . (18)

From (14), the mth component of xq may be written as

[xq]m =

L
2 −1∑

k=−L
2 +1

wkej2πkqPθe
j2πkm(1+θ)

L + [nq]m,

m = 0, 1, . . . , LP − 1 (19)

where [nq]m = n[m+ qLP ]. Next, we make a temporary ap-
proximation to ease the derivation of the estimator. It consists
of assuming LP as small compared to 1/|θ|, so that ej2πkmθ/L

can be set equal to unity in (19) for any k ∈ [−L/2 + 1,
L/2− 1] and m ∈ [0, LP − 1]. Note that this approximation
is not used in Section III when dealing with the performance of
the estimator. Equation (19) becomes

[xq]m =

L
2 −1∑

k=−L
2 +1

wkej2πkqPθe
j2πkm

L + [nq]m,

m = 0, 1, . . . , LP − 1 (20)

or more compactly

xq = EDq(θ)w + nq, q = 0, 1, . . . , Q− 1 (21)

where E is an LP × (L− 1) matrix with entries

[E]m,k = e
j2πkm

L (22)
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Dq(θ) is an (L− 1)× (L− 1) diagonal matrix

Dq(θ) = diag
(
ej2π(−

L
2 +1)qPθ,

ej2π(−
L
2 +2)qPθ, . . . , ej2π(

L
2 −1)qPθ

)
(23)

and w is defined in (16). From now on, we assume Q > 1
because, otherwise, the observation would reduce to x0, which
is independent of the drift θ.

As xq depends on both θ and w, we aim at their joint
estimation with the least squares (LS) method. To this end, we
introduce trial values of θ and w, say θ̃ and w̃, and minimize
the cost function

J(θ̃, w̃) =
Q−1∑
q=0

∥∥∥xq −EDq(θ̃)w̃
∥∥∥2

(24)

under the constraint w̃−k = w̃∗k. This constraint stems from fact
that, as h(t) is real-valued, its Fourier transform H(f) is conju-
gate symmetric. From (11), it follows that H−k = H∗k and, from
(15), w−k = w∗k. The minimization of (24) is straightforward
and is skipped for space limitations. The desired estimates are
found to be

θ̂ = argmax
θ̃

{∥∥∥u(θ̃)∥∥∥2
}

(25)

ŵ =
1

LPQ
u(θ̂) (26)

where

u(θ̃) =
Q−1∑
q=0

DH
q (θ̃)E

Hxq (27)

and the superscript “H” denotes Hermitian transposition. As
is seen, the computation of θ̂ requires a grid search over the
range of the possible values of θ. This is a consequence of the
nonlinear dependence of J(θ̃, w̃) on θ̃, which prevents a closed-
form solution.

A few remarks are in order.
1) Computation of ‖u(θ̃)‖2: The following observations

tend to ease the computational load. Rewrite (27) as

u(θ̃) =
Q−1∑
q=0

DH
q (θ̃)yq (28)

with

yq = EHxq. (29)

Using (22) and performing some manipulations, the generic
component of yq may be expressed as

[yq]k =
L−1∑
m=0

[zq]me
−j2πkm

L , −L

2
+ 1 ≤ k ≤ L

2
− 1 (30)

[zq]m =
P−1∑
p=0

[xq]m+pL (31)

which says that yq can be efficiently computed through
L-point FFTs.

From (28), we have

∥∥∥∥∥
Q−1∑
q=0

DH
q (θ̃)yq

∥∥∥∥∥
2

=
Q−1∑
q=0

∥∥∥DH
q (θ̃)yq

∥∥∥2

+ 2�e
{
Q−1∑
q=0

Q−1∑
m=q+1

yH
q Dq(θ̃)DH

m(θ̃)ym

}
(32)

where �e{x} is the real part of x. Bearing in mind (23), it
is easily checked that the first term on the right-hand side
(RHS) of (32) is independent of θ̃ and can be disregarded when
maximizing ‖u(θ̃)‖2. The second term can be rearranged as

2�e



Q−1∑
q=1

L
2 −1∑

k=−L
2 +1

dq[k]e−j2πPqkθ̃


 (33)

with

dq[k] =
Q−q−1∑
m=0

[ym]∗k[ym+q]k. (34)

The inner summation in (33) may be computed through chirp
Fourier-transform techniques (see [20, p. 151]) by varying θ̃ on
a grid with the desired resolution.

2) Factorization P ×Q: The choice of P and Q arises from
a tradeoff between complexity and performance. In fact, the
number of the Fourier transforms involved in the computation
of u(θ̃) is proportional to Q, which suggests keeping Q as
small as possible. On the other hand, reducing Q amounts
to increasing P which, as we shall see in the next section,
deteriorates the estimator performance.

III. PERFORMANCE EVALUATION

In this section, we compute the mean value and the vari-
ance of the estimator (25), and we provide the Cramer–Rao
bound (CRB) for any unbiased estimator of θ. In dealing with
these issues, we take a fixed channel and concentrate on the
noise-induced fluctuations. To begin, we introduce the notation
Λ(θ̃) = ‖u(θ̃)‖2 and look for an explicit expression of θ̂, the
maximizer of Λ(θ̃). The main idea in doing so is that, with low
noise levels, Λ(θ̃) is expected to be a well-behaved function
with a maximum close to θ. Thus, in a neighborhood of θ, we
represent Λ(θ̃) by a three-term Taylor series

Λ(θ̃) ∼= Λ(θ) + Λ′(θ)(θ̃ − θ) +
1
2
Λ′′(θ)(θ̃ − θ)2. (35)

Setting to zero the derivative of Λ(θ̃) and solving for θ̃ yields

θ̂ ∼= θ − Λ′(θ)
Λ′′(θ)

. (36)
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Dealing with this expression is still difficult because the
second term in the RHS is a ratio of two random variables,
which is hard to handle when computing the first and second
moments of θ̂. On the other hand, in the absence of noise, we
expect θ̂ = θ and, correspondingly, Λ′(θ) = 0 and Λ′′(θ) < 0.
Thus, assuming a low noise level so that the fluctuations of
Λ′′(θ) are small, we replace Λ′′(θ) by its expectation and rewrite
(36) as

θ̂ ∼= θ − Λ′(θ)
E {Λ′′(θ)} (37)

from which the mean value and variance of θ̂ are derived in
the form

E{θ̂} = θ − E {Λ′(θ)}
E {Λ′′(θ)} (38)

Var{θ̂} =
E

{
[Λ′(θ)]2

}
[E {Λ′′(θ)}]2

. (39)

The expectations in (38) and (39) are computed in Appen-
dix B under the assumption that the disturbance n(t) in (9)
can be modeled as a zero-mean Gaussian process with inde-
pendent Ts-spaced samples. As mentioned in Section II, n(t) is
actually a mixture of thermal noise nTH(t) and multiple-access
interference (MAI) nMAI(t). Accordingly, with a large number
of interferers, the Gaussian approximation is well justified in
view of the central-limit theorem. The independence of the
samples is another question, however. If we take a receive
filter with a rectangular transfer function over the bandwidth
|f | ≤ 1/2Ts (as we do in Section IV), then it is easily checked
that nTH(t) does have independent samples. Unfortunately, the
same property does not hold for nMAI(t), so that our results are
valid only in the absence of MAI.

Returning to the drift estimator and using formulas from
Appendix B, it is found that

E{θ̂}= θ (40)

Var{θ̂}= 6
(2π)2LP 3Q(Q2 − 1)

× 1
1
σ2

n

∑L
2 −1

k=1 k2|Hk|2
(

sin(πkPθ)
P sin(πkθ)

)2 +O
(
σ4
n

)
(41)

where σ2
n is the variance of n(t) and O(σ4

n) is proportional to
σ4
n. The following remarks are of interest.

1) Equation (40) says that the estimator is unbiased.
2) For an LP that is small compared with 1/|θ|, the ratio

sin(πkPθ)/[P sin(πkθ)] is approximately unity for any
k ∈ [1, L/2− 1] and (41) becomes

Var{θ̂} = 6
(2π)2LP 3Q(Q2 − 1)

× 1
1
σ2

n

∑L
2 −1

k=1 k2|Hk|2
+O

(
σ4
n

)
. (42)

Recalling that PQ = M is the number of frames in the
observation interval, we see that for Q� 1 and small
noise levels (i.e., O(σ4

n) is negligible), the estimator
accuracy increases with the cube of the observation inter-
val. Even relatively small extensions of the observation
interval correspond to significant improvements in esti-
mation accuracy, a feature also encountered with carrier
frequency-offset measurements ([15, p. 58]).

3) If LP is not small compared with 1/|θ|, the ratio
sin(πkPθ)/[P sin(πkθ)] is less than unity and the vari-
ance is greater than as expressed in (42). Thus, increasing
P with a fixed M deteriorates the estimator accuracy.

4) The summation in (42) may be rearranged as a product

1
σ2
n

L
2 −1∑
k=1

k2|Hk|2 =
∑L

2 −1

k=1 |Hk|2
σ2
n

×
∑L

2 −1

k=1 k2|Hk|2∑L
2 −1

k=1 |Hk|2
.

(43)

The first factor is proportional to the SNR, while the
second may be viewed as the normalized mean-square
bandwidth of the signal. Thus, the estimation accuracy
improves not only with SNR (as expected) but also with
the signal bandwidth. This is physically pleasing since the
larger the bandwidth is, the sharper the pulses are, and the
better they are “seen” in a background of noise. A similar
conclusion holds true for clock recovery in narrowband
transmissions ([15], p. 64).

5) Assuming a long observation interval (M � 1) and, once
again, Gaussian and independent Ts-spaced samples of
n(t), it is found through lengthy calculations that the
CRB for θ is

CRB =
6

(2π)2LM3

1
1
σ2

n

∑L
2 −1

k=1 k2|Hk|2
(44)

which coincides with the first term on the RHS of (42) for
Q� 1. Thus, the CRB is achieved for an SNR� 1 and
with parameter P sufficiently small.

IV. SIMULATION RESULTS

A. Channel Model

The channel model is that indicated as CM3 by the IEEE
802.15.3a Channel Modeling Subcommittee for use in the eval-
uation of UWB physical-layer submissions [21]. Simulations
with CM1 have also been run but are not reported as they are
virtually identical to those with CM3. The channel impulse
response is represented by

c(t) = X

Lc∑
l=1

Lr∑
k=1

αk,lδ(t− Tl − τk,l) (45)

where X is the attenuation due to shadowing, αk,l is the gain
coefficient of the kth ray in the lth cluster, Tl is the arrival time
of the lth cluster, and τk,l is the delay of the kth ray in the lth
cluster relative to the beginning of the cluster. The attenuation
has a log-normal distribution, i.e., 20 log10 X ∈ N (0, σ2

x). The
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cluster arrival times are Poisson distributed with rate Λ and the
rays within a cluster also have Poisson arrivals with rate λ. The
gain coefficients are defined as αk,l = pk,lβk,l, where pk,l takes
values ±1 with the same probability and accounts for signal
inversions due to reflections, while βk,l are independent log-
normally distributed random variables, i.e.,

20 log10 βk,l ∈ N
(
µk,l, σ

2
1 + σ2

2

)
. (46)

Parameter µk,l, reflecting the power decay over the clusters and
within a given cluster, is given by

µk,l =
10 lnΩ0 − 10Tl

Γ − 10τk,l

γ

ln 10
−
(
σ2

1 + σ2
2

)
ln 10

20
(47)

where Γ and γ are the cluster decay factor and the ray decay
factor, respectively, whereas Ω0 is the mean energy of the first
ray in the first cluster.

In the simulations, X is set equal to 1 and Ω0 is chosen so
as to normalize to unity the total energy of the gains {αk,l}.
This is easily accomplished bearing in mind that E{α2

k,l} =
Ω0e−Tl/Γe−τk,l/γ . The normalization implies that the inter-
ferers have the same power. The following parameters values
have been chosen: Λ = 0.0667 ns−1, λ = 2.1 ns−1, Γ = 14.00,
γ = 7.9, σ1 = σ2 = 3.39 (dB), σx = 3 (dB). They correspond
to a 4–10 m channel with non-line-of-sight (LOS) propagation
[21] and a typical response duration of 60–70 ns.

B. Signal and Interference

We assume that Ku users are simultaneously active in the
environment, each “seeing” his own channel that is generated
with the statistics described above. The first user transmits the
synchronizing signal (3), while the others are viewed as the
interferers and transmit antipodal pulse-amplitude-modulation
(PAM) symbols. The signal generated by the kth user is
modeled as

s(k)(t)=
∞∑

i=−∞

Nf−1∑
j=0

a
(k)
i g

(
t− iNfTf − jTf − c

(k)
j Tc− τ (k)

)
,

k = 2, . . . ,Ku (48)

In this formula, a
(k)
i are information bits taking values ±1

with equal probability and g(t) represents the elementary pulse,
which is shaped as the second derivative of a Gaussian function
with a width of 1 ns. The frame period Tf is 100 ns and the
number of frames per symbol Nf is 25. Parameter Tc is the chip

duration, equal to 1 ns, and the sequence {c(k)j } is the user’s
time-hopping code. Its elements are integers that are randomly
chosen in the range 0 ≤ c

(k)
j ≤ 39 (independently from one

user to the other). Finally, the delay τ (k) accounts for the
asynchronism of the users and is uniformly distributed in the
range 0 ≤ τ (k) < NfTf .

The receive filter has a rectangular transfer function over±B
and the sampling frequency 1/Ts is 2B. In the simulations,
B is either 4, 2, or 1 GHz and ideal sampling is assumed
(infinite resolution). As mentioned in Section II, the disturbance

Fig. 2. Expectation of the estimate as a function of θ.

n(t) in (9) is a mixture of thermal noise and multiple-access
interference. The former is a Gaussian process with a two-sided
power spectral density N0/2 over the filter bandwidth.

Bearing in mind that the channel response has no dc
component (H0 = 0), the power of the synchronizing signal
is [see (12)]

Ps = 2

L
2 −1∑
k=1

|Hk|2. (49)

The signal energy over Nf frames (a symbol interval) is Es =
PsNfTf . In the sequel, the performance of the estimator is
expressed as a function of Es/N0 for a given number Ku of
active users.

C. Simulations

Fig. 2 shows the expectation E{θ̂} as a function of θ with an
observation interval of 4000 frames. There is no MAI (Ku = 1)
and Es/N0 = 10 dB. Marks represent simulations while the
solid line corresponds to the ideal case E{θ̂} = θ. The results
confirm that the estimator is unbiased. Identical conclusions
hold true in the presence of MAI.

Figs. 3–5 illustrate the root mean-square error (RMSE)

σθ =
√

Var{θ̂} as a function of Es/N0 for θ = 10−5. The
observation interval is 4000 frames, but a different factorization
M = P ×Q is used in the figures. The bandwidth of the
receive filter is 4 GHz, which corresponds to L = 802. The
CRB is shown as a reference and the theoretical curves are
computed from (41). With a single user, it is seen that the CRB
is practically achieved at high SNR in Fig. 3, where the para-
meter P has the lowest value. In the other two figures, the loss
from the CRB is apparent and grows larger as P increases. As
expected, in the presence of MAI, the curves exhibit a floor.
The RMSE in Fig. 5 shows a deviation from the theory at low
Es/N0 due to the insurgence of large estimation errors. This
phenomenon is typical of nonlinear estimators (see [22, p. 616])
and is also visible in Figs. 3 and 4 at lower values of Es/N0.
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Fig. 3. RMSE versus Es/N0 for P = 100 and Q = 40.

Fig. 4. RMSE versus Es/N0 for P = 200 and Q = 20.

The role of the filter bandwidth B is shown in Fig. 6 in
the absence of MAI. The CRB is computed for B = 4 GHz.
As expected, the estimation accuracy worsens as the filter
bandwidth is squeezed. Actually, the degradation is limited
in passing from 4 to 2 GHz, but it becomes substantial for
B = 1 GHz.

Fig. 5. RMSE versus Es/N0 for P = 400 and Q = 10.

Fig. 6. RMSE versus Es/N0 for Ku = 1 and various B’s.

In Fig. 7 the filter bandwidth is 1 GHz, but the observation
interval has been doubled to 8000 frames. For Ku = 1 and
Es/N0 � 1, the RMSE is reduced by a factor around

√
8

with respect to the corresponding values in Fig. 6, which is in
keeping with (41).
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Fig. 7. RMSE versus Es/N0 for M = 8000 and B = 1 GHz.

Fig. 8. RMSE versus Es/N0 for Ku = 1 and various B’s.

In Fig. 8, the observation interval is brought back to 4000
frames, while θ is set at 5× 10−6 (instead of 10−5 as in the
previous figures). This corresponds to a scenario with more
stable oscillators. It is seen that the estimator performance is
virtually the same as in Fig. 6, but the advantage is that Q is 10
instead of 20, which implies a reduced computational load.

Fig. 9. BER performance for some values of θ.

A natural question at this stage is about the order of mag-
nitude of the RMSE that must be guaranteed in a practical
situation. To address this problem, we have simulated a correla-
tion receiver in which the channel response is estimated in the
presence of drift. The estimation method is described in [8] and
is summarized here for convenience. The received waveform is
given in (9) and the goal is to estimate h(t) from the observation
of x(t) over an interval of M frames. In doing so, we ignore the
mismatch between T ′f and Tf and we model the deterministic
component in (9) as

∞∑
i=−∞

h̃
(
t− iT ′f

)
(50)

where h̃(t) represents a hypothetical realization of h(t). The
channel response is estimated by minimizing the cost function

MT ′
f∫

0

[
x(t)−

∞∑
i=−∞

h̃
(
t− iT ′f

)]2

dt (51)

with respect to h̃(t). Once the channel estimate ĥ(t) is avail-
able, the data transmission begins with a binary PAM modu-
lation format and ĥ(t) is used as a template waveform in the
correlation receiver.

In the simulations, M is set equal to 1250 (corresponding
to an observation of 50 symbols) and ideal symbol synchro-
nization is assumed. In particular, the start of the first frame is
perfectly known. Fig. 9 illustrates the bit error rate (BER) of
the receiver for some values of θ. At a BER equal to 10−4, the
loss incurred with θ = 10−6 is 4 dB and with θ = 1.5× 10−6 is
9.5 dB. We see that with the selected parameters, the RMSE
should be around 10−7 to make the drift effects negligible.

V. CONCLUSION

We have investigated the frame-frequency estimation prob-
lem in UWB systems. The proposed solution is based on
the transmission of a periodic pulse sequence at the frame
frequency. The samples of the received waveform are used to
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compute a cost function whose maximum gives the desired
estimate. The performance of the estimator has been assessed
analytically and, under certain conditions, it has been found
close to the Cramer–Rao lower bound. Simulations have been
run to check the validity of the theoretical development and to
assess the impact of the multiple-access interference. Finally,
a correlation receiver has been simulated wherein the channel
response is estimated in the presence of a frame-frequency
offset. It has been found that the offset must be kept within
about 10−7 to avoid severe BER degradations. This accuracy
can be achieved by the proposed frequency estimator.

APPENDIX A

In this appendix, we derive the maximum likelihood estima-
tor of the delay τ in the model (4). As the noise is white and
Gaussian by assumption, the estimator minimizes the function

J(τ̃) =

+∞∫
−∞

[
r(t)−

N−1∑
i=0

g
(
t− iT ′f − τ̃

)]2

dt. (52)

Expanding the square in the integrand and dropping quantities
independent of τ̃ , after some algebraic manipulations, it is
found that minimizing (52) amounts to maximizing

F (τ̃) =

+∞∫
−∞

rfold(t)g(t− τ̃)dt (53)

where rfold(t) is defined in (5). As the integral in (53) is the
response of the filter g(−t) to the excitation rfold(t) at time t =
τ̃ , the estimator operation amounts to looking for the maximum
of the filter output.

To compute the noiseless component of x(t), say p(t− τ),
we insert (3) and (4) into (5), setting v(t) = 0. As a result
we get

p(t− τ) =
1
N

N−1∑
i=0

N−1∑
j=0

g [t+ iθTf + (i− j)Tf − τ ] (54)

where the relation T ′f = (1 + θ)Tf has been used. Next, bear-
ing in mind that g(t) is very short compared with Tf and θ � 1,
from (54) we see that p(t− τ) has several peaks spaced Tf
seconds apart in time. The highest peak is located around t = τ
and is expressed by

1
N

N−1∑
i=0

γ(t+ iθTf − τ). (55)

APPENDIX B

In this appendix, we compute the expectations E{Λ′(θ)},
E{Λ′′(θ)}, and E{[Λ′(θ)]2} appearing in (37)–(39). Letting
Λ(θ) = ‖u(θ)‖2 and

vq(θ) = DH
q (θ)yq (56)

from (28), we have

Λ′ = j2πP
Q−1∑
p=0

Q−1∑
q=0

(p− q)vH
p Avq (57)

Λ′′ =−(2πP )2
Q−1∑
p=0

Q−1∑
q=0

(p− q)2vH
p A2vq (58)

[Λ′]2 =−(2πP )2
Q−1∑
p1=0

Q−1∑
q1=0

Q−1∑
p2=0

Q−1∑
q2=0

(p1 − q1)(p2 − q2)

× vH
p1

Avq1v
H
p2

Avq2 (59)

where A = diag{−L/2 + 1,−L/2 + 2, . . . , L/2− 1} and the
dependence on θ is understood throughout. Collecting (21),
(29), and (56) yields

vp = DH
p EHFDpw + mp (60)

where

mp = DH
p EHnp (61)

and F is an LP × (L− 1) matrix with elements

[F]p,q = ej2πpq(1+θ).

The statistics of mp are of crucial importance. Assuming
that np can be modeled as a Gaussian vector with zero-mean
independent components, each of variance σ2

n, and that np and
nq are independent for p �= q, then the following can be shown:
1) mp has zero-mean components, each with variance PLσ2

n;
2) mp and mq are independent for p �= q. Also, calling [mp]k
the kth component of mp, it is found that

E

{
[mp]k1 [mp]

∗
k2

}
=PLσ2

nδk1,k2 (62)

E

{
[mp]k1 [mp]k2

}
=PLσ2

nδk1,−k2 (63)

where δl,m equals unity for l = m, and is zero otherwise.
Making use of these facts and performing some boring

calculations leads to

E {Λ′(θ)} =0 (64)

E {Λ′′(θ)} = − 1
3
(2πP )2Q2(Q2 − 1)L2

×
L
2 −1∑
k=1

k2|Hk|2
(
sin(πkPθ)
sin(πkθ)

)2

(65)

E

{
[Λ′(θ)]2

}
=

2
3
σ2
n(2π)

2P 3Q3(Q2 − 1)L3

×
L
2 −1∑
k=1

k2|Hk|2
(
sin(πkPθ)
sin(πkθ)

)2

+
1
36

σ4
n(2πP )2P 2Q2(Q2 − 1)

× L3(L− 1)(L− 2). (66)
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