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Nederlandse samenvatting

In de toekomst zullen steeds meer robots hun plaats in onze maatschappij opeisen.
Ze zullen geprogrammeerd worden om tal van taken over te nemen van mensen,
niet alleen voor huishoudelijke doeleinden, maar ook om bewakingsopdrachten
uit te voeren, infrastructuur te inspecteren of om schade te beoordelen op plaatsen
die moeilijk bereikbaar zijn voor de mens, zoals nauwe tunnels en rioleringen,
of grote constructies zoals dammen of bruggen. Ook bij natuurrampen, zoals
aardbevingen, zouden ze reddingsoperaties kunnen faciliteren om op zoek te gaan
naar overlevenden in gebouwen die zijn ingestort of in brand staan.

Eén van de voornaamste vereisten voor deze robots om volledig operationeel
te zijn is het creëeren en onderhouden van een 3D-model van hun omgeving om
zichzelf te kunnen navigeren. Het is belangrijk dat dit 3D-mapping-proces snel
genoeg is zodat de map meteen beschikbaar is. Soms zal het 3D-model niet alleen
gebruikt worden om te navigeren, maar ook om een uitgebreide analyse te doen
van de omgeving, bijvoorbeeld voor inspectietaken, wat restricties oplegt aan het
detailniveau en de accuraatheid van het 3D-model.

Naast autonome robots zal het concept van augmented reality (AR) ook een
cruciale rol gaan spelen in onze toekomst. Bij AR-toepassingen wordt de omgeving
van de gebruiker ‘uitgebreid’ of ‘verrijkt’ met virtuele objecten. Het laat mensen
toe om van op afstand met elkaar te interageren, bijvoorbeeld om samen te werken
aan gemeenschappelijke opdrachten. Om in staat te zijn om virtuele objecten in de
omgeving te plaatsen, moet het AR-apparaat weten hoe de omgeving er uit ziet en
om die reden heeft het ook een 3D-model nodig die onmiddelijk beschikbaar is.

Om dergelijk 3D-model van de omgeving op te bouwen, moet het systeem
metingen, genomen van op verschillende plaatsen, met elkaar aggregeren, aangezien
één enkele scan niet de volledige ruimte in detail kan vastleggen. Het probleem van
3D-mapping is daarom nauw verwant met het probleem van lokalisatie aangezien
we alle sensor-metingen doorheen de tijd met elkaar moeten relateren.

Helaas zijn bestaande, ‘externe’ positioneringssystemen veelal ongeschikt. Het
‘global positioning system’ (GPS) of andere ‘Global Navigation Satellite Systems’
(GNSS) zijn bijvoorbeeld onvoldoende nauwkeurig en kunnen niet worden gebruikt
binnenshuis of op plaatsen waar het signaal te onbetrouwbaar is, zoals verstedelijkte
gebieden waar hoge gebouwen of overhangende structuren het signaal blokkeren.
Wielsensoren die de afstand meten die een robot heeft afgelegd door middel van
het aantal wielomwentelingen, zijn onbetrouwbaar wanneer de wielen beginnen
slippen. Bovendien is het gebruik van dergelijke systemen beperkt tot robots
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die zijn uitgerust met wielen en kunnen ze niet gebruikt worden in systemen die
geïmplementeerd worden in drones of ‘unmanned aerial vehicles’ (UAV’s). ‘Inertial
measurement units’ (IMU’s), die ook in staat zijn om positie en orientatie te meten
doorheen de tijd, zijn dan weer ofwel te duur ofwel te sterk onderhevig aan drift.
Tot slot wordt ook ‘ultra-wideband’-technologie (UWB) gebruikt voor ‘indoor’
positionering, maar door het feit dat eerst ‘ankers’ geplaatst moeten worden in de
ruimte beperkt het gebruik zich veelal tot omgevingen die gemakkelijk te bereiken
en controleren zijn.

Al het voorgaande betekent dat er een systeem nodig is dat in staat is om 3D-
mapping - en dus ook 3D-positionering - te doen gebaseerd op sensoren die in staat
zijn om de omgeving te percipiëren, zoals camera’s of dieptesensoren. In de weten-
schappelijke literatuur wordt dit probleem ook vaak omschreven als ‘simultaneous
localization and mapping’ of SLAM aangezien het zowel de lokalisatie van de
robot alsook het mappen van de omgeving omvat. Huidige 3D-mapping-systemen
zijn ofwel te traag ofwel onvoldoende nauwkeurig en robuust. Bovendien zijn
veel bestaande systemen nog steeds gebaseerd op externe positioneringssystemen
waardoor ze ongeschikt zijn in heel wat omstandigheden. In dit doctoraat hebben
we technieken ontwikkeld die toelaten om een 3D-model op te bouwen van de
omgeving in ware-tijd en louter gebruik makend van data die afkomstig is van
actieve dieptesensoren.

De onderzoekscontributies van dit doctoraat focussen op drie verschillende
aspecten in het domein van 3D-mapping en lokalisatie. Ten eerste hebben we
technieken ontwikkeld die het 3D-mappingproces dermate versnellen dat het mo-
gelijk wordt om de omgeving te reconstrueren in hoog detail en in ware tijd. Dit
betekent dat de data geaggregeerd kan worden in een 3D-model aan de snelheid
waarmee ze wordt opgenomen, zodat autonome robots zichzelf in de omgeving
kunnen navigeren. Bovendien laat het AR-applicaties toe om de omgeving van
de gebruiker te verrijken met virtuele objecten. Dankzij het hoge detail kan het
systeem bovendien gebruikt worden voor ‘live’ inspectietaken of het beoordelen
van schade.

Ten tweede hebben we ons geconcentreerd op algoritmen die de nauwkeurigheid
van mobiele 3D-mappingsystemen verbeteren tot een niveau dat hoger ligt dan
wat beschikbaar is in de academische literatuur. Bovendien hebben we technieken
ontwikkeld om het detailniveau dynamisch aan te passen, wat het mogelijk maakt
om de ‘trade-off’ tussen snelheid en nauwkeurigheid aan te passen aan de vereisten
van de applicatie of omstandigheden, bijvoorbeeld in het geval dat de 3D-mapping
moet gebeuren op een platform met weinig rekenkracht.

Ten derde hebben we ook ingezet op de robuustheid van het 3D-SLAM-proces
om situaties te voorkomen waarbij de ‘tracking’ verloren geraakt door het falen
van bepaalde subprocessen. Hieronder geven we verdere verduidelijking bij de
voornaamste bijdragen.
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Versnellen van 3D-puntenwolkregistratie De basis van onze 3D-mapping
oplossing is gebaseerd op de alignatie van 3D-puntenwolken gecapteerd met actieve
dieptesensoren, een proces dat ook ‘puntenwolkregistratie’ wordt genoemd. De
meeste bestaande dieptesensoren kunnen gemakkelijk honderdduizenden punten
per seconde opnemen en bestaande technieken hebben ontzettend veel tijd nodig om
dergelijke puntenwolken te registreren. In dit doctoraat hebben we verschillende
methodes ontwikkeld om dit proces te versnellen. Ten eerste hebben we efficiënte
datastructuren bedacht, gebaseerd op hierarchische boomstructuren, die de data-
associatie tussen scans of tussen een scan en het 3D-model veréénvoudigen. Ten
tweede hebben we een nieuw ‘multi-resolutie’ registratie-algoritme ontwikkeld
gebaseerd op diezelfde hierarchische boomstructuren. De resultaten daarvan werden
gepresenteerd in [Vlaminck 17c]. Tot slot hebben we de algoritmen op die manier
ontworpen dat ze de kracht van moderne GPU’s maximaal benut.

Verhogen van de nauwkeurigheid van 3D-puntenwolkregistratie Punten-
wolken gecapteerd met dieptesensoren hebben enkele eigenschappen die het moei-
lijk maken om hen doorheen de tijd met elkaar te aligneren, zoals hun niet-uniforme
en dungezaaide puntdensiteit en hun onnauwkeurigheden door foutieve metingen.
Standaardtechnieken voor registratie falen typisch voor dit soort data. Om de
nauwkeurigheid te verhogen hebben we geavanceerde alignatietechnieken ontwik-
keld die beter kunnen omgaan met deze ‘artefacten’. We hebben een ‘surface’-
analysetechniek bedacht die we gebruiken om laag-niveau ‘features’ af te leiden
van de puntenwolken. Deze eigenschappen hebben we vervolgens geïncorporeerd
in het registratieproces om zowel opéénvolgende puntenwolken te aligneren als-
ook een puntenwolk te aligneren met de geaggregeerde puntenwolk die op dat
ogenblik wordt opgebouwd. Daarnaast hebben we het mogelijk gemaakt om de
geaggregeerde puntenwolk continue te verbeteren door middel van een ‘surface’-
reconstructietechniek. Deze laatste laat toe om de ruis in de puntenwolk te vermin-
deren alsook om ze te resampelen, zodat de alignatie van volgende puntenwolken
nauwkeuriger kan gebeuren. De resultaten van dit onderzoek werden gepubliceerd
in [Vlaminck 16a] en [Vlaminck 18c].

Verbeteren van de robuustheid van 3D-puntenwolkregistratie De robuust-
heid van het SLAM-proces is eveneens onderhevig aan de ‘artefacten’ vermeld in
de vorige paragraaf. Bestaande registratietechnieken kunnen leiden tot dermate
slechte pose-estimaties dat de ‘tracking’ uiteindelijk volledig verloren gaat. Onze
voorgestelde oplossing, gebruik makend van laag-niveau ‘features’ laat ons toe om
te focussen op de meest stabiele regios van de puntenwolk, wat leidt tot meer ro-
buste pose-estimaties. In ons werk, gepubliceerd in [Vlaminck 18c], hebben we ook
een robuuste cost-functie voorgesteld die twee puntenwolken met sterk afwijkende
oriëntaties succesvol kan aligneren. Aangezien we verder ook de geaggregeerde
puntenwolk bijhouden, kunnen we nieuw-gecapteerde puntenwolken ook daarmee
registreren. Dat laat ons toe om de pose-estimatie verkregen door het aligneren van
twee opéénvolgende puntenwolken verder te verfijnen of corrigeren.
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Verbeteren van de schaalbaarheid In dit doctoraat hebben we methoden
bedacht om het geheugengebruik van SLAM-systemen te reduceren en ze aan
te passen aan de specifieke omstandigheden of toepassingen. Om dit te berei-
ken hebben we een octree-gebaseerde datastructuur ontwikkeld die een ‘surface’-
reconstructietechniek integreert. Die laatste maakt het mogelijk om de puntenwolk
te resamplen in gebieden die overmatig gesampled werden door de dieptesensor. Op
die manier kunnen we ‘redundante’ punten verwijderen wat leidt tot een compressie
van het 3D-model. Op zijn beurt zorgt dit ervoor dat het 3D-model gemakkelijk
distribueerbaar is naar andere autonome systemen die samenwerken om een ge-
meenschappelijk model up-to-date te houden. De octree-datastructuur maakt het
ook mogelijk om het detailniveau dynamisch aan te passen alsook om veranderingen
in de omgeving te herkennen en door te voeren in het 3D-model.

Versnellen van ‘loop closure’ ‘Loop closure’ of het ‘sluiten van lussen’ is het
proces waarbij eerst gedetecteerd wordt dat een plaats in het verleden al is bezocht
om nadien van deze informatie gebruik te maken om de fouten die gemaakt zijn
te corrigeren. Het ‘loop closure’-proces aan de hand van 3D scan data is over het
algemeen een tijdsrovende taak. In dit doctoraat hebben we technieken ontwikkeld
voor het efficiënt detecteren van lussen, gebaseerd op een GPU-geaccellereerde
puntenwolkdescriptor. Onze methode is in staat om dergelijke lussen te detecteren
in 100 tot 125 milliseconden. Wat betreft het effectief sluiten van de lus en het
corrigeren van de fouten, hebben we een heuristiek bedacht die de fout op het einde
van de lus terug in de pose-graaf propageert, daarbij rekening houdend met de
residuën van de puntenwolkregistratie. Gebaseerd op die residuën, schatten we
hoeveel elke pose-estimatie heeft bijgedragen aan de finale som van pose-errors.
De resultaten van dit werk werden gepubliceerd in [Vlaminck 18a].

Naast deze onderzoekscontributies heeft dit doctoraat ook bijgedragen in een
aantal onderzoeksprojecten met zowel academische als industriële partners in de
periode van 2014 tot 2019. In het icon-project GIPA hebben we meegewerkt aan
een generisch AR-platform dat een hele reeks applicaties heeft mogelijk gemaakt,
waaronder ‘remote collaboration’, ‘remote expert aid’ en ‘critical infrastructure
management’. In het icon-project ARIA waren onze contributies de ontwikkeling
van een accuraat ‘3D-tracking’ systeem gebruik makend van een ‘time-of-flight’-
camera. Bovendien hebben we een techniek ontwikkeld voor het vinden van de 3D
pose van een camera ten opzichte van een beschikbaar 3D model.

Tot slot hebben we een prototype ontwikkeld van een autonome robot die we de
naam ‘Liborg’ hebben gegeven. Deze robot is in staat om in ware-tijd een 3D-model
op te bouwen van de omgeving en kan onder meer worden ingezet voor het ‘live’
monitoren van het opgebouwde 3D-model, bijvoorbeeld om inspectietaken uit te
voeren of om schade te beoordelen in omgevingen die moeilijk toegankelijk zijn.
Het werk rond Liborg werd gepubliceerd en gepresenteerd op een internationale
conferentie [Vlaminck 17b].



English summary

In the future, more and more autonomous robots will take their place in our society.
They will be programmed to take over a lot of tasks from humans, not only for
domestic purposes but also to conduct surveillance tasks in public places or to
inspect critical infrastructure or assess damages in environments that are difficult to
reach for humans, such as narrow tunnels, sewer systems, caves or big construction
sites. Also in the event of disasters, such as earth quakes, they could facilitate
rescue operations to search for survivors in buildings that are collapsed or on fire.

One of the main prerequisites for autonomous robots to fully operate is the
ability to build and maintain a 3D map of their surroundings in order to navigate
themselves within the environment. Therefore, it is important that the mapping
process is fast enough in order to have the map readily available. Sometimes, the 3D
map is not only used for real-time navigation but also to conduct a comprehensive
analysis of the scene, for example in case of inspection tasks. The latter also
imposes restrictions on the level of detail and the accuracy of the 3D map.

Apart from autonomous robots, the concept of augmented reality (AR) will also
play a crucial role in our future lives. In AR applications, the surroundings of the
user are ‘augmented’ or enriched with virtual objects. It allows people to remotely
interact with each other, for example to collaborate on common tasks. However,
in order to put virtual objects in the scene, the AR device needs to know how the
users’ environment looks like and therefore it also needs a 3D map that is readily
available.

In order to build a 3D map of the environment, the system needs to aggregate
sensor measurements taken from different positions as one single scan will never
cover the whole scene. The problem of 3D mapping is thus closely related to the
one of localization as we need to relate all the sensor measurements through time.
However, existing positioning systems are often inappropriate. For example, Global
Positioning System (GPS) or other Global Navigation Satellite Systems (GNSS) are
insufficiently precise and do not work indoors or in environments where the signal
is too poor. Wheel odometry sensors, which measure the distance travelled by the
robot based on the number of revolutions of the wheels, are also unreliable as the
wheels can start to slip. In addition, they are limited to robots that are equipped with
wheels and are unsuitable for robotic systems implemented in drones or unmanned
aerial vehicles (UAV). Inertial measurement units (IMUs) are also able to estimate
the position and orientation over time but generally they are either too expensive or
too much subject to drift. Finally, ultra-wideband (UWB) technology requires that
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anchors have to be put into the scene first, which makes it less scalable and limits
its use to controlled environments that are easy to reach.

All this means that a system is needed that is able to perform 3D mapping - and
thus also 3D positioning - based on sensors that are able to perceive the environment,
such as cameras or depth sensors. In the scientific literature, this problem is also
known as simultaneous localization and mapping or SLAM as it involves both the
precise localization of the robot and the mapping of the environment at the same
time. Current 3D mapping solutions are either too slow or they are insufficiently
accurate or robust. Moreover, they are often still relying on external positioning,
which makes them unsuitable in a lot of circumstances. In this work, we invented
techniques that allow to build a 3D map of the environment in real-time and solely
using data captured with active depth sensors.

The research contributions of this work focus on three major improvements
in the domain of 3D mapping and localization. First, we developed techniques to
accelerate the mapping process making it possible to reconstruct the environment
in high detail in real-time. This means that the data is aggregated into a 3D map
at the rate it comes in, such that it can be used by autonomous robots to navigate
themselves within the environment. It also allows AR applications to use the 3D
map to enrich the field of view of the user with virtual objects. Thanks to the
high level of detail of the reconstructions the system can also be used for real-time
inspection purposes or real-time damage assessment.

Second, we focused on algorithms that improve the accuracy of mobile 3D
mapping to a level above what is available in the academic literature. In addition, we
developed techniques to dynamically adjust the level of detail, making it possible
to tune the speed versus accuracy trade-off depending on the use case or the
‘circumstances’, e.g. in case of resource-constrained operating platforms. Third,
we focused on the robustness of the 3D SLAM process in order to avoid situations
in which the tracking is lost due to failures in one of the different sub-processes.
Below we explain the main research contributions of this work.

Acceleration of 3D point cloud registration The core of our 3D mapping
solution is based on the alignment of 3D point clouds acquired by depth sensors,
a process also referred to as point cloud registration. Most of the modern depth
modalities are able to capture hundreds of thousands of points per second and
standard registration techniques take a tremendous amount of time. In this PhD, we
propose several ways of accelerating this process. First, we developed efficient data
structures - based on hierarchical trees - to keep track of the 3D map, facilitating
data association among multiple scans or between a scan and the 3D map. Second,
based on the hierarchical trees, we designed a novel multi-resolution registration
algorithm. The results of this part have been presented in [Vlaminck 17c]. Finally,
we carefully designed the algorithms in such a way that the power of modern GPUs
is maximally exploited.
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Increasing the accuracy of 3D point cloud registration Point clouds ac-
quired from depth devices have several properties that make it difficult to match
them over time, e.g. a non-uniform and sparse point density, inaccurate measure-
ments, etc. Standard registration techniques typically fail on this kind of data.
In order to increase the accuracy, we developed advanced point cloud alignment
techniques that are able to cope with this large variety of ‘artefacts’. Moreover, we
designed a surface analysis technique that is used to derive low-level shape features
from the point clouds. These features are then incorporated in the registration
process, both to align point clouds acquired from consecutive scans as well as to
align a point cloud with the 3D map being built. Furthermore, we made it possible
to continuously improve the 3D map under construction by means of a surface
reconstruction technique. This allows to reduce the noise, re-sample the aggregated
point clouds and conduct the alignment of consecutive point clouds more accurately.
The results of this work were published in [Vlaminck 16a] and [Vlaminck 18c].

Improving the robustness of 3D point cloud registration The robustness
of the SLAM process is also subject to the point cloud ‘artefacts’ mentioned in
the previous paragraph. Existing point cloud registration techniques can lead to
such bad pose estimates that the tracking is eventually lost. Our proposed solution
using low-level shape features allows us to focus on the more stable regions of
the point cloud, leading to more robust estimates. In [Vlaminck 18c] we also
proposed a robust cost-function that can successfully align two point clouds with
a large deviation in orientation. Moreover, as we keep track of the 3D map under
construction, we relate new point clouds to the entire 3D map, allowing us to
‘correct’ pose estimates in case the matching of two consecutive point clouds
failed entirely. Finally, we developed a branch-and-bound algorithm to sample the
transformation space in case the point cloud registration got stuck in a wrong local
minimum.

Improving the scalability In this PhD we provided several tools to reduce
the memory foot-print of the SLAM system and to make it adaptable to the circum-
stances and the use case. We propose a novel octree-based map integrating a form
of surface reconstruction, which makes it possible to re-sample the point cloud in
areas that are overly sampled. Doing so, we lower the redundancy by removing
points, leading to a compression of the map. This on its turn allows the map to be
easily distributable among other autonomous systems. This eventually makes it
possible that multiple robots or agents work together to keep a common map of the
environment up-to-date. The octree data structure behind it also facilitates dynamic
adjustments of the level of detail as well as detecting and applying changes in the
scene into the map.

Accelerating loop closure Loop closure is the process of detecting places
that have been visited before and correcting errors that have been made along
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the way. Loop closure using 3D scan data is generally a computation-intensive
task. Regarding the detection, we developed a GPU-based global point cloud
descriptor that is able to detect loops in 3D lidar data in approximately 100 to
125 ms. Regarding loop correction, we developed a heuristic that propagates the
determined error at the end of the loop back into the SLAM pose graph, thereby
taking into account residuals of the point cloud registration process. Based on these
residuals, we predict how much each pose estimate accounts for in the final pose
error when a loop has been detected. The results of this work were presented in
[Vlaminck 18a].

Besides the above research contributions, this work also contributed in a few
research projects with both academic and industrial partners during the period
of 2014 until 2019. In the icon project GIPA, we contributed to a generic AR
platform able to serve a whole range of applications including remote collaboration,
remote expert aid and critical infrastructure management. In the icon project ARIA,
our main contributions were the development of an accurate 3D position tracking
system using a time of flight (ToF) camera. We also developed a system for finding
the 3D pose of a (head-mounted) camera relative to a known BIM model available
in a remote database.

Finally, we developed a prototype of an autonomous robot, which we called
‘Liborg’. Liborg is able to perform real-time 3D mapping of the scene on its
embedded computer, allowing a whole range of applications such as live monitoring
of the acquired 3D model, for instance to perform inspection or assess damages
in areas that are difficult to reach. The work on Liborg has been published and
presented at an international scientific conference [Vlaminck 17b].
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Introduction

In the world of tomorrow more and more autonomous robots will take over a
plethora of tasks from humans. Think about domestic robots cleaning our houses,
cooking our meals, doing our dishes or ironing our clothes. Also in public places,
more and more robots will emerge in the future. They will clean conference halls,
shopping malls, swimming pools or conducting surveillance tasks in train stations
or on airports. They could also be deployed to inspect critical infrastructure or
assess damages in environments that are difficult to reach for humans such as narrow
tunnels, sewer systems, caves or big constructions such as dams or bridges. Also in
the event of disasters, such as earth quakes, they could facilitate rescue operations
to search for survivors in buildings that are collapsed or on fire.

For all the aforementioned applications, one of the main prerequisites is to give
robots the ability to build and maintain a 3D map of their surroundings in order to
navigate themselves within the environment. It is thus necessary that the mapping
process is fast enough in order to have the map readily available. Sometimes, the 3D
map is not only used for real-time navigation but also to conduct a comprehensive
analysis of the scene, for example in case of inspection tasks. Therefore, the level
of detail and the accuracy of the 3D map is also important. This is especially the
case for so called ‘digital twins’ of spaces, buildings or entire cities, which are
more and more demanded. These digital twins serve as replicas and are used to
conduct urban planning or organize events in case of city models or to automate
and optimize processes in industrial settings.

Apart from autonomous robots or digital twin production, the concept of aug-
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mented reality (AR) will also play a crucial role in our future lives. In AR applica-
tions, the surroundings of the user are ‘augmented’ or enriched with virtual objects.
It allows people to remotely interact with each other, for example to collaborate
on common tasks. However, in order to put virtual objects in the scene, the AR
device needs to know how the users’ environment looks like in order to render them
in a veracious way. Also for AR applications a system is thus needed to map the
surroundings of the user in 3D and also in this case, the system needs to be fast
enough.

1.1 Problem statement

In order to build a 3D map of the environment, the system needs to aggregate sensor
measurements taken from different positions, as one single scan will never cover
the whole scene due to the limited resolution and field of view of the sensor. The
problem of 3D mapping is therefore closely related to the one of localization as
we need to relate all the sensor measurements through time. However, external
positioning systems are insufficiently precise and do not work indoors. The Global
Positioning System (GPS) or other Global Navigation Satellite Systems (GNSS)
can not be used indoor or in environments where the GPS signal is too unreliable,
for example in urban areas where large structures or overhanging objects cause the
GPS signal to be lost or highly inaccurate at times. In addition, GPS is not able to
give information about the orientation of the sensor.

Another way of estimating the position is by using wheel odometry sensors that
measure the distance travelled by the robot based on the number of revolutions of
the wheels. However, this positioning system fails when the wheels start to slip.
In addition, wheel odometry is self-evidently limited to robots that are equipped
with wheels and cannot be used in case the robot has caterpillar tracks. As the
future of autonomous systems will also manifest itself in the form of unmanned
aerial vehicles (UAV) or even unmanned underwater vehicles (UUV), this way of
odometry is not widely applicable anyway.

Nowadays, more and more indoor positioning systems are based on ultra-
wideband (UWB) technology. However, before the position of users or robots can
be tracked, anchors have to be put into the scene first, which makes it less scalable
and limits its use to controlled environments that are easy to reach. Finally, inertial
measurement units (IMUs) are also able to estimate the position and orientation
over time. The main problem with IMUs is that they are either too expensive or too
much subject to drift.

All this means that we need a system that is able to perform 3D mapping - and
thus also 3D positioning - based on sensors that are able to perceive the environment,
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such as cameras or depth sensors. In the scientific literature, this problem is also
known as simultaneous localization and mapping or SLAM as it involves both the
precise localization of the robot and the mapping of the environment at the same
time. In fact, the two tasks are interdependent and the problem can be seen as a
typical chicken-or-egg problem. It is impossible to localize yourself without a map,
but in order to build a map, you need to know - at all times - where you are in order
to relate your observations over time.

Until a few years ago, most SLAM systems were limited in the sense that they
were only able to provide 2D maps of the environment. The algorithms nor the
hardware were capable of building large-scale 3D maps in real time. Also, the
sensors able to acquire depth information were not readily available. Obviously, 2D
maps are limited, especially in the case where the robot (or drone) is not travelling
along a flat surface. With the advent of novel affordable depth sensing modalities
with higher resolutions and accuracy, the field of 3D mapping started to boom.

The process of 3D mapping can be subdivided into three major parts. The
first one comprises the ‘matching’ of consecutive sensor measurements with each
other in order to estimate the current position and orientation - together denoted as
the pose - of the robot. This estimation is based on dead reckoning, in which the
current pose is calculated using a previously determined pose and the estimated
‘pose difference’ between the last two sensor readings. The second part deals with
the aggregation of all the sensor data into one coherent 3D map. This scan-to-map
matching can further improve the estimation of the current pose. It also deals with
filtering out noise or inaccurate measurements. The third part, finally, is responsible
for recognizing places that have been visited before and for using this information
to correct errors that have been made along the way. This part is also referred to as
loop closure, consisting of both loop detection and loop correction.

Sometimes, a map of a scene or room is already present, for example in case of
industrial sites or public buildings. In those cases, it can still be desirable to relate
the position of a person as well as the direction he is looking at to the known 3D
model of the scene. This is especially useful in AR-applications where visual cues
about the objects in the scene can be overlaid in the field of view of the user.

1.2 Contributions

1.2.1 Research

The research contributions of this work focus on three major improvements in
the domain of 3D mapping and localization. First, we developed techniques to
accelerate the mapping process making it possible to reconstruct the environment
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in high detail in real-time. This means that the data is aggregated into a 3D map
at the rate it comes in, such that it can be used by autonomous robots to navigate
themselves within the environment. It also allows AR applications to use the 3D
map to enrich the field of view of the user with virtual objects. Thanks to the
high level of detail of the reconstructions the system can also be used for real-time
inspection purposes or real-time damage assessment.

Second, we focused on algorithms that improve the accuracy of mobile 3D
mapping to a level above what is available in the academic literature. As generating
highly accurate and detailed 3D maps requires more processing power than recon-
structions with a lower level of detail while they are not always needed, we also
developed techniques to dynamically adjust the level of detail. Doing so, we made
it possible to tune the speed versus accuracy trade-off depending on the use case or
the ‘circumstances’, e.g. in case of resource-constrained operating platforms. Third,
we focused on the robustness of the 3D SLAM process in order to avoid situations
in which the tracking is lost due to failures in one of the different sub-processes. In
the following paragraphs we zoom in on the most important research contributions
that formed the basis for the increase of accuracy, robustness and the reduction of
resources, both in terms of processing times and memory consumption.

Acceleration of 3D point cloud registration

As will be described later in this dissertation, the core of our 3D mapping solution
is based on the alignment of 3D point clouds acquired by depth sensors, a process
also referred to as point cloud registration. Most of the modern depth modalities are
able to capture hundreds of thousands of points per second and standard registration
techniques take a tremendous amount of time. In this work, we propose several ways
of accelerating this process. First, we developed efficient data structures - based
on hierarchical trees - to keep track of the 3D map, facilitating data association
among multiple scans or between a scan and the 3D map. Second, we designed a
novel point cloud registration algorithm based on those hierarchical trees. More
specifically, we propose a multi-resolution scheme, in which the registration is
conducted on different levels of detail, starting from a coarse to a more fine-grained
representation of the point cloud. The results of this work have been presented in
[Vlaminck 17c]. Finally, we carefully designed the algorithms in such a way that
the power of modern GPUs is maximally exploited.

Increasing the accuracy of 3D point cloud registration

In chapter 3, it will become clear that point clouds acquired from depth devices have
several properties that make it difficult to match them over time, e.g. a non-uniform
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and sparse point density, inaccurate measurements, etc. Standard registration
techniques typically fail on this kind of data. In order to increase the accuracy, we
developed advanced point cloud alignment techniques that are able to cope with
this large variety of ‘artefacts’. The main idea is to transform the point cloud into a
representation that models the underlying surface. We designed a surface analysis
technique that is used to derive low-level shape features from the point clouds.
These features are then incorporated in the registration process, both to align point
clouds acquired from consecutive scans as well as to align a point cloud with the
3D map being built. Furthermore, we made it possible to continuously improve the
3D map under construction by means of a surface reconstruction technique. This
allows us to reduce the noise, re-sample the aggregated point clouds and conduct
the alignment of consecutive point clouds more accurately. The results of this work
were published in [Vlaminck 16a] and [Vlaminck 18c].

Improving the robustness of 3D point cloud registration

The robustness of the SLAM process is also subject to the point cloud ‘artefacts’
mentioned in the previous paragraph. Existing point cloud registration techniques
can lead to such bad pose estimates that the tracking is eventually lost. Our proposed
solution using low-level shape features allows us to focus on the more stable regions
of the point cloud, leading to more robust estimates. In [Vlaminck 18c] we also
proposed a robust cost-function that can successfully align two point clouds with
a large deviation in orientation. Moreover, as we keep track of the 3D map under
construction, we relate new point clouds to the entire 3D map, allowing us to
‘correct’ pose estimates in case the matching of two consecutive point clouds
failed entirely. Finally, we adopt a branch-and-bound algorithm to sample the
transformation space in case the point cloud registration got stuck in a wrong local
minimum.

Improving the scalability

In this work we provided several tools to reduce the memory foot-print of the SLAM
system and to make it adaptable to the circumstances and the use case. We propose
a novel octree-based map with integrated surface reconstruction, which makes it
possible to re-sample the point cloud in areas that are overly sampled. Doing so, we
lower the redundancy by removing neighbouring points, leading to a compression
of the map. This on its turn allows the map to be easily distributable among other
autonomous systems. This eventually makes it possible that multiple robots or
agents work together to keep a common map of the environment up-to-date. The
octree data structure behind it also facilitates dynamic adjustments of the level of
detail as well as detecting and applying changes in the scene into the map.
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Figure 1.1: Applications of 3D mapping plotted in function of the required accuracy
and level of detail as well as to which extent they are time-critical. The gray area
indicates which applications are facilitated by our work compared to the state-of-the-art.
Our contributions enable applications of autonomous drones or robots that go beyond
‘self-navigation’ including real-time inspection, damage assessment or rescue operations.

Accelerating loop closure

Recall that loop closure is the process of detecting places that have been visited
before and correcting errors that have been made along the way. This loop closure
using 3D data is generally a computation-intensive task. Regarding the detection,
we developed a GPU-based global point cloud descriptor, that is able to detect loops
in 3D lidar data in approximately 100 to 125 ms. Regarding loop correction, we
developed a heuristic that propagates the determined error at the end of the loop
back into the SLAM pose graph, thereby taking into account residuals of the point
cloud registration process. Based on these residuals, we predict how much each
pose estimate accounts for in the final pose error when a loop has been detected.
The results of this work were presented in [Vlaminck 18a].

1.2.2 Impact on applications

The research contributions from the previous section facilitate a whole range of
applications that go beyond ‘self-navigation’ for autonomous drones or robots. In
Figure 1.1, a graph is depicted showing for several applications of 3D mapping
its desired level of accuracy and detail as well as to which extent the 3D mapping
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is time-critical, thereby taking into account how much resources are available on
the ‘corresponding’ processing platform, e.g. embedded computer (less resources)
versus a powerful computer in the cloud (more resources). The available resources
correspond to the total amount of resources on the processing platform minus the
ones needed for other subtasks of the application.

Applications running on resource-constrained platforms are thus situated near
the origin of the x-axis, whereas applications running on powerful servers in the
cloud are situated at the other end of the x-axis. The area close to the origin of the
y-axis corresponds to a level of detail of a few centimeters. The other side, where
applications such as construction site monitoring, real-time automated inspection
and critical infrastructure management are situated, corresponds to a level of detail
of a few millimeters.

The trade-off ‘accuracy versus processing time’ for the state-of-the art is in-
dicated by the cyan line, whereas for our own solution it is represented by the
blue line. The gray zone in between the two curves denotes which applications
are facilitated by our contributions. In the following, we will highlight the main
applications and their mutual relation.

For inventory management, it is not necessary to have a sub-centimeter accurate
3D model. If the goal is to obtain automated stock management in a factory or
warehouse, for example, a rough 3D model with centimeter resolution is sufficient
to count the number of boxes or palettes that are present. Also in the case of
real-time navigation for robots in controlled environments, it is not necessary to
have every object in the scene in sub-centimeter detail, as long as the rough convex
hulls of the objects are precisely located. However, real-time navigation is far more
time critical than inventory management. For the latter application, the time per
frame that can be spend to build or update the 3D map is a matter of seconds or
even minutes rather than milliseconds for real-time navigation. On top of that,
3D mapping in view of real-time navigation usually has to be conducted on a
resource-constrained platform, such as an embedded computer in a robot or drone.
Inventory management on the other hand can be executed on a powerful computer
with lots of processing power and memory.

In terms of accuracy and detail, the rescue application is situated in between
real-time inspection and inventory management. They do not need as much detail
as for inspection purposes, but still more than for inventory management as it
should still be possible to analyse how destroyed buildings look like, in order to
find survivors. This analysis requires additional resources from the system and
hence there are less resources available for the actual 3D mapping.

Finally, there are applications for which the accuracy and detail is of utmost
importance, typically in the range of 1 to 10 millimeters. Some of them are not time-
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critical and can be conducted off-line, such as criticial infrastructure management,
in which civil engineers for example need to verify whether infrastructure starts to
degrade, such as crack forming in concrete. The size of those cracks is typically a
few millimeters. Other examples are the mapping of archaeological or geological
sites.

For the latter applications, current 3D mapping solutions can deliver sufficiently
accurate 3D models in case the scene can be captured using static scanning and
in case enough resources are available. However, sometimes high precision and
detail is needed while the time to compute the 3D map is limited. One example is
continuous construction site monitoring in view of the ‘built-as-planned’ use case.
For that application, the goal is to map the construction site at fixed time intervals,
in order to check if there were made any mistakes. If so, the errors can be detected
early on and can be corrected in a reasonable amount of time and at a reduced cost.

1.2.3 Projects

The work of this PhD dissertation was conducted as part of a number of projects
with both academic and industrial partners during the period of 2014 until 2019.
More specifically, two projects in the domain of augmented reality were the seedbed
of this research: the projects GIPA and ARIA. In both projects we investigated the
use of depth modalities to map the environment of the user in view of augmenting it
with visual information. In addition, we participated in a development cooperation
with Vietnam on the topic of guiding visually impaired people. The outcomes of the
project GIPA have also lead to the development of Liborg, a robot able to generate
highly accurate 3D point cloud models in a very fast way.

1.2.3.1 GIPA

The ICON project GIPA or Generic Interoperability Platform for Augmented reality
applications took place in 2014 and 2015. The aim was to develop a generic AR
platform able to serve a whole range of applications including but not limited
to remote collaboration, remote expert aid, serious gaming and training, critical
infrastructure management and disaster or crisis support. As an example use case,
we focused on the application of ‘as-built-as-planned’, in which the goal is to give
architects the ability to verify whether or not a construction is built according to
their plans, cfr Figure 1.2. The main partner in this use case was Sweco Belgium1,
formerly known as Grontmij.

To achieve the goal, a system had to be designed that is able to obtain reconstruc-
tions from large-scale environments with sub-centimeter accuracy in a ‘reasonable’

1https://www.swecobelgium.be/en/

https://www.swecobelgium.be/en/
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Figure 1.2: During the GIPA project, we focused on the application of ‘as-built-as-
planned’. In that use case, an architect is given the ability to go on site and verify whether
or not everything is built according to the plans.

amount of time. As mentioned before, the problem of 3D reconstruction or mapping
is closely related to the one of localization. The main challenge here is that the
system had to be independent from any external positioning system such as GPS or
any other Global Navigation Satellite System (GNSS) as it also had to work indoor
or in environments where the GPS signal is too unreliable. Typical examples are
industrial or chemical plants with lots of overhanging pipelines, causing the GPS
signal to be lost or highly inaccurate at times.

In summary, the software had to be able to perform 3D mapping - and thus
also 3D positioning - based on data originated from depth sensors. In the end,
we succeeded to build a system, fully independent of external positioning devices,
that is able to deliver 3D point cloud models on the fly (in near real-time) with
sub-centimetre accuracy. The results and outcomes of this research were presented
and published at two international conferences [Vlaminck 16b; Luong 16] and in
an international journal [Vlaminck 16a].

For the second part of the use case, algorithms had to be developed to match the
reconstructed 3D model - initially represented by a point cloud - with an existing
computer-aided design (CAD) model or building information model (BIM) that
is available in a remote database. The latter process is often referred to as the
scan2BIM problem. It had to be possible to overlay this CAD or BIM model in the
view of an architect wearing a head-mounted device, thereby pointing out potential
anomalies. Figure 1.2 depicts the idea of the as-built-as-planned use case. At the
end of the project, we could successfully fit existing geometric primitive models -
such as cylinders and planes - to the scanning data in real-time. In doing so, we
made it possible to verify whether or not the constructions on site were correctly
carried out.
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1.2.3.2 ARIA

The ICON project Augmented Reality for Industrial Applications was the follow-
up project of GIPA. This time, the goal was to develop a guidance application
for maintenance tasks on complex industrial machinery. By means of proof of
concept we focused on the replacement of an oil filter in a cooling container of
the company Evonik in Antwerp. More specifically, we made it possible for a
layman to be guided using visual cues while wearing a head mounted device. Our
main contributions in the project were the development of an accurate 3D position
tracking system that uses depth sensing, more precisely the output of a time of
flight (ToF) camera. We developed a system for finding the 3D pose of the camera
relative to a known BIM model available in a remote database. The latter allowed
to query additional (semantic) information of the components of the machine and
to overlay this information in the field of view of the user. As this application is
even more time-critical than the one in GIPA, we further investigated how to speed-
up the 3D pose tracking in order to make it real-time. Our improved algorithm
was presented at an international conference [Vlaminck 17c]. The final tracking
approach incorporating the matching with an existing BIM model, was presented at
another international conference [Vlaminck 17a].

1.2.3.3 Guidance of visually impaired people

During 2014 and 2015 we participated in two development cooperation projects
with Vietnam funded by Nafosted-FWO and VLIR-UOS. The goal in those projects
was to built a system to improve the mobility of visually impaired people by
providing them a navigation system to easily find their way to their destination. To
this end, algorithms were developed to make a 3D reconstruction (or map) of the
local neighbourhood of the blind person. This 3D map is then used to point out
potential obstacles on their way and to give them instructions on how to navigate.
This work has led to a working prototype that was eventually tested in the Nguyen
Dinh Chieu blind school in Vietnam. The main results and outcomes are described
in the publications [Vlaminck 13; Vlaminck 16c].

1.2.4 The Liborg mapping platform

After the project GIPA, there was a strong interest from industry in the automated
process of 3D reconstruction in all kinds of environments and applied to different
use cases. Besides the development of efficient 3D mapping algorithms, we also
needed an efficient acquisition platform to easily collect data from. Soon after the
GIPA project ended, we started with the development of a rover that can map its
environment. In a later stage, we also made it possible to perform live mapping of
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Figure 1.3: Liborg, our developed robot able to perform live 3D mapping of the envi-
ronment.

the scene on the embedded computer of the robot, i.e. the NVIDIA Jetson TX2.

In addition, we developed a system to transmit the reconstructed 3D model to a
remote computer or server. The latter allows a number of additional applications for
which the robot can be used such as live monitoring of the acquired 3D model, for
instance to perform inspection or assess damages in areas that are difficult to reach.
We made it possible to control the robot using a remote control and thus to define
the area to be mapped. Recently, we started the development of a truly autonomous
system in a way that it will be possible for the robot to perform navigation based
on its own acquired 3D model. This will allow the robot to perform the entire 3D
mapping of a scene without any manual intervention.

The main sensor on the rover is a lidar scanner, hence the name Liborg. At a
later stage we integrated a regular camera on the robot to be able to combine the 3D
geometric information of the scene with visual data. To that end, a synchronisation
module was developed along with calibration algorithms to relate the data of both
sensors. The work on Liborg has been published and presented at an international
scientific conference [Vlaminck 17b]. The robot was also demonstrated at the
international technology forum (ITF) of imec in 2017 and 2018 as well as during
the anniversary exhibition of Ghent University in 2017. The development of Liborg
was also highlighted in the Imec magazine of October 2018 [Vlaminck 18b].
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1.3 List of publications

1.3.1 Publications in international journals

• Michiel Vlaminck, Hiep Luong, Werner Goeman, and Wilfried Philips. “3D
Scene Reconstruction Using Omnidirectional Vision and LiDAR: A Hybrid
Approach”. In: Sensors 16.11 (2016)

• Michiel Vlaminck, Hiep Luong, and Wilfried Philips. “Have I Seen This
Place Before? A Fast and Robust Loop Detection and Correction Method for
3D Lidar SLAM”. in: Sensors 19.1 (2018)

1.3.2 Publications in international conferences

• Michiel Vlaminck, Hiep Luong, and Wilfried Philips. “Surface-based GICP”.
in: Conference On Computer and Robot Vision (CRV). Toronto, Canada:
IEEE, 2018

• Michiel Vlaminck, Hiep Luong, and Wilfried Philips. “A markerless 3D
tracking approach for augmented reality applications”. In: 2017 International
Conference on 3D Immersion (IC3D). Brussels, Belgium, Dec. 2017, pp. 1–7

• Michiel Vlaminck, Hiep Luong, and Wilfried Philips. “Liborg: a lidar-based
robot for efficient 3D mapping”. In: SPIE Applications On Digital Imaging.
Vol. 10396. 1. San Diego, USA: SPIE, 2017

• Michiel Vlaminck, Hiep Luong, and Wilfried Philips. “Multi-resolution
ICP for the efficient registration of point clouds based on octrees”. In:
International Conference On Machine Vision Applications (MVA). Nagoya,
Japan: IAPR, 2017, pp. 334–337

• Hiep Luong, Michiel Vlaminck, Werner Goeman, and Wilfried Philips. “Con-
sistent ICP for the registration of sparse and inhomogeneous point clouds”.
In: International Conference on Communications and Electronics (ICCE).
Ha Long, Vietnam: IEEE, 2016, pp. 262–267

• Michiel Vlaminck, Hiep Luong, Werner Goeman, Peter Veelaert, and Wilfried
Philips. “Towards online mobile mapping using inhomogeneous lidar data”.
In: Intelligent Vehicles Symposium (IV). Gothenburg, Sweden: IEEE, 2016,
pp. 845–850

• Michiel Vlaminck, Hiep Luong, Hoang Van Nam, Hai Vu, Peter Veelaert,
and Wilfried Philips. “Indoor assistance for visually impaired people us-



INTRODUCTION 13

ing a RGB-D camera”. In: Southwest Symposium on Image Analysis and
Interpretation (SSIAI). Santa Fe, NM, USA: IEEE, 2016, pp. 161–164
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1.4 Outline

This dissertation is subdivided in nine chapters. In chapter 2, the principles of
SLAM are explained. We elaborate on the questions why SLAM is needed and why
it is not yet solved. We review the open challenges and outline the future of SLAM.
Chapter 3 is devoted to the topic of point cloud registration as a solution to the
problem of scan matching in SLAM systems. It describes the challenges that come
with data originated from lidar scanners and ToF cameras. It also explains why the
methods in the academic literature fall short on this kind of data. In chapter 4 we
investigate more advanced techniques in view of making the pose estimation and
mapping more accurate. Chapter 5 describes the topic of efficient map alignment
and surface reconstruction and explains how they can both be exploited to further
improve the alignment process and to make the mapping process faster. Chapter 6
deals with the generation of globally consistent maps and consists of two partial
problems. The first one deals with the detection of loops in scanning data whereas
the second one focuses on the correction of the drift error once a loop has been
detected. Chapter 7 describes several use cases that we have been working on.
Chapter 8 elaborates on localization using a hand-held ToF camera for use in AR
applications. Finally, some concluding remarks and a look on the future are made
in Chapter 9.





2
Simultaneous localization and

mapping

This chapter will explain the concepts of the simultaneous localization and mapping
problem, often abbreviated to SLAM. In summary, SLAM is the problem wherein
a robot or autonomous vehicle has to build a map of an unknown environment in
which it has to localize itself at the same time. For many applications of SLAM the
main objective is to perform navigation for which a rough map of the environment
is sufficient. Other applications however require a detailed map that can be used for
comprehensive analysis, such as assessing damages in tunnels or detecting changes
in natural phenomena such as caves.

To solve the SLAM problem, two questions need to be addressed. The first
one is: What does the environment look like? It goes without saying that there
are many ways of representing a scene and the answer to the question will largely
depend on the application. In case of autonomous robots - where the primary goal
is navigation - the map could be a collection of objects for which only the rough
bounding boxes are stored. If the robot is only moving on the ground surface, the
problem could be solved in 2D by maintaining a floor plan where obstacles are
indicated. In case the goal is to assess damages in complex structures, a simple
floor plan of the scene will of course not be sufficient.

The second question is: Where are we? The answer to this question only makes
sense in case we have either a map of the environment or a reference system to
which we can relate our current position. However, while conducting SLAM, the
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Figure 2.1: A SLAM system typically consists of two main components. The local
alignment matches the current measurement (a scan) with the previous one and is often
denoted as the front-end of the SLAM system. The globally consistent mapping module
on the other hand deals with the reduction of drift, which is inherent to local scan
matching. It usually integrates the detection and closing of loops in the sensor data and
is also referred to as the back-end of the SLAM system.

goal is exactly to build this map, so by definition it is not present yet. Moreover, to
build such map we need to know where we are, in order to be able to match our
observations over time. This is leading to a typical interdependence or chicken-or-
egg problem: to find out where we are we need a map of the environment, but as
we don’t have one yet, we need to build it and therefore we need to know where
we are. This causality dilemma is one of the reasons why the SLAM problem is
difficult to solve.

2.1 Components of a SLAM system

A full SLAM system typically consists of two main components. The first com-
ponent is the local alignment comprising the matching of two consecutive mea-
surements - referred to as frames or scans - while the second component is loop
closure, enforcing the map to be globally consistent. The latter part is designed to
cope with drift or error accumulation, which is inherent to sequential scan matching.
No matter how accurate the local alignment is done, small errors will always be
present and their accumulation will eventually lead to position estimates that are
substantially deviating from the actual position. As a result, a second component is
necessary to correct this drift, usually integrated using some kind of loop detection
and correction algorithm. The two components are often referred to as the front-
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Figure 2.2: The accumulation of (small) errors through time can lead to large deviations
in position estimates, known in the literature as the drift problem. The green line indicates
the estimated trajectory of a mobile mapping van that was driving in a loop. In the left
image, the loop is not correctly closed and the green line is not connected. One can
see that the drift here is mainly occurring in the z-direction perpendicular to the ground
plane (difference in shade denotes difference in elevation). The right image depicts the
result after loop closure. The start- and endpoint are now connected.

and the back-end of the SLAM system.

Figure 2.1 depicts a schematic drawing of the components of a SLAM system.
Usually, the front-end also comprises some kind of preprocessing to reduce mea-
surement noise or to convert the data into a more robust representation. Figure 2.2
shows the principle of closing a loop: the left reconstruction is the result before
whereas the right one is the result after loop closure. As can be seen in the left
image, the green line - indicating the position of the vehicle through time - is not
connected while the mobile mapping van stopped at the exact same position from
where it has started. In the right image, the loop was closed and the green line is
perfectly connected at the start- and endpoint of the acquisition.

It is important to note that loop closing is a necessary component in a full
SLAM system as it is inevitable that small errors are made. When closing the loop,
the accumulated error can be largely reduced. However, it does not mean that after
loop closure, the map is fully accurate at the ‘local’ level. The quality of the scan
matching still has its influence on the final obtained point cloud as is graphically
illustrated in Figure 2.3. The reconstructed ‘map’ in the top row - metaphorically
represented by a puzzle - still suffers from the small misalignments that were
made during the pairwise alignment step. On the other hand, the reconstruction in
the bottom row is highly accurate thanks to very precise pairwise alignments. In
summary, one can say that loop closure enforces the error between any two points
in the reconstruction to be bounded (as the drift is taken away), but it does not
assure that the point cloud on the local level is fully accurate.

The quality of the pairwise alignment can be further improved when we keep
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Figure 2.3: The three consecutive steps in a SLAM system: 1) pairwise alignment,
2) scan-to-map alignment and 3) loop closure. The two rows show that the quality of
each of the three steps is important. In case the pairwise (or scan-to-map) alignment is
inaccurately conducted, the loop closure algorithm can not fully ‘recover’ from that and
discrepancies will remain in the final map. This is shown in a metaphorical manner by
the puzzle pieces in the right upper corner not being perfectly fitted.

track of the currently built map. In that case we can relate (or align) every new
scan with a larger part of the scene which alleviates the search for corresponding
points and which on its turn leads to more robust and accurate alignments. This
so called scan-to-map alignment is graphically depicted in the second column
of Figure 2.3. While keeping track of the 3D model under construction, we can
continuously improve it by estimating the underlying surface using all the points
that have been captured so far. The only drawback of this approach is the size of
the map potentially becoming too large to conduct the alignment in a reasonable
amount of time.

The research on point cloud alignment or registration is described in detail in
chapter 3. The methods regarding scan-to-map alignment are extensively described
in chapter 5. Finally, the loop closure techniques to obtain globally consistent maps
are explained in chapter 6.

2.2 Problem formulation

Since the seminal paper of Lu and Milios [Lu 97], the de facto standard formulation
of a SLAM system is as a maximum a posteriori (MAP) estimation. Numerous
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Figure 2.4: In SLAM, the formalism of factor graphs is often employed to reason about
the interdependence among variables.

articles have been published since then, presenting improvements over the efficiency
and robustness of the optimization underlying the problem. Suppose that we want to
estimate the trajectory x = (x1, . . . ,xk, . . . ,xM ) of a robot or moving vehicle, as a
discrete sequence of poses xk = (xk, yk, zk, θx, θy, θz). At each pose xk the sensor,
either a lidar scanner or ToF camera, is capturing a point cloud Pk. The estimation
of the poses is based upon a series of M ‘measurements’ z = (z1, . . . , zk, . . . , zM )

such that each measurement can be expressed as a function of x. For now, we
define the measurement equation as the ‘difference’ between two consecutive point
clouds and for simplification, it is assumed to be linear. The difference zk is based
on the estimated point correspondences in two consecutive point cloud Pk and
Pk−1, derived in the scan matching process. Its actual derivation will be explained
in chapter 6.

While the true difference zk is exactly what we are looking for, we can only
make an observation ẑk of the true underlying difference, modelled as ẑk = zk+ek
where ek accounts for random measurement noise and estimation errors from the
scan matching process. In MAP estimation, we estimate x by computing the
trajectory x∗ that maximizes the posterior p(x|z) (the belief over x given the
measurements):

x∗
.
= argmax

x
p(x|ẑ) = argmax

x
p(ẑ|x)p(x), (2.1)

where the second equality follows from the Bayes theorem. In this equation, p(z|x)

is the likelihood of the measurements z given the assignment x and p(x) is a
prior probability over x. When we consider p(x) to correspond to a constant
(uniform) distribution, it can be dropped from the optimization. In that case
the MAP estimation reduces to maximum likelihood estimation. Assuming that
the measurements z are independent, i.e. the corresponding noises or errors are
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uncorrelated, eq. 2.1 factorizes into:

x∗ = argmax
x

p(x)

M∏
k=1

p(ẑk|x) (2.2)

= argmax
x

p(x)

M∏
k=1

p(ẑk|xk), (2.3)

where zk only depends on xk. We assume that the measurement noise or error ek is
a zero-mean Gaussian with information matrix Ωk (inverse of a covariance matrix).
Using ek = ẑk − zk, the measurement likelihood of 2.3 then becomes:

p(ẑk|xk) ∝ exp(−1

2
eTkΩkek) (2.4)

and similarly for the prior:

p(x) ∝ exp(−1

2
eT0Ω0e0). (2.5)

As maximizing the posterior is the same as minimizing the negative log-posterior,
the MAP estimate becomes:

x∗ = argmin
x
− log

(
p(x)

m∏
k=1

p(ẑk|xk)

)
(2.6)

= argmin
x

M∑
k=0

eTkΩkek,, argmin
x

F (2.7)

which is a non-linear least squares problem.

Often times, the formalism of factor graphs is employed to reason about the
interdependence among variables. A factor graph is a graphical model that provides
an insightful visualization of the problem. Figure 2.4 shows an example of a
factor graph underlying the SLAM problem whereas Figure 2.5 depicts the relation
between the expected ‘difference’ zk and the observation ẑk. Because of this
graphical representation, the maximum a posteriori SLAM formulation is also
called graph-SLAM. Sometimes the term smoothing is used to emphasize the
difference with traditional (non-linear) filtering approaches, such as SLAM based
on particle filters or the extended Kalman filter (EKF). The MAP estimation has
been proven to be more accurate and more efficient than their counterparts based
on Bayesian filtering.

2.3 Relation to other research domains

Several research fields are closely related to SLAM, including Structure from Motion
(SfM) and photogrammetry. The latter two domains involve the reconstruction of a
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Figure 2.5: Principle of an edge connecting two vertices xk−1 and xk in the graph
SLAM formulation. While zk is the correct transformation between the two poses, we
can only derive an estimate ẑk = zk + ek on the transformation.

scene by moving a regular camera in 3D space. The goal there is to obtain either
a large stitched image - constructed by concatenating multiple single images - or
in some cases a colored 3D model. Both SfM and photogrammetry are based on
images and hence projective geometry. On the other hand, SLAM is not limited
to the output of a camera but can also involve data from lasers, wheel odometry,
inertial measurement units (IMUs) or even radar. In the case of SfM, eq. 2.7 can be
rewritten as follows:

x∗ = argmin
x

∑
〈i,j〉∈C

e(xi,xj , zij)
TΩije(xi,xj , zij), (2.8)

where C is the set of images, xi and xj the parameters, zij and Ωij respectively
the mean and the information matrix of a constraint relating the parameters xi and
xj , and e(xi,xj , zij) a vector error function that measures how well the parameter
vectors xi and xj satisfy the constraint zi,j .

Solving this equation constitutes the final step in the SfM process and is usually
referred to as bundle adjustment (BA). Finally, SLAM is also related to odometry,
referred to as visual odometry in case cameras are used. Whereas SLAM also in-
volves map building, visual odometry only comprises the estimation of the position
and orientation of the camera.

2.4 Applications

One of the main applications of SLAM has yet been mentioned: autonomous robots.
This group of applications is however very broad. For example, it includes domestic
robots providing services to elderly people for example and robots that can be used
to clean or supervise public places such as train stations and conference halls. It
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Figure 2.6: Three examples of SLAM applications: self-driving cars, Mars rovers and
domestic or elderly care robots.

could also involve robots exploring difficult to reach areas such as tunnels, sewer
systems, caves, etc. The goal there can be to inspect the infrastructure, assess
damages or simply to study the evolution of natural phenomena. The goal could
also be to perform rescue operations in disaster cases such as earth quakes or
floodings. In those scenarios, the ‘robot’ might be better equipped with caterpillar
tracks or it might be integrated in a drone or mounted on a boat. A few examples of
SLAM applications are depicted in Figure 2.6.

Besides autonomous robots, there are other applications that require a 3D map
(or model) from the scene and that are as time critical as autonomous robots. A clear
example is augmented reality (AR). In AR, the purpose is to augment a real-world
scene by means of virtual objects that are projected in the field of view of the user.
In order to be able to augment the environment, one needs to know how it looks
like and thus a 3D model is needed.

A third, perhaps slightly less obvious application is the guidance of visually
impaired people in navigating themselves in undiscovered environments. Also
there, the assistance system needs some kind of awareness on how the environment
around the user is built up, in order to indicate potential obstacles. These three
application domains were the main focus of this PhD thesis and even tough there
are a few differences between them, the larger part is common and as a result many
techniques and ideas are interchangeable.

2.5 Sensors

The main difference between the field of autonomous robots and AR is the type of
sensors that can or should be used to conduct SLAM. As mentioned in the previous
sections, one way of building a map of the environment is by using cameras.
However, a lot of limitations pop up while using these devices. Images taken from
the same scene can vary a lot depending on the amount of light that is present in the
scene. Often times images are overexposed or they suffer from shadows or specular
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Figure 2.7: Color image (left) and corresponding depth map (right) captured by a Kinect
2 device. Blue pixels in the depth map represent points that are nearby whereas yellow
or red pixels denote points that are further away. Missing depth values - represented by
black pixels - can occur because the object is either too close or too far away or in case
the surface is reflecting too much light.

light properties of objects. Also, they can not be used in dark environments such
as tunnels, sewers or caves. It is therefore no surprise that new developments in
SLAM were often triggered by the advent of novel 3D sensing modalities. In case
of autonomous robots, the availability of laser range finders enabled the creation of
real-time SLAM systems. Regarding AR, the advent of handheld RGB-D devices
accelerated the development of immersive AR applications.

In this work we focused on different sensing technologies that are able to
perceive depth, including structured light, time-of-flight (ToF) and pulsed lidar. All
of these modalities have different specifications regarding the range at which they
can still capture depth as well as the accuracy of their measurements. If the goal is
to obtain a high resolution 3D reconstruction for inspection purposes, one should
obviously opt for a sensor that is highly accurate even when it comes with a higher
weight, power consumption or cost. In case of AR applications, it is more important
that the sensor can be integrated in a head mounted device (HMD) and therefore
it should be very lightweight and low in power consumption. On the other hand,
AR applications do not need depth information for areas further than a few meters
away and the accuracy of the system is subordinate to its reliability and robustness.

The early hand-held depth sensors on the market were based on structured light.
Examples are the Microsoft Kinect and Softkinetic’s DepthSense. Unfortunately,
a severe drawback of this technology is that it performs poorly in the presence
of abundant light, which is always the case for outdoor environments. For that
reason, Microsoft later on developed the second version of the Kinect, which is
now based on ToF. As a consequence, both the accuracy and resistance against high
illumination are improved, but it still performs badly in direct sunlight. Microsoft
eventually integrated the same ToF sensor in their AR device Hololens. Figure 2.7
shows the output of the Kinect 2, comprising a color image with a resolution of
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Figure 2.8: Depth image derived from the output of the Velodyne HDL-32E in the
UFO building at Ghent University. The vertical resolution of this depth image is 32 in
accordance with the number of lasers and the vertical FOV covers approximately 40◦.
As the scanner is spinning its head, the horizontal FOV comprises 360◦. The picture
at the bottom was captured with a Ladybug camera system and is shown to clarify the
depth image.

1920 × 1080 and a depth map with a resolution of 512 × 424. The range of the
ToF sensor approximates 4 m, which is sufficient for AR applications, but is too
limited for navigation in autonomous robots or building 3D models of large scale
environments.

For the latter use cases, pulsed lidar technology is more appropriate. These
devices typically consist of a spinning head containing multiple collinear lasers.
The left image of Figure 2.9 depicts three models (left to right: VLP-16, HDL-32
and HDL-64) of the Velodyne lidar scanners containing respectively 16, 32 and 64
lasers. The range of these scanners is approximately 100 m for the former two and
120 m for the latter. As they are continuously spinning their head, they produce
depth measurements with a horizontal FOV of 360◦. The vertical FOV of these
scanners is respectively 30◦, 40◦ and 26.9◦. An example depth image acquired
by the Velodyne HDL-32E is shown in Figure 2.8. The right image in Figure 2.9
depicts two lidar scanners from the competitive company Ouster, i.e. the OS-1 and
OS-2.

Finally, a new imaging technology that recently receives a lot of attention is
gated imaging. In gated imaging, a camera with tightly controlled opening and
closing times of the shutter is used in combination with a high power pulsed light
source, often a laser. The pulsed source is synchronized with the sensor exposure
time, which makes the latter able to integrate a specific segment of the reflected
light and hence to image a slice at a specific depth in a scene. In this way, one
can choose to observe, for instance, only slices located at more than 1km from the
camera.

Usually, gated imaging is used to enhance image contrast for example in the
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Figure 2.9: Velodyne and Ouster are currently the leading companies developing state-of-
the-art 3D scanners based on pulsed lidar technology. Throughout this work, experiments
have been conducted with the three different models from Velodyne depicted above,
which consist of respectively 16, 32 and 64 lasers.

case of mist or other clutter. The shutter of the camera is kept closed, i.e. the camera
is not integrating light, during the time that the clutter is incident. The shutter is
opened only at the time of incidence of the light from the object of interest. This
type of cameras can thus also be used to capture consecutive images at different
depths, opening new opportunities in the domain of 3D mapping. Currently, the
level of accuracy of gated imaging is in the range of a few meters, but one can
expect this to increase in the future.

2.6 Evaluating the performance of SLAM systems

Many metrics have been used in the literature to evaluate the performance of SLAM
systems. In general we can distinguish two different approaches. The first one
compares the estimated trajectory of the mobile observer with the real, ‘ground
truth’, one. In reality it will however never be possible to rely on the true ground
truth trajectory. Therefore, measurements from an alternative - more accurate -
device are often used to compare against. The second approach on the other hand
compares the reconstructed 3D model with a ‘ground truth’ model. The same
remark can be made here, in the sense that it is not always easy to obtain a correct
3D model of a scene, as it is exactly the purpose of SLAM systems to generate these.
Sometimes, there exists a CAD model that was generated to construct the building
or infrastructure. For research purposes, one could also opt to create a 3D (point
cloud) model through static laser scanning. In the latter approach, measurements
are taken from fixed, known, positions and hence, the result is only affected by the
accuracy of the laser scanner, which in some cases can be as good as 1 or 2 mm.

When there is no ground truth information available, the last resort is to record
a data sequence in which the sensor is returning to the same position from where
it has left. In that case, one can consider the Euclidean distance between the first
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and last position, defined as the translational components of the pose, as the error.
In order to make sure that a perfect loop is created, one can additionally ‘add’ the
first measurement of the scanner (referred to as a ‘scan’ or ‘frame’) at the end of
the data sequence. Doing so, we ‘mimic’ the fact that the robot is returning to the
exact same location from where it has left, thereby eliminating manual ‘navigation’
errors.The latter approach is not the best way of expressing the accuracy of a SLAM
system, but it can still be useful to compare different techniques with each other or
to assess the contribution of a part of the solution.

In this work, we will use a combination of these evaluation methods. Regarding
the comparison of trajectories, we will use two different error metrics, being the
relative pose error (RPE) and the absolute pose error (APE), which are explained
below. Both errors are extensively used in papers that benchmark several SLAM
systems such as [Geiger 12], [Sturm 12] and [MurArtal 15].

2.6.1 Relative pose error

In a nutshell, the RPE measures the local accuracy of the trajectory, in terms of
translational and rotational error, over a fixed distance (or time) interval. To this
end, the trajectories are quantised in intervals of length ∆, for example 100 m. The
sensor pose matrix Pi = (Ri, ti) ∈ R4×4 corresponding with scan or sweep i
represents the first sensor pose of the interval, whereas Pj = (Rj , tj) ∈ R4×4

represents the last sensor pose of the interval. The matrices Ri and Rj represent
two rotation matrices and the vectors ti and tj denote two translation vectors.

For Pi and Pj the following condition is valid: ||ti − tj ||2 ≈ ∆. We now
define the difference of the two ground truth poses Pi and Pj and estimated poses
P̂i and P̂j as Di,j = P−1

i Pj and D̂i,j = P̂−1

i P̂j respectively. The relative pose
error Ei,j is then given by:

Ei,j =

 Re
i,j tei,j

0>3 1

 = D̂
−1

i,jDi,j . (2.9)

The rotational error ri,j and translational error ti,j between the two poses are
subsequently given by:

di,j =
1

2
(tr(Re

i,j)− 1), (2.10)

ri,j =
1

∆
acos(max(min(di,j , 1),−1)), (2.11)

ti,j =
1

∆
||tei,j ||2. (2.12)
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The rotational error ri,j is expressed in deg/m whereas the translational error ti,j
is expressed in % and they can be computed for several ∆k ∈ ∆. The average
absolute value of the rotational error Er and the average translational error Et are
finally given by:

Er(∆) =
1

M

∑
∆k

∑
(i,j)∈τk

|ri,j | (2.13)

Et(∆) =
1

M

∑
∆k

∑
(i,j)∈τk

ti,j . (2.14)

The constantM represents the number of segments over all ∆k’s that are considered
and τk denotes the set of indices (i, j) of the segments corresponding to ∆k. In the
Kitti benchmark [Geiger 12], for example, ∆ = {100 m, . . . , 800 m} and M = 8.

The RPE is useful as it mitigates somehow the influence of outliers in the
estimated poses. More specifically, as pose estimates in SLAM are the result of
dead reckoning, even the smallest (rotational) error is taken along the whole future
trajectory. Therefore, it is useful to consider different ∆k to investigate how robust
the system is to outlier pose estimates, often the result of abrupt movements of the
sensor or moving objects in the scene. Suppose that a large rotational error is made
at a certain time, it will be taken along the whole future trajectory. If we quantise
the trajectory in intervals of length ∆k, we can more accurately verify whether the
final error is due to one large error or many smaller ones.

2.6.2 Absolute pose error

The second error metric is denoted as the absolute pose error (APE). It is computed
by comparing the absolute distances between the estimated and the ground truth
trajectory. The absolute pose error F at time step i is computed as follows:

Fi =

 Rf
i tfi

0>3 1

 = P̂−1
i SPi, (2.15)

where S is the rigid-body transformation corresponding to the least-squares solution
that maps the estimated trajectory P̂ onto the ground truth trajectory P. This method
is also referred to as the ‘Umeyama’ method [Umeyama 91]. Eventually, we use
the average L2-norm of the translational components of all pose indices, given by:

F =
1

N

∑
i

||tfi ||2, (2.16)

where N denotes the total number of poses. The APE error metric is generally used
to compare the performance of full-blown SLAM systems that have some kind of
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loop closure mechanism. It is less suited in case there is no loop closure present or
when the observer is not returning to earlier visited places.

2.7 Open challenges

Narrowing down the use case to a few scans in a small environment and assuming a
static world, current SLAM solutions can deliver acceptable performance. However,
in case of many short-term dynamics, i.e. moving people or objects in the scene,
or applications on resource-constrained platforms, many issues still need to be
resolved. Not to speak about the case of lifelong mapping or providing long-
term autonomy to robots. From that perspective, SLAM is far from solved. The
term lifelong mapping refers to the process in which the map of the ‘world’ is
continuously extended and improved. There are many challenges related to it that
still remain open. In this section, we will organize them in two categories, namely
the challenges related to the ‘robustness’ and the ones related to the ‘scalability’,
both of them necessities to truly come to long-term autonomy. The first category
roughly deals with failures and how to recover from them, while the second one
involves efficient use of resources and the concept of distributed mapping.

2.7.1 Robustness

As SLAM systems are fragile in many ways, long-term operation is far from trivial.
Failures can occur on the algorithmic level, but can also be hardware related. When
a robot needs to operate autonomously on the long term these failures should be
gracefully handled. This requires both algorithms that are fail-safe, but also failure-
aware, i.e. the system needs to be aware of imminent failure and provide recovery
mechanisms that can re-establish proper operation.

Robustness on the algorithmic level

One important case of algorithmic failure is the data association part of a SLAM
system, also referred to as the correspondence problem. It deals with the question
to which part of the reconstructed scene new sensor measurements belong to. On
the one hand, there is the problem of perceptual aliasing in which different sensory
inputs lead to the same ‘signature’, and which lead to wrong data associations. In
point cloud based SLAM this is especially the case in monotone environments that
lack geometrical features, such as long corridors. On the other hand, point-based
registration methods also suffer from the correspondence ambiguity caused by
the sparsity of the sensor measurements making perfect (physical) point matches
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impossible. Another aspect of robustness is when the robot or user is moving too
fast or when there are harsh environments, e.g. in case of a drone flying in windy
circumstances. Finally, in highly dynamic environments, the presence of moving
objects or people in the scene makes the data association even harder.

Robustness to hardware failure

Besides the vulnerabilities on the algorithmic level, a SLAM system can also
decline due to hardware failure or degradation. In case of structured light or pulsed
lidar certain types of surfaces cause the emitted light to be distorted in a way that
it interferes with the data acquisition process. Among these difficult surfaces are
dark, shiny or transparent surfaces. Dark surfaces typically absorb light whereas
shiny surfaces let the light scatter and bounce in uncontrollable directions. Finally,
transparent surfaces, e.g., windows, let light go through which makes them invisible.
Moreover, they will cause reflection which adds noise to the scans. Typically, the
inside walls will be projected on the outside if one is scanning from inside and
through a window. Also, the refraction of light causes it to be shifted, leading
to a distortion of the acquired geometry. All these ‘special’ surfaces thus lead to
inaccurate or missing measurements in the scanning data.

Besides the type of surface, some 3D sensing modalities, such as pulsed lidar,
are also affected by bad weather conditions, often slashing the range and accuracy
of the sensors. Finally, hardware failure could also be caused by malicious practices.
Some studies have shown that lidar systems, for instance on driver-less cars, can be
thwarted by a simple laser pointer. Furthermore, they are vulnerable to spoofing or
saturation attacks causing a denial-of-service. All of the aforementioned potential
hardware failures should be carefully recognized by the SLAM system. In addition,
they should be gracefully dealt with in the sense that the system should not crash
but try to produce a reasonable result that can later on be improved when the source
of hardware failure is tackled.

In some cases the errors can be overcome on the software level, but in some cases
this will not be possible. Therefore, future SLAM systems will use different sensors
simultaneously such that one sensor can take over when another one is failing to
produce correct measurements. Moreover, multiple different sensors can also be
used to fuse the data together. This sensor fusion, makes the resulting information
from the scene less uncertain then when the sensors are used individually.

Re-localization and recovery

No matter how hard we try to overcome the sources of failure, there will always be
situations where recovery is impossible. Today, SLAM systems are generally not
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equipped with tools that enable recovery and hence they often require a hard reset
in case of failure. Future SLAM systems should therefore integrate a way of saving
the current map off-line and re-locating the sensor using a previously built map.

Time varying maps

Besides short term dynamical changes as result of moving objects or people, there
could also be ‘seasonal’ changes. Nowadays, most SLAM systems assume a static
environment where the ‘world’ remains unchanged. In future SLAM system there
should be policies on which parts or which objects should have tracked changes
and which ones should be ‘forgotten’.

Automatic parameter tuning

The SLAM community today is largely affected by the “curse of manual tuning”.
This means that many parameters in all different parts of a SLAM system require
careful tuning for the system to produce satisfactory results. Among the parameters
are the number of iterations while solving the underlying optimization, the thresh-
olds for feature computation and defining correct data association and the criteria
to trigger loop closure. Future SLAM systems will have to work “out of the box”
and therefore they will have to integrate a way of automatic parameter tuning.

2.7.2 Scalability

The challenge of scalability is closely related to the one of lifelong mapping. The
robots from the future, such as cleaning robots, or robots used for environmental
or urban monitoring in ever changing environments will operate for an extended
period of time and over large areas. This means that the maps they will create and
maintain will become large as well. At the same time, the robotic platforms are
bounded in terms of resources, both on computational and memory level. As a
result, future SLAM systems should aim to keep the computation time and memory
footprint low. In addition, they will have to work together and hence to be able to
distribute their maps to their peers. There are many aspects in making a SLAM
system truly scalable. Below, we list the most important ones.

Node and edge sparsification

Modern cameras, ToF sensors or lidar scanners usually operate at frame rates
between 10 FPS to 30 FPS. Doing so, they induce many ‘camera poses’ or edges
in the SLAM pose graph. When solving the MAP formulation, this number easily
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becomes intractable. Depending on the underlying solver, the complexity of this
optimization is quadratic or linear in the number of variables. When visiting the
same area over and over again, it is clear that keeping many nodes in the pose
graph becomes less and less efficient in improving the overall map. Lifelong SLAM
systems will therefore have to implement pruning mechanisms to reduce the number
of poses in the SLAM graph. In line with this, recent studies are investigating
so-called continuous-time trajectory estimation in view of reducing the number of
parameters to be estimated over time. We will elaborate on this continuous-time
SLAM in the next section.

Map representation

Besides the sparsification of the edges and the nodes in the graph, the representation
of the map is another crucial part when it comes down to scalability. The map
should fit in the memory of the ‘mobile’ observer and should facilitate quick updates.
Even when memory is of less importance, for instance when the map is stored in
the cloud, point-cloud based maps or volumetric maps are tremendously wasteful.
Furthermore, those representations are too cumbersome to conduct spatial queries
on, for example to relocate the user later on, detect changes and finally apply
those changes in the map. As it would lead us too far to describe alternative map
representations in detail here, we devoted an entire section in chapter 5 to efficient
map representations.

Forgetting, learning, remembering

Because the world is constantly changing, there should be policies on when it is
fine, if ever, to forget data. What can be forgotten and how can we track changes
over time?

Distributed mapping

A research area that is still widely unexplored is the one of distributed mapping also
referred to as multi-agent SLAM. However, as more and more intelligent robots
will operate together, they should also share their knowledge with each other. There
are two ways of distributed mapping: the centralized or the decentralized approach.
In the former one, all robots build their own part of the map and send it to a central
station that aggregates and re-distributes them. In the second one, each robot shares
its own-built part of the map with all the other robots thereby trying to find a
consensus among each other. One of the main unsolved issues regarding distributed
mapping is the way to deal with outliers. As the robots might not share a common
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reference frame it is difficult to detect and reject wrong loop closures. Also, in a
distributed map, the robots have to detect these outliers based on partial and local
information. Finally, a limited bandwidth could impose additional challenges not to
mention the case in which the communication link can be entirely down. A recent
study on multi-robot SLAM can be found in [Saeedi 16].

Resource-constrained platforms

One severe limitation of today’s SLAM algorithms is that they are computationally
demanding. They work real-time on workstations or well-equipped laptops, but
SLAM algorithms will be integrated in many smaller devices, where there is no
space for an advanced chip including a large battery or fan. Think about mobile
phones, micro aerial vehicles or even more exotic, robotic insects. Future SLAM
algorithms should therefore foresee mechanisms to gently trade off accuracy for
speed.

2.8 Future of SLAM

In this section we want to elaborate on a few recent developments which we believe
will play a crucial role in the future of SLAM.

2.8.1 Continuous-time SLAM

In the previous section, the challenge of node and edge sparsification has briefly
been mentioned. One way of dealing with this, is to identify relevant poses and
prune the graph accordingly by removing uninformative edges, e.g. using an
information-theoretic approach [Ila 10]. However, for a truly scalable solution,
we believe that continuous-time trajectory estimation is more appropriate. In that
paradigm, the full MAP problem is transformed into continuous time and temporal
basis functions are used to keep the state size manageable. Another benefit of this
approach is linked to the problem of a so-called rolling shutter which is present
in typical pulsed or scanning lidar devices. The rolling shutter causes a serial
acquisition of 3D points instead of one simultaneous scan of the environment. Since
the robot or vehicle is typically moving, this rolling shutter causes the produced
point clouds to be distorted or skewed as depicted in the left image of Figure 2.10.
Sometimes, the lidar scanner is accompanied with a motion sensor, such as a wheel
sensor or an inertial measurement unit (IMU), which can be used to undistort the
lidar data and accumulate it into a rigid frame, cfr. right image of Figure 2.10.

In the work of [Alismail 14], the authors abandon the idea to treat one lidar
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Figure 2.10: The phenomenon of a skewed point cloud (left) due to the rolling shutter of
a moving lidar scanner. The process of de-skewing (right) aims at un-distorting the point
cloud by transforming the points in a way as if they were all captured simultaneously.
Image reproduced from [Alismail 14].

sweep as a single rigid frame and propose a registration technique that explicitly
accounts for sensor motion, hence ending up with a continuous-time trajectory.
Other researchers have investigated cubic-splines or B-splines to represent the
trajectory of the robot in continuous-time [Furgale 12] . The control points or
‘knots’ of the spline are then representing the nodes in the graph. These B-spline
methods have been successfully applied on both landmark-based as well as direct
dense representations [Kim 16]. Besides for rolling shutter sensors [PatronPerez
15], B-spline methods have also been explored for event-based cameras [Mueggler
15]. Other research proposed improvements regarding ‘sliding-window’ B-spline
formulations or proposed techniques based on non-uniform splines or wavelets.
More recently, hierarchical optimization back-ends are explored [Droeschel 18], in
which local multi-resolution maps are used in a multi-level graph, cfr Figure 2.11.
The individual 3D scans in the local map are modelled as a sub-graph and graph
optimization is performed in the local maps to account for drift and misalignments.
Thereby, in each sub-graph, a continuous-time representation of the sensor trajectory
allows to correct measurements between scan poses.

2.8.2 Machine learning

Nowadays, the computer vision literature is dominated by deep learning, so we can
not end this chapter without mentioning it. Recently, researchers have shown that it
is possible to train a deep neural network able to regress the pose of a camera directly
from the images [Costante 16], hence omitting the need for standard geometry or
visual odometry. However, experiments on publicly available datasets including
KITTI [Geiger 12], demonstrated that the accuracy is currently below the one of
traditional approaches.
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Figure 2.11: Multi-resolution continuous SLAM as presented in [Droeschel 18]. The
entire map is represented by multiple local maps - hence hierarchical - that are locally
optimized. For each local map, the trajectory is estimated continuously, making it
possible to interpolate new nodes (or poses).

In [Kendall 15] the authors propose ‘Posenet’, a real-time 6-DOF camera re-
localization system based on a convolutional neural network. At the same time,
the authors of [Valentin 15] successfully applied regression forests to re-localize
the camera. Other works involve the estimation of depth from a single image
in order to use it to conduct monocular SLAM, such as ‘CNN-SLAM’ presented
in [Tateno 17]. Finally, in [Krishnan 15], the authors proposed Deep Kalman
Filters as the first to explore the connection between deep learning architectures
and recursive state estimation in large-scale graphical models. In our opinion, those
recent advances do not mean that ‘traditional’ SLAM is dead and we consider it
too soon to tell whether these studies are curiosities or will take over the traditional,
well-understood principles of SLAM. In the following, we will discuss a few future
directions of SLAM for which we think deep learning will nevertheless be of great
influence.

The first one is related to the concept of semantic SLAM, which deals with
the high-level understanding of the maps that are created. Semantic SLAM will
enable task-driven decisions and anticipation based on the category of objects in
the scene, including moving objects such as humans walking around. The level of
detail and organization of the semantic labels will be depending on the specific task
the robot has to perform. Nowadays, object recognition for the ImageNet classes
can almost be treated as a black box that works well from the perspective of the
robotics or SLAM researcher. Similarly, pixel-based semantic labeling reaches
accuracy levels of more than 90% on the PASCAL VOC dataset [Sun 18]. These
successes will definitely accelerate the deployment of semantic maps, which on its
turn will ameliorate other aspects of SLAM including place recognition for use in
loop closure or re-localization in case of tracking losses.

The second future research direction will be focused around practical deploy-
ment. Deep learning today is characterized by lengthy training times on supercom-
puters and dedicated GPU hardware to conduct inference. The question will be
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whether to wait for the special-purpose hardware that provides sufficient computa-
tion power for embedded devices or to investigate smaller, cheaper networks that
provide ‘good enough’ results. Another issue is that future SLAM systems will
typically operate in an open-world with continuous observation whereas current
deep neural networks are trained on closed-world scenarios with a fixed number of
classes. Also, where existing networks are trained on a large amount of data, it can
not always be guaranteed that a suitable dataset exists for supervised training. A
big challenge therefore remains in improving the power of deep neural networks
towards ‘one-shot’ learning. The emphasis there lies on knowledge transfer, making
use of prior knowledge of learnt categories and allowing to learn from minimal
training examples. We believe that developments in this area will be necessary in
order to enable life-long learning integrated in a continuously observing SLAM
system. A final aspect is the one of incorporating prior knowledge on the expected
type of objects, the characteristics of the scene or even relationships between the
objects. Deep learning could be applied to distil such prior knowledge from the
environment. However, the way to extract and use this information is a significant
open problem, especially the way to deal with the uncertainty of estimates derived
from a deep neural network.

2.9 Conclusion

In this chapter we formulated an answer to the questions whether SLAM is solved
or not and why or in which situations SLAM is necessary. If we narrow down
the scenarios to specific environments, use cases and limited performance, one
could argue that within some boundaries SLAM is solved. However, as we enter
the robust-perception age, there are still many open challenges that yet need to
be overcome to truly come to robust perception and navigation for long-lived
autonomous robots. From this perspective, SLAM is clearly not solved and more
research on the topic is needed. The main unresolved aspects involve ‘robust
performance’, ‘resource efficiency’, ‘high-level understanding’, and ‘task-driven
inference’. From the point of robust performance, there is still plenty of work in
making SLAM systems “fail-safe” and “self-tuning”. Resource efficiency involves
techniques and data structures to maintain large-scale and time-varying maps that
are easy to update and that can access the right information at the right time. In that
respect we envision that future SLAM systems will be dominated by solid objects
instead of point- or boundary-based systems. Regarding the time-varying maps, we
furthermore need policies on which parts should have tracked changes and which
parts are allowed to ‘forget’ information. High-level understanding comprises
semantic labels to objects in the scene which will further ease the problem of
dynamic objects or people in the scene.





3
Point cloud registration

In this chapter we will dive deeper into the problem of point cloud registration as
part of a SLAM solution. In short, point cloud registration involves the alignment
of two 3D point sets with partially overlapping scene content. In other words, the
goal is to find the rigid transformation that yields the best alignment between two
point clouds in order to maximize their overlap. This transformation is eventually
used to merge the point clouds into one coherent coordinate system. The problem is
obviously more difficult when the scene overlap decreases, but also when the point
clouds originate from different acquisition modalities, or when they are acquired
from very different view points. In the first case, fewer correspondences can be
determined between the two point clouds. In the second case the point density or
the noise properties could be deviating whereas in the third case occlusions could
act as a hindrance.

In this work, we mainly focus on point cloud registration for use in SLAM
applications where the same device is used during the entire process. Still, we can
distinguish two different scenarios. In the first one, we want to align two point
clouds that were acquired in two consecutive sweeps of a lidar scanner or two
consecutive frames of a ToF camera, a problem that is usually referred to as scan
matching. The main advantage here is that the two point clouds differ only slightly
because they are acquired from only slightly different view points. Obviously, this
property will only hold in case the frequency of the measurements is sufficiently
high and the moving speed sufficiently slow, which we will assume in this chapter.

In the second scenario the tracking of the sensor is lost and we need to relocalize
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(a) Underlying surface (b) Inhomogeneous sampling (c) Noise

(d) Outliers (f) Misaligned scans(e) Missing data

Figure 3.1: Several types of artefacts that can be present in point cloud data, here
represented in 2D.

its pose. In that case, the assumption that the two point clouds are only slightly dif-
ferent no longer holds true. The situation can also occur when we revisit a location
and we want to exploit this knowledge by closing the loop, thereby correcting for
drift errors. In that case, the same location can be reached from different directions
and hence the two acquired point clouds can have a (large) difference in orientation.
In the next section we will enumerate a few challenges that come with the problem
of point cloud registration. We will also explain why the methods in the earlier
academic literature fall short and how we can deal with their shortcomings. The
follow-up sections will logically describe how we tackled the main challenges.

3.1 Introduction

With the advent of many modern 3D sensing modalities, point cloud registration
has become a prevalent part of a SLAM system. However, the registration of point
clouds originating from different depth sensors poses more challenges. Figure
3.1 depicts the most common issues. Point clouds acquired by laser scanners for
example often suffer from an inhomogeneous and sparse point density, due to
the angle of incidence of the laser beams in combination with the proximity of
objects in the scene. Other possible artefacts are due to sensor noise (inaccurate
measurements) or outliers. Furthermore, it is possible that a large part of the scene
is not sampled because of occlusion. Finally, in case of incremental registration,
previously acquired point clouds could be imperfectly aligned. If we would use
the concatenation of those point clouds later in the pipeline, we could facilitate
future registration errors. Especially the latter problem is not well-addressed in
state-of-the-art registration algorithms. All of the aforementioned artefacts should
be carefully taken into account as they are almost always present in scan data,
especially in data originated from lidar scanners.

Figure 3.2 depicts a point cloud from one of the sequences of the KITTI vision
benchmark [Geiger 12], acquired using a Velodyne HDL-64E. In that point cloud
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Figure 3.2: Point cloud from the KITTI benchmark [Geiger 12] acquired by a Velodyne
HDL-64E lidar scanner in an urban traffic scene.

one can see rings, starting somewhere close to the origin and spreading towards the
edges of the point cloud. One can also see that the distance between the rings is
increasing the further we move away from the origin, which is due to the incidence
angle of the laser beams. This property causes the inhomogeneous point density
in lidar point clouds and makes it unlikely that the exact same physical point is
sampled among consecutive scans. The latter problem gives rise to ambiguous
correspondences, denoting a pair of matching points not representing the same point
in the real world. This phenomenon is sometimes referred to as the correspondence
ambiguity and jeopardizes the convergence to the correct pose estimate.

In this chapter we will propose a number of solutions to deal with the afore-
mentioned challenges, in view of achieving more accurate pose estimates. We will
thus, for now, only focus on point cloud registration for use in scan matching. The
solutions are mainly based on constructing a robust cost function in a way that the
knowledge about the underlying surface is maximally exploited. In the following
chapters, we will come up with more advanced techniques, exceeding the scope of
the actual scan matching. Among these techniques are a preliminary estimation of
an optimal neighbourhood function upon which a surface reconstruction is based.
This reconstruction is then used to re-project the points on the surface. It is the
combination of all these improvements that in the end will account for the majority
of the artefacts, from reducing the noise to eliminating the outliers and filling small
gaps. Finally, the registration techniques to align two non-consecutive point clouds,
e.g. in case of loop closure, will be discussed in chapter 6.
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3.2 Related work

A quick review of the literature reveals that there are roughly four classes of scan
matching techniques that are commonly used: 1) the iterative closest points (ICP)
algorithm, 2) the normal distribution transform (NDT), 3) methods based on feature
points and 4) methods based on planar surfaces. However, the majority of the scan
matching approaches presented in literature are based on the ICP algorithm. The
algorithm is popular as it is intuitive and offers flexibility to adjust it to specific use
cases. However, it also comes with a few limitations, most of them related to the
aforementioned point cloud artefacts.

As it would lead us to far to give an exhaustive list of all the different scan
matching techniques presented in literature, we will highlight an anthology of the
most influential works. The early SLAM literature was mainly oriented towards
robotic applications in which 2D laser-range sensors were the de facto standard for
quite some time. Back then, the output ‘maps’ were in 2D, usually obtained by
vertical projection on the ground plane, and the pose of the sensor in 3D containing
the (x, y)-coordinate and a rotation θ. They were further heavily depending on
external positioning information from IMU’s or wheel odometry sensors.

3.2.1 ICP-based solutions

In [Nüchter 04], the authors presented one of the first 3D SLAM systems based on
an ICP scan matching front-end and solved using 6-degrees-of-freedom, i.e. three
positional and three orientational coordinates. They used 2 tiltable SICK 2D lasers
on both ends of the robot, one put horizontally and the other one vertically. As
we will see later in this chapter, one of the main drawbacks of the standard ICP
algorithm is the computationally expensive correspondence estimation step that
- given the iterative nature of the algorithm - has to be conducted several times.
The authors therefore propose a novel search procedure, based on cached kd-trees
to accelerate this data association step. Later on they extended their system by
incorporating improved loop closure mechanisms [Nüchter 05; Nüchter 07].

In [Bosse 10], the authors also used a SICK 2D laser scanner and propose
another improvement for the ICP algorithm. More specifically, they discretized the
workspace into a 3D grid and summarize each voxel with shape features, similar
to what we will propose in chapter 4. Later on, the authors extended their SLAM
system by mounting the sensor on a spring, thereby artificially extending its ‘field of
view’ outside its standard scanning plane [Bosse 12]. They eventually showed the
use of their system in the application of mapping an underground mine [Zlot 12].

More recently, the development of off-the-shelf multi-laser scanners, such as
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the Velodyne lidar scanners, caused the 3D lidar mapping literature to boom as
never before. [Moosmann 11] came up with their Velodyne SLAM system based
on the Velodyne HDL-64E scanner. They used the ICP algorithm, but to alleviate
the correspondence ambiguity, they proposed to incrementally build and maintain
a ‘global map’ of the environment and align each newly arrived scan with the
entire map. Their map is improved every time new sensor data comes in by re-
estimating the surface normals based on the new points in the map. In addition,
they proposed to perform a preprocessing step to deskew the point cloud and to
cope with degeneration caused by the rolling shutter. Hereby, they assumed that
the velocity is constant during the acquisition of one scan. The authors of Velocity
ICP [Hong 10] elaborated on this problem by proposing to estimate velocity over
the ICP iterations. They compensate the distortion of a scan due to motion by
re-projecting all points acquired during one sweep to the position of the sensor at
the beginning of the sweep.

The Generalized ICP (GICP) algorithm presented in [Segal 09] unifies the
standard - widely used - cost functions in the original ICP formulation. They
claim that the well-known point-to-point or point-to-plane cost functions do not
take into account the fact that the point cloud is in essence a sampling of an
underlying surface and that this sampling is prone to noise. Therefore, they propose
a framework that is able to incorporate structural information from both the source
and target point cloud in a probabilistic way. In [Holz 14], the authors improve the
GICP framework by performing an approximate surface reconstruction, similar to
what we will propose in chapter 5. They show the effectiveness of their system by
integrating it onto a micro aerial vehicle [Holz 15].

Finally, some studies focus on combining ICP-based scan matching with (stereo)
visual odometry. For example, in [Sarvrood 16] the authors propose a solution that
uses the output of visual odometry to obtain a rough estimate of the ego motion upon
which consecutive point clouds are registered. The plane-to-plane cost function is
used to refine the motion estimation, in combination with the outputs of an IMU.

In the end, there are many design decisions concerning the ICP algorithm,
regarding the cost function, point selection, outlier rejection, weighting, corre-
spondence estimation and so on. The authors of [Pomerleau 13] devoted a whole
paper to the comparison between various baseline ICP variants on real-world data
sets. The experiments showed that there is a high variability among the variants
in terms of success rate and accuracy, which is largely depending on the dataset.
They conclude that there is need for improved ICP methods, especially for natural,
unstructured and geometrical-deprived environments.
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3.2.2 NDT-based solutions

Aside from ICP, the normal distribution transform (NDT) [Biber 03] is another
common technique that is used for laser scan matching [Magnusson 07; Sun 13;
Einhorn 15]. It is based on an alternative representation of a point cloud similar to
an occupancy grid. In each 3D cell, a normal distribution is stored and both scans
are matched by minimizing the negative log likelihood between NDTs of scans
using Newton’s method. Compared to ICP-based methods, the main advantage of
this technique is that there is no need for explicit correspondence estimation. The
main limitation on the other hand is the fact that the accuracy of NDT is strongly
related to the cell size, which is difficult to define in case of inhomogeneous point
clouds. Another severe drawback is that NDT quickly degenerates in environments
with limited structure.

In [Magnusson 09b], the authors present an evaluation of the 3D registration
reliability and speed of both the ICP and NDT algorithm. In their experiments,
NDT was shown to converge from a larger range of initial pose estimates than ICP,
and to perform faster. However, the poses from which NDT converged were not as
predictable as for ICP. In several cases, a scan was successfully registered from a
pose estimate with large initial error but failed from a pose estimate with a smaller
initial error. Also, in some cases where NDT failed, the resulting pose was worse
than the result of ICP, mainly because of a larger rotation error.

In a recent work [Zaganidis 17], the authors propose to introduce semantic
information - extracted from the point cloud - into the registration process in order
to overcome the limitations of NDT. Experiments demonstrated that their method
improves the accuracy, robustness and speed of NDT, especially in unstructured
environments, making it suitable for a wider range of applications.

3.2.3 Feature-based solutions

Another way to cope with the correspondence ambiguity is to introduce the use of
features [Siritanawan 17]. Feature-based methods have significant advantages as
they concentrate on strong cues such as corners and lines and filter out irregular
points such as vegetation or tree leaves. However, the main drawback is that they
are in general more expensive to compute, making it difficult to achieve real-time
performance. One very interesting feature-based solution has been developed in the
work of [Zhang 14]. In their paper, the authors propose a method using a 2-axis
lidar moving in 6-DOF. Their system incorporates two processing loops, the first
one being the estimation of the observer’s trajectory (odometry), the other one being
the actual mapping. The latter is running at a lower frequency to guarantee real-time
performance. The registration technique itself is based on the extraction of only
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two different - and easy to extract - shape features, representing sharp edges and
planar surface patches. Edge points of the source cloud are associated to edge lines
while planar patches are matched with other planar patches in the target cloud. In
[Zhang 15], the same authors extended their system by integrating visual odometry
based on data from a regular camera.

3.2.4 Plane-based solutions

Finally, in [Pathak 10; Grant 13; Xiao 13], the authors use yet another approach,
based on the registration of planes. These planes can lead to very accurate align-
ments as they serve as strong cues and can be estimated by an accumulation of data
hence reducing the noise. However, as the whole registration is solely based on
the alignment of the set of planes, the lack of (large) planes in the scene can cause
these methods to fail. The limitations of these methods for outdoor or ‘cluttered’
environments make them less generic and hence less applicable.

3.2.5 Proposed solution

In this work, we adopt the ICP-scheme as it offers a lot of flexibility. However, we
integrate it within a ‘hybrid’ solution in the sense that we combine ICP with feature
extraction and surface reconstruction. More specifically, we incorporate low-level
features describing the underlying geometry in a simple way. We exploit these
properties to identify for each point an ideal neighbourhood upon which the normal
vectors are computed. The low-level features are further used to guide the ICP
process in such a way that the alignment uses the most stable regions, i.e. planar
regions instead of irregular or scattered points. Our approach benefits from large
planar surfaces while at the same time remains generic.

In this chapter, we will present an extension of the generalized ICP method, by
means of an improved cost function. The whole idea behind the novel cost function
is that it is more suited to incorporate information from the underlying surface. The
explanation and evaluation of the feature extraction will be the topic of chapter 4.

3.3 ICP

3.3.1 The fundamentals

In a nutshell, ICP iteratively determines corresponding point pairs between two
point clouds - the source and the target - and subsequently uses these to estimate
the transformation between the two that maximizes their overlap. Thereby, the
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target point cloud is kept fixed, while the source point cloud is transformed to
best match the target. The transformation is iteratively revised by minimizing
a cost function. The algorithm was proposed more or less at the same time by
both [Besl 92] and [Chen 92]. The problem is formulated as follows. Given two
point clouds Ps = {psi} and Pt = {pti} - denoted respectively as the source and
target point cloud - where psi ,p

t
i ∈ R3 are point coordinates, find the rigid body

transformation that aligns both. The transformation matrix T = (R|t) consists of a
rotation matrix R ∈ {R3×3|RTR = I, |R| = ±1} and a translation vector t ∈ R3

and is estimated as follows:

argmin
R,t

E(R, t;Ps,Pt) = argmin
R,t

N∑
i=1

d(Rpsi + t,pti), (3.1)

where d is a distance function and N the number of corresponding points. For
simplicity we assume that Ps and Pt are indexed according to their correspon-
dences, hence we consider psi ∈ Ps the corresponding point of pti ∈ Pt for all
i ∈ {1 . . . N}. A simple and common used cost function to estimate this transfor-
mation is the point-to-point criterion:

E(R, t;Ps,Pt) =

N∑
i=1

||Rpsi + t− pti||22, (3.2)

which represents the sum of squared `2 distances between all N corresponding
pairs. Other point-to-point metrics are used as well, such as the `1 norm or least
median squares (LMS) variants [Li 01].

A common problem with all these variants however is that due to the ‘sampling’
process of 3D sensors - which leads to a discretization of the 3D space - perfect
point-to-point matches are nearly impossible to obtain. A more robust alternative
therefore is the point-to-plane criterion as it relaxes this constraint by allowing
point offsets along the surface normal. Hence, it minimizes the distance from all
points from the source point cloud Ps to the tangent plane of the surface in its
corresponding point in the target point cloud Pt:

E(R, t;Ps,Pt) =

N∑
i=1

((Rpsi + t− pti) · nti)2. (3.3)

In this equation, nti denotes the normal vector corresponding to target point pti. The
idea behind the point-to-plane algorithm is that a point cloud has more structure
than an arbitrary set of points in 3D space; it is actually a collection of surfaces
sampled by a range-measuring sensor. In chapter 4, we will elaborate on the robust
estimation of surface normals, as this will be the key to successfully applying this
cost function.
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Figure 3.3: Graphical representation of the point-to-point and point-to-plane ICP algo-
rithm. In every iteration, three main steps are executed: 1) point selection, 2) correspon-
dence estimation and 3) transformation estimation. In every iteration, the transformation
is updated until convergence has been reached and the two scans are perfectly aligned.

[Besl 92] proved that the ICP method terminates in a minimum as all the
steps reduce the error. Some implementations define an upper threshold on the
maximum distance between the two points but in that case convergence is not
always guaranteed.

In Figure 3.3, a graphical representation of the ICP algorithm, for the point-to-
point and point-to-plane error metric, is depicted. Each iteration of the algorithm
consists of three main steps: 1) point selection (both in the source and target point
clouds), 2) correspondence estimation and 3) transformation estimation. In its most
simple form, all the points in the point cloud are selected and the set of closest
points between the two - in Euclidean space - are taken as the corresponding pairs.
The principle of the point-to-plane error metric is also demonstrated in Figure
3.3: for each point the Euclidean distance to the tangent plane of the surface in its
corresponding point is minimized.

In chapter 4 we will propose a geometrical stable point selection algorithm in
order to increase the robustness. Furthermore, we will propose a weighting scheme
for the correspondences in order to penalize outliers. Finally, the transformation
estimation involves the minimization of the cost function.

3.3.2 Closed-form solutions for solving the cost criteria

Regarding the point-to-point error metric, several closed-form solutions exist with
varying accuracy, stability and speed. The four best known methods are based on
singular value decomposition (SVD) [Arun 87], orthonormal matrices (ON) [Horn
88], unit quaternions (UQ) [Horn 87] and dual quaternions (DQ) [Walker 91]. As it
would lead us too far to describe all of the methods in detail, we refer the reader
to the respective publications. A summary of the main properties is summarized
in table 3.1. The SVD method is the most commonly used one, thanks to its good
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Method Accuracy Stability Speed (small |P|) Speed (large |P|)
SVD best best good good
OM fair poor best poor
UQ good good good fair
DQ poor fair poor best

Table 3.1: Summary of the four best known closed-form solutions to solve the point-to-
point cost function in ICP, ranging from best, good, fair to poor.

performance in terms of accuracy and stability combined with acceptable speed for
both smaller and larger point clouds.

The point-to-plane cost function of eq. 3.3 is essentially a least-squares opti-
mization problem and solving it requires the determination of only the values of
the six parameters α, β, γ, tx, ty, tz . However, since α, β and γ are Euler angles
and thus arguments of non-linear trigonometric functions in the rotation matrix
R, efficient linear least-squares techniques can not be applied to obtain the solu-
tion. The point-to-plane error metric is therefore often solved using nonlinear least
squares methods such as gradient descent, Gauss-Newton or Levenberg-Marquardt
[Fitzgibbon 01]. Unfortunately, these solutions are a lot slower than their least
squares counterparts.

In [Low 04] a method is therefore derived to approximate the non-linear op-
timization problem with a linear least squares one in case the relative orientation
between the two input point clouds is small. Since we consider point clouds ac-
quired in two consecutive scans, this assumption is guaranteed. The transformation
matrix T can in that case be approximated as follows:

T =

[
R t

0T3 1

]
≈


1 −γ β tx

γ 1 −α ty

−β α 1 tz

0 0 0 1

 . (3.4)

In this equation α, β and γ denote the rotation in radians about the x-, y- and z-axis
respectively whereas tx, ty , tz are the elements of the translation vector. Equations
3.3 and 3.4 can be combined as a linear expression of the six parameters α, β, γ,
tx, ty , tz . Minimizing the point-to-plane cost function of eq. 3.3 then corresponds
with solving a simple matrix expression:

Ax− b, (3.5)

in which
x = (α, β, γ, tx, ty, tz)

T, (3.6)
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A{6×6} =

N∑
i=1
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(nti × psi )(n

t
i × psi )

T (nti × psi )(n
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i)
T

nti(n
t
i × psi )

T nti(n
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i)
T

]
, (3.7)

b{6×1} =

N∑
i=1

[
(nti × psi )((p

s
i − pti)

Tnti)

nti((p
s
i − pti)

Tnti)

]
. (3.8)

For more details on the derivation of 3.7 and 3.8 we refer the reader to [Low
04]. The beauty of this solution is that it lends itself perfectly to be executed in
parallel. The 6 × 6 linear system can be computed and summed in parallel on a
GPU whereas its solution can be derived either on GPU or CPU using a SVD or a
LU-decomposition. We propose to use a LU decomposition as it is computationally
less complex to compute. The approach allows the transformation to be computed
using all points in a very quick manner compared to indirect methods that often
have to sub-sample the points in order to guarantee acceptable processing times.
The method was implemented in the Quasar programming language [Goossens
14] and is part of our real-time camera tracker, presented in [Vlaminck 16c] and
[Vlaminck 17a].

3.3.3 Correspondence estimation

Another, time-consuming, part of the ICP algorithm is the estimation of corre-
sponding point pairs between the two clouds. In ICP, usually the set of closest
points between the two clouds - using the Euclidean distance - are considered as the
corresponding point pairs. These points will never represent the exact same physical
point, cfr. the correspondence ambiguity, but when the orientation between the two
point clouds is small and given the stability of the point-to-plane cost function, the
solution will most likely converge to a good estimate of the transformation.

In a naive way, the correspondence estimation has a complexity of O(n2) -
n representing the number of points in one single scan - as for all points in Ps
the distance to all points in Pt has to be verified. Obviously, one can do a lot
better when the point cloud has some structure in it, which will always be the
case when it is derived from a projective device such as a ToF camera. In those
situations, the 3D point cloud is organized in a 2D image plane and hence we can
exploit the adjacency of the 3D points in the 2D domain. The technique projective
data association (PDA) exploits this knowledge. In case the point cloud does not
originate from a projective device, there are still techniques to come to a faster
correspondence estimation than the O(n2) brute force way. The most important
ones are briefly discussed in the following sections.
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Figure 3.4: In projective data association (PDA), the points of one scan are projected in
the camera view of the other (previous) scan.

Projective data association

In projective data association (PDA), the corresponding point of a point psi ∈ Ps
is the closest point pti ∈ Pt to the line of projection of psi into the camera used to
obtain the points of the second cloud Pt. Point correspondences are thus computed
by projecting one point cloud onto the other with respect to the other’s camera,
which is depicted in Figure 3.4. A limitation of this approach however is that
it introduces a limit in terms of the maximum rotation and translation between
two consecutive frames that still allows reasonable data association. Furthermore,
it tends to fail in areas that are ‘poor’ in geometry, for instance in case of long
monotone corridors. Projective data association was described and evaluated in
[Rusinkiewicz 01] and gained more attention after its use in the Kinectfusion system
presented in [Newcombe 11].

Optical flow

In case there is a color camera integrated in the ToF device, cfr. the Kinect, one
can also exploit color information to find point correspondences. This way, the
limitations of PDA can be overcome and the data association is found by generating
a corresponding map based on the flow field found by the Horn-Schunck or Lucas-
Kanade algorithm. This strategy was proposed in [Vlaminck 16c]. It can be seen as
a ‘hybrid’ method, using both color and depth information in a intuitive manner.

Cylinder projection

In case of spinning lidar scanners, the points are not originated from a projective
device. However, they still have structure as the point cloud is the result of a set
of collinear lasers that are all spinning at the same rate. As one entire sweep of a
lidar scanner comprises 360◦, we can project the points on a cylinder and derive a
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Figure 3.5: 3D points generated by a spinning lidar device are projected onto a cylinder
which is subsequently quantised into cells. From these cells a range image is derived.
Using this range, the adjacency in the 2D domain can be exploited to quickly find
neighbouring points in 3D.

Figure 3.6: A 360◦ range image obtained by projecting the point cloud of figure 7.8
onto a cylinder and quantise it into cells. The blue color means that points are closeby
whereas the red color denotes that points are located further away.

2-dimensional representation from it, which serves as a range image. This approach
was proposed in [Vlaminck 16b]. Figure 3.6 shows an example of a 360◦ range
image corresponding to the point cloud of Figure 7.8.

Using this 2D range image, the adjacency in the pixel domain can be exploited,
e.g. to quickly find neighbouring points in 3D. Later on we will also exploit this
knowledge to perform a surface analysis in the point cloud. One disadvantage of
this projection is that the cylinder needs to be quantised in cells and the number
of cells or the ‘resolution’ will have its effect on the sparsity or completeness of
the range image. In case a low resolution is chosen, most of the cells will have at
least one point projected in it. However, many cells will also contain more than one
projected point and then the question arises which point should be kept. On the
other hand, when a high resolution is chosen, many cells will have no points at all
and as a result many occupied cells will not have any neighbours either.

K-d tree

A k-dimensional tree, also known as a k-d tree, represents a subdivision hierarchy
that is generated by splitting a volume along one axis at a time, thereby changing
the axis in a cyclic fashion at each subdivision step. A three-dimensional volume is
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Figure 3.7: The concept of the k-d tree data structure (here in 2D). It is generated by
splitting a volume along an alternating axis and one at a time. For example in 2D, first a
subdivision is made based on the x-coordinate, then based on the y-coordinate and then
the process restarts with the x-coordinate. Mostly, the point with the median value for
the respective coordinate is chosen as parent.

commonly split first along the x-axis using a plane parallel to the yz-plane, then
along the y-axis using a splitting plane parallel to the xz-plane, and finally along
the z-axis using a splitting plane parallel to the xy-plane. The process continues in
the next step by again splitting along the x-axis. In our discussion we will assume
that the splitting planes are chosen in the x-y-z order. A k-d tree is a special case of
a binary space partitioning (BSP) tree for which splitting planes can have arbitrary
normal directions. Figure 3.7 shows a 2-D version of the k-d tree. Often times, the
splitting is done based on the median value of the considered splitting dimension,
in order to keep the tree more or less balanced and to guarantee nearest neighbour
queries in O(log n) computation time.

3.4 Generalized ICP

In section 3.3.1, some cost criteria were presented that are often used in the ICP
algorithm. The point-to-plane objective function has been proven more robust
than its point-to-point counterpart. However, this former one does still not take
into account that the source point cloud itself is also the result of a discretization
of an (unknown) underlying geometric surface. Segal et al. [Segal 09] therefore
proposed Generalized ICP (GICP), which is a probabilistic generalization of the
ICP algorithm that allows an objective function incorporating structural information
from both the source and the target point cloud. Consider again two point clouds
Ps and Pt to be sampled from an underlying surface. The point clouds are as it
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were sampled from infinitely sampled surfaces - P̂s and P̂t - for which perfect point
correspondences exist and let p̂si and p̂ti be two points generated from respectively
P̂s and P̂t. The points psi and pti are now assumed to be sampled from normal
distributions N (p̂si ,C

s
i ) and N (p̂ti,C

t
i). Consider T = (R, t) to be the transfor-

mation that aligns P̂s and P̂t such that p̂ti = Tp̂si and di = Tp̂si − p̂ti. Because
p̂ti and p̂si are drawn from independent normal distributions, di - which is a linear
combination of p̂ti and p̂si - is also drawn from a normal distribution:

di ∼ N (Tp̂si − p̂ti,C
t
i + TCs

iT
T) (3.9)

= N (0,Ct
i + TCs

iT
T). (3.10)

Using maximum likelihood estimation (MLE), the optimal transformation matrix
T̂ can be determined by

T̂ = argmax
T

∏
i

p(di) = argmax
T

∑
i

log(p(di)), (3.11)

which can be simplified to

T̂ = argmin
T

∑
i

dT
i (Ct

i + TCs
iT

T)−1di. (3.12)

The point-to-point ICP version can be seen as a special case of this by setting
Ct
i = I and Cs

i = 0 leading to

T̂ = argmin
T

∑
i

dT
i di (3.13)

= argmin
T

∑
i

||di||22. (3.14)

Similarly, the point-to-plane cost function can be seen as another special case where
Ct
i = P−1

i , Pi representing the projection onto the span of the surface normal at
pti (cfr. [Segal 09]).

This Generalized ICP makes it possible to model the accuracy of the data in
each point cloud more accurately. As an alternative for the aforementioned cost
functions, Segal et. al. propose a different choice for the covariances Csi and
Cti . They assume that the point set is locally planar and consider each point to be
distributed with high covariance along its local plane, and very low covariance in
the surface normal direction. In line with this reasoning they propose to set the
covariance matrices as follows:

Cs
i = Rnsi

ε 0 0
0 1 0
0 0 1

RT
nsi
, (3.15)

Ct
i = Rnti

ε 0 0
0 1 0
0 0 1

RT
nti
. (3.16)
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In these equations, the matrices Rnsi
and Rnti

are respectively the rotation matrices
that transform the basis vector e1 onto the normal vectors nsi and nti corresponding
to respectively psi and pti. Doing so, ε is reflecting the uncertainty along the
approximated normals, which should - under their assumption - be low. Its value
accounts for the inaccurate measurements, or more specifically the noise of the
sensor and should in general be small. For example, in case of a Velodyne scanner,
the value of ε should be chosen somewhere between 0.01 and 0.03, approximating
the accuracy of the scanner. The cost function of 3.12 with covariances defined as
in eqs. 3.15 and 3.16 is often denoted as plane-to-plane.

In [Servos 17], the authors propose an extension of the GICP method by in-
corporating other channels of information such as color, intensity or any other
spectral information. Like the original GICP method, MC-GICP assumes that the
environment is locally planar but uses the additional channel of information to
define the covariance of a point along the surface plane as well.

3.4.1 Surface-based GICP

One of the limitations of the GICP method of [Segal 09] is that its performance
is highly affected by the quality of the normal estimation. However, in case of
point clouds with a non-uniform point density, it is difficult to accurately estimate
them, especially in sparse regions of the point cloud. Such sparse regions are often
present in data originated from 3D sensors, in particular in case of lidar scanners
due to the angle of incidence of the laser beams. The GICP algorithm assumes
that each sampled point is distributed with high covariance along its local plane
and very low covariance in the surface normal direction. It does however not take
into account that there is some uncertainty about the direction of the normal vector
as well. This uncertainty even increases in case of previously misaligned scans in
successive registration.

In our own variant, we therefore compute the covariance of a point pi in the
directions perpendicular to its surface normal. Thereby, we project the neighbouring
points pj onto the tangent plane of pi and assign a weight based on their distance
to it [Vlaminck 18c]. To determine the tangent plane we compute a principal
component analysis (PCA) of the covariance matrix Ci computed by the neighbours
of pi:

Ci =
1

N

N∑
j=1

(pj − p̄i) · (pj − p̄i)
T (3.17)

Ci · vl = λl · vl, (3.18)

In this equation, N is the number of neighbours pj of pi that we take into account,
λl the l-th eigenvalue of the covariance matrix and vl the l-th eigenvector. The point
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p̄i is the 3-dimensional centroid of the nearest neighbours. The surface normal
can then be approximated by the eigenvector v3 corresponding to the smallest
eigenvalue, as this is exactly the direction in which the ‘least’ variation occurs. The
tangent plane of pi is defined by its normal vector v3.

Let xj ∈ R2 be the orthogonal projections of the points pj onto the tangent
plane. After this transformation, the new population covariance, Σi ∈ R2×2 is the
diagonal matrix of the largest eigenvalues of Ci. Now, we compute a weighted
covariance using a Gaussian kernel that is defined asN (f̄i, σi), centered at the mean
distance f̄i to the tangent plane and with standard deviation σi for the distances.
We compute the weights for each point as follows:

wj = e
− 1

2σi
(fj−f̄i)2 . (3.19)

Using these weights, the distance kernel weighted centroid and covariance, x̄i and
Λi, can be computed as:

x̄i =
1∑
j wj

∑
j

wjxj (3.20)

Λi =
1∑
j wj

∑
j

wj(xj − x̄i)(xj − x̄i)
>. (3.21)

This distribution models the uncertainty of the distance of each point to the tangent
plane locally. However, it can be biased if the original sample population was itself
already biased. For that reason, we compensate the potential bias by normalizing
the population covariance as follows:

Ωi = Σ
− 1

2
i ΛiΣ

− 1
2

i . (3.22)

To use this information in the GICP framework, Ωi is used along the planar
directions. Therefore, the resulting covariance used in S-GICP, cfr. eq. 3.12, is:

Cs
i = Rnsi

 ε 02

0>2 Ωs
i

R>nsi , (3.23)

Ct
i = Rnti

 ε 02

0>2 Ωt
i

R>nti
. (3.24)

In these equations, Ct
i and Cs

i represent the covariance matrices for point i in the
target and source point cloud respectively. When the goal is to perform registration
on consecutive point clouds as part of a SLAM algorithm, we suggest to project all
points on the estimated surface to cope with the point cloud artefacts depicted in
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Figure 3.1. Ideally, the surface is re-estimated every time new points are added to
the aggregated point cloud model.

When we consider eqs. 3.20 and 3.21 for points lying on a perfect plane,
cfr. the assumption made in [Segal 09], we see that the weights wj are reduced
to 1 as both the average distance to the tangent plane f̄i as well as the distance
of a random neighbour point to the tangent plane fj are 0. The covariance Λi

will then approximate Σi and Ωi would degenerate to the identity matrix: Ωi =

Σ
− 1

2
i ΣiΣ

− 1
2

i = I2 ∈ R2×2. In summary, when the local neighbourhood of a point
is planar, our algorithm degrades to the original GICP algorithm.

3.4.2 Optimizing the GICP cost function

Unfortunately, there are no closed-form solutions to solve the general cost function
of eq. 3.12 in case the covariance is variable. For that reason, one has to seek
refuge in non-linear minimization approaches such as conjugate gradients, Gauss-
Newton or gradient descent. One popular technique is the Levenberg-Marquardt
(LM) algorithm, which is a combination of Gauss-Newton and gradient descent and
hence benefits from the best of both worlds. Let us collect the parameters into a
vector a = [α, β, γ, tx, ty, tz] as before. We can then formulate the error metric as:

E(a) =

N∑
i=1

di(a) (3.25)

where d is again the distance and i denotes the index of the corresponding point
pair. LM is an iterative method that updates in each iteration the current estimate
ak with a term x so that the sum ak+1 + x reduces the error E(a). Expressed as a
Taylor expansion, we can write:

E(a + x) = E(a) + (∇E(a) · x) +
1

2!
((∇2E(a) · x) · x) + . . . (3.26)

where the three dots (. . .) refer to the higher order terms. Let us now define the
vector of residuals e(a) = {di(a)}i so that E(a) = ||e(a)||2, then we can express
the terms of expression 3.26 as:

E(a) =eTe (3.27)

∇E(a) =2(∇e)Te (3.28)

∇2E(a) =2(∇2e)e + 2(∇e)T∇e. (3.29)

We denote the N × 6 Jacobian matrix∇e by J, with ijth entry Jij = ∂di
∂aj

. Neglect-
ing (∇2e)e as in the Gauss-Newton approximation, yields:

E(a + x) = eTe + xTJTe + xTJTJx. (3.30)
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The goal now exists in finding a good update x such that the error E(a + x) is
minimized. Using the approximation derived in eq. 3.30, differentiating with
respect to x and equating with zero yields:

∇xE(a + x) = JTe + JTJx = 0. (3.31)

Solving this equation for x yields the Gauss-Newton update:

x = −(JTJ)−1JTe. (3.32)

Obviously, there is no guarantee that the step will actually reduce the error at
E(ak+1), but in general when the Gauss-Newton approximations are good, conver-
gence is fast and reliable. In gradient descent approaches, the update is replaced by:

x = −λ−1JTe (3.33)

where λ controls the distance travelled along the gradient direction. A small λ
implies a large step in the downwards direction whereas a large λ yields a small step.
In contrast to Gauss-Newton, gradient descent guarantees that the error E(ak+1)

is reduced, given that λ is sufficiently large. The Levenberg-Marquardt algorithm,
finally, combines both update steps such that good performance in achieved in all
regions:

x = −(JTJ + λI)−1JTe. (3.34)

A large λ now corresponds to small, safe, gradient-descent steps, whereas a small
λ allows fast convergence near the minimum. The elegance of a good LM imple-
mentation is in tuning λ after each iteration to ensure rapid progress even where the
Gauss-Newton approximations are poor.

3.5 Normal distribution transform (NDT)

In the related work section, we mentioned the normal distribution transform (NDT)
as an alternative for ICP. As the method is regularly used in scan matching for
SLAM applications, we explain a little more detail about it in this section.

The normal distribution transform (NDT) was first proposed by [Biber 03] as
a method for 2D scan registration. Later on, Magnusson extended the method
to use it in 3D [Magnusson 07]. The first step of the NDT algorithm consists
of subdividing the 3D space into a regular grid of cells or cubes. In each cell
the surface is represented by a probability density function (PDF), based on the
distribution of points within the cell, as is depicted in Figure 3.8.

Each PDF can be seen as an approximation of the local surface, thereby serving
as a piecewise smooth representation of the point cloud. As such, the point cloud
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Figure 3.8: In the normal distribution transform (NDT) method [Magnusson 09a], the
3D space is subdivided into a regular grid of cells or cubes. In each cell the surface is
represented by a probability density function (PDF), based on the distribution of points
within it. The blue dots represent the sampled points by a laser scanner. Brighter areas
denote a higher probability.

is represented in a much more compact form compared to ICP-based methods,
which leads to faster scan matching. Also, it can be used as an alternative way of
representing a map compared to maintaining the whole point cloud as this latter
will quickly become intractable. Another important advantage of NDT over ICP
is that it has a more robust data association. Instead of matching a 3D point with
another 3D point, it matches a 3D point with a PDF, which is more robust.

The main limitation of NDT is that the performance of it is largely dependent
on the size of the cells. However, in case of point clouds with a non-uniform point
density, it is hard to pick a good cell size. In case a large cell size is picked, the
accuracy will drop dramatically. On the other hand, when a small cell size is picked,
many cells will contain little to no points and the method will quickly become too
slow. The idea of a 3D multi-layered NDT, proposed by [Ulas 13], could mitigate
this drawback.

3.6 Evaluation

In this section we will evaluate the four main scan matching techniques that were
described in this chapter. For now, we apply simple versions of the ICP-based
algorithms, i.e. we do not apply any outlier filtering or correspondence weighting.
The algorithms involving the point-to-plane or plane-to-plane cost function need
a surface normal for each point in the cloud. To estimate these, we adopt the
technique of computing a principal component analysis on the covariance matrix of
the set of neighbouring points. The neighbours themselves are determined by taking
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sequence length (m)

1 Corridor 11.02
2 Corridor tilt 11.95
3 Lab 21.73
4 Lab tilt 22.59
5 Lab extended 52.98
6 UFO foyer 65.92
7 UFO entrance 113.72
8 Schoonmeersen 120.26

Table 3.2: The eight different indoor sequences that were captured along with their
trajectory length. The first seven sequences were recorded using our Liborg platform.
Two of them were recorded with a tilted scanner. The eighth sequence was recorded
holding the scanner in our hand while walking around.

the k-nearest (k = 20) points using a k-d tree. In the next chapter we elaborate
further on the topic of normal estimation in a point cloud to come to more accurate
pose estimates.

We will use data captured in two different types of environments. The first
group of sequences were recorded in ‘man-made’ indoor environments, i.e. inside
buildings of Ghent University using a Velodyne VLP-16. These scenes naturally
consist of large planar surfaces. For the second group of sequences, we use the
KITTI dataset presented by [Geiger 12]. Those sequences were captured outdoor
using a Velodyne HDL-64 mounted on a car. The car was driving in all kinds of
outdoor environments, including highways, the countryside and in urban areas.

3.6.1 Indoor environments

In total we recorded eight different sequences in ‘man-made’ environments. They
are listed in Table 3.2 along with their trajectory length in meter. The first seven
sequences were captured using our Liborg platform (depicted in Figure 1.3). The
eighth environment was too complex for Liborg as there were staircases present
in the building. Therefore, we held the lidar scanner (VLP-16) in our hand while
walking around.

To demonstrate the performance for different sensor set-ups, we have put the
lidar scanner under two different tilt angles. Six sequences were recorded with
a horizontally mounted scanner, whereas the two others were recorded with the
scanner put under a tilt angle of approximately 45◦. The latter set-up has the
advantage that ‘overhanging’ objects, such as the ceiling, are also captured in detail
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and that the level of detail is more or less equal for the entire scene. The former
set-up has the advantage that the FOV is larger, which is generally beneficial for
the scan matching as a larger part of the scene is being captured in one sweep.

At the end of each sequence we created a loop by riding or walking back to the
initial starting point. In order to be sure that we made a perfect loop, we added the
first captured point cloud at the end of each sequence. Eventually, we compute the
difference in position of the start and estimated end point. The distance between
both ends exactly represents the error as it should ideally be zero.

Figure 3.9 depicts a top-down view of the 3D reconstructions for the different
sequences, including the trajectories. The reconstructions were obtained by our
final mapping algorithm, which will be described in the following chapters. The
results on all of the sequences for four different scan matching techniques are listed
in Table 3.3. The cross symbol ‘×’ in the Table denotes that the tracking was lost
or that no meaningful trajectory could be estimated.

The method ICP uses Low’s closed-form solution for the point-to-plane cost
function and S-GICP is our own surface-based GICP algorithm. Prior to the scan
matching we performed an additional pre-processing step by spatially filtering the
point clouds, keeping only one point per cubic 10 centimeter. Point clouds captured
in indoor environments contain a lot of ‘redundancy’ as many points are sampled
on the same planar surface. Therefore, it is not necessary to use all the points to
come to the best transformation estimation. The points are filtered using a regularly
spaced voxel grid based on an octree. For each voxel, the centroid point of all points
within the voxel is kept.

From Table 3.3, it is immediately clear that the NDT method performs very
poorly. For the other methods, we notice that for almost all sequences, the point-
to-plane ICP method is inferior to the plane-to-plane GICP method, except for the
‘Corridor’ sequence. Our own S-GICP method, however, gives the best performance.

The sequence ‘UFO entrance’ was captured in an environment where a lot of
people were walking around. In order to eliminate the influence of these moving
people in the FOV of the scanner, we devised a technique to filter them out. We
rely on the fact that the vast majority of the points are sampled on static objects in
the scene. Since we are using all the points, the estimation will definitely converge
towards the correct transformation, except for a small distortion due to the moving
objects. After applying the transformation on the source point cloud, we test all
corresponding points whether or not they agree with this estimated transformation,
i.e. whether or not their Euclidean distance after transformation is too large. If
so, we can remove them from the point cloud and reprocess the entire sequence
using the filtered point clouds. If we apply this procedure for the ‘UFO entrance’
sequence, we end up with the results listed in Table 3.3. Figure 3.10 shows an
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Figure 3.9: Bird-eye view of the eight 3D reconstructions including the trajectories
that were followed. Seven of them where recorded using the Liborg platform. The last
sequence ‘Schoonmeersen’ was recorded while the scanner was being held in order to
overcome the staircases present in the environment.
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error (cm)

Sequence NDT ICP GICP S-GICP

Corridor 197.1 4.0 8.1 7.5
Corridor tilt 96.2 12.2 7.3 6.2
Lab 199.3 19.3 7.2 5.1
Lab tilt 189.7 21.8 14.2 13.0
Lab extended 180.8 75.6 54.1 51.7
UFO foyer 547.0 103.6 88.3 85.3
UFO entrance 563.0 208.7 64.4 31.3
Schoonmeersen × × 243.9 212.7

Table 3.3: The error, i.e. the Euclidean distance between the start and estimated end
position, in centimeter on the indoor sequences recorded by Liborg for four different
scan matching techniques. The error is obtained by calculating the Euclidean distance
between the start and end position after creating a loop. The cross symbol ‘×’ denotes
that the tracking was lost or that no meaningful trajectory could be estimated.

example of this sequence with the moving objects being present and the result after
filtering them out with our ‘transformation’-based filtering technique.

The sequence ‘Schoonmeersen’ is giving poor results, which is partially due
to the fact that the scanner was hand-held. Especially in the situation of climbing
stairs, the movements were more abrupt compared to the smooth trajectories of
the ‘Liborg’-sequences. For both the NDT and the point-to-plane ICP method the
tracking is lost or is drifting too far away for this sequence. The GICP and S-GICP
methods are producing better results but even those methods are drifting more than
2 m on a total trajectory length of 120 m.

For our S-GICP method the relative error - defined by the error divided by
the trajectory length - lies between 0.2% and 1.8% with an average of 0.8%. For
the standard GICP method, the relative error lies between 0.3% and 2.0% with an
average of 0.9%. It is important to note that these results are the outcome of a non-
optimized algorithm that does not integrate any outlier removal or correspondence
weighting. The goal of these experiments is to demonstrate the performance of the
several cost functions. In the next chapters we will optimize our algorithm, which
will improve the results drastically.

Apart from its higher accuracy, another main benefit of our S-GICP method
over the standard GICP method is that it converges from a larger set of initial
configurations. In other words, when two consecutive point clouds are heavily
shifted from each other, i.e. when the robot is taking an abrupt turn, the S-GICP
method is more likely to converge to the correct transformation. Figure 3.11 shows
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Figure 3.10: Moving objects (yellow ellipse in the left image) can perturb the trans-
formation estimation. However, as the vast majority of the points are lying on static
objects, the estimation will certainly converge towards the correct transformation. We
can use this estimation to determine which corresponding points do not ‘agree’ with the
transformation and to ‘remove’ these points, cfr. the right image. Eventually we can
process the entire sequence again using the filtered point clouds, which increases the
accuracy of the reconstruction.

an example in which the source point cloud (gray) and the target point cloud (blue)
have a large difference in orientation. The results after applying all of the four
methods are depicted. Once can see that only our S-GICP technique succeeds in
correctly aligning the two point clouds.

As mentioned before, the NDT is also able to convergence from a larger set
of initial configurations. In this particular example it manages to escape from the
‘local minimum’ in which the standard ICP and GICP method got stuck from the
beginning. However, NDT still did not succeed to let the two point clouds entirely
overlap.

3.6.2 Outdoor environments

To evaluate the performance of the different methods for outdoor environments, we
use the KITTI vision benchmark [Geiger 12], as it is one of the main benchmarks
regarding (lidar) odometry. The dataset was collected using a car that was driving
in and around the German city Karlsruhe thereby recording data from different
modalities, including a Velodyne HDL-64e lidar scanner and a stereo camera rig.
The lidar scanner was put horizontallys and the data points cover a range up to 100
meter. We ran most of the algorithms on the eleven test sequences that are provided.
In order to evaluate the performances quantitatively, we use the relative pose error
(RPE) between the estimated and ground truth poses, as defined in eqs. 2.13 and
2.14. In Table 3.4, the translational errors are shown for the same 4 scan matching
techniques as before. The rotational error is shown in Table 3.5. Both errors are
computed over all ∆ ∈ {100 m, . . ., 800 m}. The cross symbol ‘×’ once again
means that no meaningful trajectory could be estimated due to too many errors.
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(a) Point-to-plane ICP (b) NDT

(c) GICP (d) S-GICP

Figure 3.11: Top-down view of two point clouds acquired by a Velodyne HDL-32e in a
class room. The source point cloud (gray) has to be aligned with the target point cloud
(blue). Both the point-to-plane ICP, NDT and original GICP methods get stuck in a local
minimum whereas our own S-GICP succeeds in aligning the two point clouds properly.
One can see that the walls are perfectly overlapping.
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Sequence NDT ICP GICP S-GICP

KITTI 00 2.38 1.39 1.70 1.77
KITTI 01 × 3.85 29.85 27.2
KITTI 02 11.37 1.58 10.25 9.81
KITTI 03 4.17 1.07 2.98 2.28
KITTI 04 25.3 0.92 14.69 14.04
KITTI 05 3.69 1.16 1.40 1.41
KITTI 06 11.54 1.08 1.38 1.42
KITTI 07 3.34 0.51 0.93 1.04
KITTI 08 7.50 1.68 1.93 1.87
KITTI 09 13.46 1.13 3.60 3.15
KITTI 10 5.35 1.94 2.84 2.58

AVG × 1.48 6.50 6.05

Table 3.4: The translational error Et in % on the KITTI sequences for 5 different scan
matching algorithms. The cross symbol ‘×’ denotes that the tracking was lost or that no
meaningful trajectory could be estimated.

Sequence NDT ICP GICP S-GICP

KITTI 00 1.39 0.94 0.74 0.74
KITTI 01 × 1.02 3.92 3.75
KITTI 02 3.18 0.81 2.93 2.81
KITTI 03 1.76 0.78 0.88 0.82
KITTI 04 1.32 0.35 0.67 0.58
KITTI 05 2.21 0.81 0.59 0.58
KITTI 06 3.00 0.68 0.57 0.59
KITTI 07 2.27 0.58 0.42 0.46
KITTI 08 3.13 0.97 0.75 0.74
KITTI 09 3.55 0.86 1.11 1.00
KITTI 10 2.60 0.93 0.74 0.71

AVG × 0.79 1.21 1.16

Table 3.5: The rotational error Er in deg/m ×102 for the KITTI sequences using 5
different scan matching algorithms. The cross symbol ‘×’ denotes that the tracking was
lost or that no meaningful trajectory could be estimated.
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NDT GICP ICP S-GICP

HDL-64 4.4 1.0 0.29 1.92
VLP-16 - 10 CM3 0.252 0.032 0.030 0.038

Table 3.6: The computation time in seconds per sweep for the indoor (recorded with
a VLP-16) and outdoor (recorded with an HDL-64) sequences using 4 different scan
matching algorithms. The point clouds of the indoor sequences were filtered beforehand
using a regularly spaced voxel grid with a voxel size of 10 cm3.

The main conclusions that can be drawn from this experiment is that once
more, the NDT method is leading to poor results. Furthermore, we notice that
the point-to-plane method is outperforming the plane-to-plane GICP and S-GICP
methods as opposed to the results from the indoor dataset. This is due to the fact
that in outdoor scenes, fewer large planar surfaces are present. Instead, a lot of
points are sampled from ‘scattered’ objects such as trees, bushes or other kinds of
vegetation. For these points it is difficult to accurately estimate surface normals,
especially in regions that are sparsely sampled. Those kinds of scenes are especially
present in the sequences that were recorded in rural areas or on highways that are
solely surrounded by vegetation.

One of the most challenging cases is the KITTI 01 sequence as this one is entirely
recorded on a highway, solely surrounded by farmland or vegetation. Moreover, a
lot of points are sampled on moving cars, disturbing the estimation process even
further. In the next chapter, we will devise a technique to cope with these ‘unstable’
regions. Our own S-GICP is slightly performing better than the standard GICP
method, tough the difference for these kinds of environments is minimal.

3.6.3 Computational complexity

Table 3.6 gives an overview of the computation times for both the indoor and
outdoor (KITTI) sequences. The experiments were conducted on a computer with
an Intel Core i7-7820X CPU @ 3.60 GHz and 128GB RAM inside. The algorithms
were implemented and running on a CPU using multi-threading for the computation
of nearest neighbours based on a k-d tree, and for the computation of the normal
vectors in case of the point-to-plane and plane-to-plane cost functions. Recall that
for the indoor sequences we filtered the point clouds beforehand, using a regularly
spaced voxel grid with a voxel size of 10 cm3. For each voxel we kept the centroid
of all points lying in the voxel. As expected, the closed-form solution of Low’s
point-to-plane method is clearly the fastest method taking on average 290 ms for
the KITTI dataset and 30 ms for the indoor sequences. The standard GICP method
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is still faster than our S-GICP variant. However, for the filtered point clouds, the
execution times for the three ICP variants is more or less equal. This is thanks to
the fact that the transformation estimation is computed using fewer points and only
marginally contributes to the total time compared to the correspondence estimation
step, which gains the upper hand. The NDT method is the most time-consuming
method and still needs more than 250 ms to compute for the filtered point clouds.

3.7 Conclusion

In this chapter, we explained the basic concepts of point cloud registration and its
use as a scan matching technique in SLAM solutions. We described and evaluated a
few methods and cost functions including the normal distributions transform (NDT),
point-to-plane ICP, plane-to-plane GICP and our own S-GICP. The experiments
demonstrated that the best performing cost function is depending on the type of
dataset.

In case of ‘man-made’, indoor environments, the plane-to-plane GICP method
is outperforming the NDT and point-to-plane ICP method. Our own S-GICP
technique is even doing better, making it the most robust method for these kinds of
environments. However, the (S)-GICP algorithm has two main drawbacks. First, it
is performing rather poor in environments that do not contain large planar structures,
such as many outdoor scenes. Second, there is no closed-form solution and hence
one has to use indirect methods, such as conjugate gradients, Gauss-Newton or
gradient descent, which comes with an additional computational cost. The latter
shortcoming can still be alleviated by down-sampling the point clouds, making
S-GICP still the most suitable method. In case of outdoor environments, the best
option is to use the point-to-plane cost function. It leads to the most accurate results
and we can use the fast closed-form approximation from [Low 04] to derive the
transformation.

The methods evaluated in this chapter are still simple versions and there is still
much room for improvement. In the next chapter, we will present ways to focus
the registration on the most stable regions of the point cloud. This is especially
beneficial for outdoor scenes that are dominated by ‘scattered’ objects such as
vegetation. Moreover, we will explain how we can weight the corresponding point
pairs in order to filter out outliers. This will on its turn contribute further to the
accuracy of the registration. In chapter 5, we will describe how we can maintain
a map of the environment in order to relate newly acquired point clouds to this
map. Together with a surface reconstruction technique, this will further improve
the accuracy of the pose estimation and hence the quality of the reconstructions.





4
Geometric features for

enhanced ICP

In the previous chapter we showed that incorporating structural information from
the underlying surface is beneficial to enhance the point cloud alignment process.
We proposed to integrate surface information in the cost function itself, giving rise
to our S-GICP technique. This chapter will investigate how we can further improve
the registration by adapting the other steps in the ICP algorithm, including point
selection, correspondence weighting and outlier rejection.

One of the main ideas is to derive low-level geometric features from the initial
raw point cloud data that can be exploited to focus on the most stable regions of
the point clouds. These regions are characterized by solid objects or planar areas
compared to regions with scattered objects such as trees or bushes. For the latter, it
is very difficult to estimate surface normals in an accurate way. However, as most
of the cost functions presented in the previous chapter are based on surface normals,
an improvement of the normal estimation will have a positive influence on the
quality of the registration. For that reason we propose an optimal neighbourhood
selection algorithm upon which geometric features, including the surface normals,
are computed.

By focusing on stable regions in the point cloud, fewer points are used to es-
timate the transformation upon and as a result the computational demand can be
reduced. Finally, the low-level shape features will also be used to assign weights
to the corresponding point pairs, which will mitigate the influence of wrong corre-
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spondences.

4.1 Introduction and related work

The ICP algorithm comes with quite a few limitations, most of them related to the
point cloud artefacts described in the previous chapter. In essence, the standard
ICP algorithm only works well in ideal situations, which are also depending on
the specifications of the sensor itself. In this chapter, we are still focussing on data
originated from spinning lidar systems such as the Velodyne or Ouster scanners.
As mentioned before, one of the main challenges regarding this radial scanning is
that it produces point clouds that have a non-uniform and sparse point density.

In the work of [Bosse 10] the authors tried to tackle this problem by applying
the ICP algorithm to regions with strong shape characteristics, e.g. planar and
cylindrical regions. To that end, they discretize the workspace into a 3D grid and
examine the points that fall into each voxel to determine how planar or cylindrical it
is. Voxels that contain too little points are simply discarded. In contrast to standard
ICP solutions, they make voxel correspondences instead of point correspondences,
where the shape parameters are incorporated to ensure that the local structure is
considered. Matches between planar features are then constrained by the offset
between the centroids in the direction of their surface normals, whereas matches
between cylindrical features are constrained by the offsets perpendicular to the
cylinder axis. To further account for the non-uniform point density, they additionally
form a pyramid of grids with increasing voxel cell sizes and various offsets.

Another work worth mentioning is the ‘Normal Iterative Closest Point’ (NICP)
method of [Serafin 15a]. The main idea of the technique is to utilize an extended
measurement vector composed by the point coordinates and its surface normal.
Similar to the work of [Bosse 10], they use this augmented vector to search for
correspondences. However, they extend the approach of [Bosse 10] by also incor-
porating the augmented vector in the computation of the alignment, i.e. in the error
metric they aim to minimize.

In this PhD, we will integrate ICP within a ‘hybrid’ solution in the sense that
we combine it with feature extraction and surface reconstruction. In this chapter we
will focus on the former, i.e. the derivation of low-level shape features that describe
the local geometry of the point cloud. We exploit these properties to identify for
each point an ideal neighbourhood. The latter will enhance the estimation of surface
normals, which will on its turn improve the transformation estimation.

The shape features are further used to guide the ICP process in a way that
the alignment concentrates itself near the most stable regions, i.e. planar regions
instead of irregular or scattered points. More specifically, we will propose a
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‘geometric stable’ point selection algorithm based on the shape features as well as a
robust iterative weighting scheme for point correspondences. The advantage of our
proposed solution is that it benefits from large planar surfaces while at the same
time it remains generic, making it more widely applicable.

Our approach has some common ground with the aforementioned ones, but
there are a few major differences. The main difference with the work of [Bosse
10] and [Serafin 15b], is that they estimate correspondences by taking the nearest
neighbour to each voxel or point in the 9D or 6D descriptor space instead of the 3D
Euclidean space. This kind of nearest-neighbour search is however computationally
demanding and jeopardizes real-time execution. In addition, when using these
nearest neighbours in 9D or 6D space, the ICP algorithm turns out to be less stable
and less predictable.

A second point of difference is that we do not limit the computation of the
shape features to the boundaries of an artificially constructed regular-sized voxel
grid as in [Bosse 10]. Instead, we carefully design a neighbourhood for each point,
which is irregularly shaped. In the next section we will describe how to cluster the
points into dominant planes and solid objects. This clustering will allow us to refine
the neighbourhood for each point, which will eventually lead to more accurately
estimated surface normals.

4.2 3D Point clustering

The clustering of points into dominant planes and solid objects is a computationally
intensive task. To ease this computational burden, we rely on the organized structure
of the point cloud. This structure results from the ordered acquisition by the different
lasers allowing us to index the point cloud in the 2D domain after projecting it onto
a cylinder as explained in chapter 3. The latter can easily be done in parallel on a
GPU, by letting each CUDA thread operate on a separate point in the point cloud
making it an extremely fast operation.

The second step consists of computing an initial estimate of the surface normals
for each point, which will lead to a single normal map N. Using the 2D projection of
the point cloud P , the normals can quickly be computed by considering two vectors
that are tangential to the local surface at point p. These vectors can be computed
using the left, right, upper and lower neighbouring point in P . The normal is then
obtained by taking the cross product of the two vectors. Due to the anisotropic
character, the distance between neighbouring points in the horizontal and vertical
direction can be very different. The estimate will thus be rather inaccurate, but still
sufficient to perform the clustering. Afterwards, the normal vectors will be updated
using a more robust algorithm, which is explained in the next section.
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Figure 4.1: Two examples of point clouds in which the points are clustered into dominant
planes and solid objects.

The third step is to conduct the actual clustering (or segmentation) of the point
cloud. To ease this job, we exploit the ‘Manhattan world’ assumption, which
states that many real world scenes consist of large planes of which many are either
perpendicular or parallel to each other. For indoor scenes these planes represent the
floor, ceiling and walls, but also for outdoor environments we often have the ground
plane and some (large) planar objects, such as the facades of houses, present in the
captured data. Motivated by this Manhattan world assumption, we first identify the
large dominant planes in the scene.

To extract the dominant planes, we exploit the organized structure of the point
clouds by scanning it in its 2D domain, thereby comparing neighbouring ‘pixels’
in a 4-connected way. Each pixel is assigned a label according to its properties
compared to its neighbours. More specifically, we use two different comparison
functions, the first one testing for the Euclidean distance of the corresponding 3D
points, ||pi − pi−1||2 < ε, the second one testing for the deviation in normal vector
ni · ni−1 < cos θ. The value of the parameter ε is chosen dynamically, based on
the distance of the points to the origin of the point cloud. Only when these two
conditions are met, the two neighbouring pixels are assigned the same label. To
obtain the label images we first compute a binary image (i.e. mask), which we then
feed to our GPU-based connected component labeling (CCL) algorithm.

Once the dominant planes in the scene are segmented, the remaining objects are
easily distinguishable. It is easy to segment these objects by clustering the points
based on their relative distance. We therefore conduct a second loop of CCL, but
this time only using the condition on the Euclidean distance. Figure 4.1 depicts two
examples of point clouds in which the points are clustered into dominant planes
and solid objects.
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4.3 Normal estimation

In the previous section, we explained how to obtain an initial guess on the normal
vectors by taking the cross product of two vectors that are tangential to the local
surface. This estimate is rather poor and since the registration is highly affected by
the normals, we propose a better way to compute them. Our method is based on a
principal component analysis (PCA) of a points neighbourhood.

Recall that in the experiments of the previous chapter, we used a fixed number
of neighbours. However, in case of an inhomogeneous point density, a fixed number
of neighbours is not appropriate. In sparsely sampled areas, a high number of
points will cause the ‘neighbouring’ points to be far away from the point under
consideration. Some of the neighbours could be lying on entirely different surfaces.
A ‘low’ number of points on the other hand might be too inaccurate due to imprecise
measurements and noise.

Also, in case of discontinuities, a fixed number of neighbour points can cause
surface normals near the intersection of two planes to point in the wrong direction,
as indicated by the green line in drawing (a) of Figure 4.2. In some cases this would
not cause a problem for registration, for example when the incidence angle of the
laser beams make the intersection of the planes visible in the two point clouds that
need to be aligned. However, when the intersection is not visible in one point cloud,
i.e. only one of the planes is visible, the neighbours will all be selected on the plane
causing the normals to point in the ‘correct’ direction, cfr. image (b) in Figure
4.2. This means that for the same physical point, e.g. the yellow corner point, the
normal vectors in the two point clouds could be estimated differently. This could
on its turn jeopardize the correct alignment as these correct correspondences would
be penalized.

An alternative way to estimate surface normals is to use only points within a
specified distance, rather than a fixed number of points, e.g. by selecting neighbours
when they are within 5 cm from the point under consideration. This approach often
leads to even poorer estimates, especially for point clouds with non-uniform point
densities such as the ones acquired with spinning lidar scanners. In those situations,
it can happen that all the neighbours within the search radius are selected along
the same scan line, as is depicted by the light blue dots in Figure 4.3. The green
points from the two ‘neighbouring’ scan lines however provide a lot more useful
information about the surface so they should be considered as well.

In order to overcome the limitations of the two aforementioned approaches, we
propose to estimate the ‘underlying topology’ of the points. The latter is defined
as the estimation of the neighbourhood relationship among the points in a point
cloud and it will allow a better estimate on the surface normals. Our technique
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(a) (b)

Figure 4.2: The estimation of normal vectors using the k-nearest neighbour criterion.
In the left image, around the intersection of the two planes (here drawn in 2D), normal
vectors are pointing in the wrong direction (cfr. the green line). In the right image they
do not suffer from this artefact because points on the vertical plane are not sampled (due
to occlusion) and are hence not used to compute the normal vector of the blue corner
point. This results in a differently estimated surface normal for the yellow point. In case
of registration of the two point clouds, the (correct) matching of the corner point might
be penalized by its discrepancy in normal vector, which should be avoided.

r
u-1

u
u+1

Figure 4.3: Normal estimation based on a radius has the risk that only points along the
scan line are taken into account. Instead, it is better to take the topological neighbourhood
into account.
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comprises two main steps. First, we conduct a clustering of the points based on
their geometrical properties, i.e. guided by the Euclidean distance between the
points as well as an initial guess of their normal vectors. Second, based on the
clustering we construct an optimal neighbourhood for each point that we use to
re-estimate its surface normal. Doing so, we solve for the discontinuities in the
point cloud, such as the one depicted in Figure 4.2. For the yellow corner point,
this means that only points of either one of the planes will be taken into account to
estimate its true surface normal. Note that in reality it is very unlikely that exactly
the intersection of the two planes is sampled. A point like the blue one can thus be
assumed to always belong to either one of the planes.

Similar to section 3.4.1, the derivation of the surface normal of a point pi
is conducted using a PCA on the covariance matrix Ci of the neighbours j ∈
{1, . . . , N} of that point as given by equation 4.2:

Ci =
1

N

N∑
j=1

(pj − p̄i) · (pj − p̄i)
T (4.1)

Ci · vl = λl · vl, l ∈ 1, 2, 3 (4.2)

In this equation, N is the number of neighbours of pi that we take into account, λl
the l-th eigenvalue of the covariance matrix and vl the l-th eigenvector. The point
p̄i is the 3-dimensional centroid of the nearest neighbours. The surface normal
can then be approximated by the eigenvector v3 corresponding to the smallest
eigenvalue, as this is exactly the direction in which the ‘least’ variation occurs.
One could opt to add an additional weight to each neighbour in order to give less
influence to points located further away from the point under consideration.

4.4 Optimal neighbourhood selection

As mentioned in the previous section, an easy neighbourhood function is often
chosen, such as the k-nearest points or using a fixed radius. However, these overly
simple functions cause the estimation of normal vectors to be inaccurate as points
can be separated by an object border or can be part of entirely different surfaces.
When used in point cloud registration, it jeopardizes the correct alignment of the
two point clouds and hence the accurate estimation of the sensor pose. To deal with
this, we exploit the clustering described in the previous section to select only points
that are lying in the same cluster. We will now further enhance the neighbourhood
selection by selecting only those points that minimize the ‘Eigen Entropy’ and
hence the ‘disorder’ in the set of neighbours.

The main question is thus how to find for each 3D point the optimal neighbour-
hood size or the most suitable local point set that describes the underlying geometry.
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This problem can be considered as an interdependence problem as geometrical
features largely depend on the choice of the neighbourhood, whereas a good neigh-
bourhood definition should rely on the local geometry, and thus on geometrical
features.

Let us first define a neighbourhood function n that maps a point to a set of
neighbouring points: nr(pi) : (x, y, z) 7→ (x, y, z)N , in which r denotes the search
radius for neighbouring points and N denotes the number of points belonging to
the neighbourhood. Recall that we first clustered the points and that the ‘radius
search’ only selects neighbouring points that are part of the same cluster. Using this
neighbourhood we determine the principal components of the covariance matrix of
the points belonging to it, as explained in the previous section. Thus, given a set of
neighbours of a point pi determined by a radius r, we first compute the eigenvalues
λ1, λ2 and λ3 corresponding to the eigenvectors v1, v2 and v3. Now, we consider
the three values

ψ1 =
λ1 − λ2

λ1
, ψ2 =

λ2 − λ3

λ1
, ψ3 =

λ3

λ1
, (4.3)

that respectively represent how elongated, planar or scattered the underlying surface
is. We further define the dimensionality label as

l = argmax
i∈[1,3]

(ψi). (4.4)

When λ1 � λ2, λ3, then ψ1 will be larger than the two other features. This
corresponds to lines between planar surfaces or thin structures such as pipelines.
On the other hand, when λ1, λ2 � λ3, then ψ2 will be larger, corresponding to
planar surfaces. Finally, when λ1 ≈ λ2 ≈ λ3, then ψ3 will be larger, which is the
case for scattered points, for example points that are part of bushes or tree leaves.
Thus, points lying on the intersection of two planes are assigned the label ‘1’, points
lying on planar surfaces are assigned the label ‘2’ and finally points belonging to
volumes or scatter are assigned the label ‘3’. As the three values ψ1, ψ2 and ψ3

represent a partition of unity Ψ, we can compute its ‘entropy’, which is given by:

eΨr = −ψ1 ln(ψ1)− ψ2 ln(ψ2)− ψ3 ln(ψ3). (4.5)

This entropy, as a function of r, gives a notion of how certain we are that a
point is really belonging to one of the three classes. The optimal neighbourhood
radius r∗ is then defined as the minimum of the entropy function e:

r∗ = argmin
r∈[rmin,rmax]

eΨr , (4.6)

in which rmin and rmax are thresholds on respectively the minimum and maximum
radius. In other words, by minimizing the above function, we favour the minimal
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disorder of the neighbourhood set. The radius r∗ leads to an initial guess of the
optimal neighbourhood Ni of a point pi. As points within the optimal radius r∗

can still have different dimensionality labels, we additionally define a similarity
measure S denoting the homogeneity within the neighbourhood of each point:

S(nr(pi)) =
1

N

∑
pk∈nr(pi)

1l(pi)=l(pk). (4.7)

In this equation 1 represents the indicator function and N is the cardinality of
nr(pi). If less than half of the points in the neighbourhood set nr(pi) have the
same dimensionality label, i.e. S is smaller than 0.5, we recompute the optimal
radius r∗ using a different criterion:

r∗ = argmax
r∈[rmin,rmax]

S(nr(pi)). (4.8)

In the other case when S is higher than 0.5, we remove the points that have another
dimensionality label from the neighbourhood of pi. Hence, we define the optimal
neighbourhood Ni of a point pi as:

Ni = {pk : pk ∈ nr
∗
(pi), l(pi) = l(pk)}. (4.9)

Using this optimal neighbourhood set Ni we recompute for all points pi the
feature vector xi: the eigen values λ = {λ1, λ2, λ3}, the eigen vectors v =

{v1, v2,v3}, the dimensionality values Ψ = {ψ1, ψ2, ψ3}, the dimensionality
label l and the values r∗ and E∗. On top of that, we define the omnivariance as
O = 3

√∏
i∈[1,3] σi, the anisotropy as λ1−λ3

λ1
and the local surface variation as

cp = λ3∑
i λi

.

Eventually, we can aggregate the (sampled) point pi ∈ P , together with its
feature vector xi, and the set of neighbours Ni into a surfel data structure. The
word surfel is a concatenation of ‘surface’ and ‘element’ and can be seen as a
building block (element) to represent a surface patch. We denote the surfel of a
point pi by Si = {pi,xi,Ni}. In the following sections, we will explain how
this representation can be used to optimize the ICP process to obtain both, faster
convergence as well as more accurate pose estimates.

4.5 Optimizing the ICP algorithm

In section 3.3.1, we thoroughly described the fundamentals of the ICP algorithm.
We also presented a few cost functions to derive the transformation between two
scans or point clouds, including the point-to-plane and plane-to-plane cost function.
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In order to apply these cost functions, we need an accurate estimate of the surface
normals ni for all points pi. As explained in the previous section, the local surface
normal of a point can be approximated by the eigenvector v3 corresponding to the
smallest eigenvalue λ3 of the covariance matrix constructed using its neighbours,
cfr. eq. 4.2. By applying our optimal neighbourhood selection (cfr. eq. 4.9), the
principal component analysis is conducted using the ‘ideal’ neighbourhood set,
which tremendously improves the estimation of surface normals.

The rest of the features will not be used directly in the cost function. Never-
theless, they are still valuable in further enhancing the ICP process. In the next
sections, we will propose two different strategies to incorporate the features. The
first strategy is to exploit the features in order to select stable points, i.e. points that
are lying on solid surfaces rather than points that are sampled in unstructured areas
such as bushes or grass. A second way of incorporating the features is to use them
for correspondence weighting and rejection. When the features are very similar, the
corresponding pair will be assigned a higher weight than for the case in which they
are rather asimilar. In case the features are simply too different the correspondence
will be considered as wrong and we will reject it.

4.5.1 Point selection

Instead of using all the points in the point cloud to estimate the transformation, it is
more appropriate to select only a subset of points. Apart from faster computation
times, the selection of good candidate points can improve the pose estimation
tremendously. Obviously, we should pick reliable points that are part of stable
areas and for which accurate surface normals can be estimated. These areas are
generally characterized by solid surfaces, often times planar in case of man-made
environments, such as the floor, the ceiling, the walls, cupboards, desks, etc. Also
in outdoor (urban) environments, objects with high planarity are often present, e.g.
facades of houses or parked cars along the road.

Points that are part of under-sampled or unstructured areas on the other hand
can better be discarded as they might jeopardize accurate pose estimation. These
scattered areas are often induced by natural phenomena or vegetation, such as tree
leaves, bushes or grassland. For points sampled in such areas it is very hard to
compute reliable surface normals that are consistent among consecutive scans. One
way to deal with this problem is to simply discard these points from the estimation
process.

However, we should make sure that - at all times - the selected points provide
enough ‘observability’ of the translation and orientation components along all of
the three axis x, y and z. This observability denotes the extent to which the sampled
points are able to explain the translation and orientation of the sensor. For example,
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ground points provide observability of the translation along the y-axis. Facades on
the other hand give observability of the translation along the x- and z-axis.

We propose two improvements over the original ICP method. First, we normal-
ize the rotational and translational observability, to make sure that the transformation
is not biased towards one particular direction. Second, we incorporate the features
to add more importance to planar areas.

4.5.1.1 Normalizing rotational and translational observability

Imagine the scenario in which a car is driving along a road and where the majority
of the points are captured on the road surface. Suppose that the scanner is mounted
vertically and that the normal vectors of the ground points are oriented in the
direction of the y-axis. In that case, the ground points only provide observability
of the translation in the direction of this y-axis. The points sampled on the ground
plane will always result in the same pattern making it impossible to estimate the
translation in the directions parallel to the x- and z-axis. We should thus make
sure that we sample an equal amount of points on structures that are perpendicular
to the ground plane as well, otherwise the estimation will be biased towards the
identity transformation. Furthermore, we should also favour points that are located
further away from the scanner, as they are stronger, more stable, cues to compute
the rotational parameters upon.

In order to fulfil these two constraints, we start by defining the following six
‘observability’ values for each point pi in the point cloud: |ni · x|, |ni · y|, |ni · z|,
(pi × ni) · x, (pi × ni) · y, (pi × ni) · z. In all these definitions, x = (1, 0, 0),
y = (0, 1, 0), z = (0, 0, 1) and ni represents the normal vector of the point pi. The
former three values give the contribution of a point pi to the observability of the
three unknown components of the translation vector. The latter three values on the
other hand give the contribution of a point pi to the observability of the different
unknown angles (pitch, yaw and roll) of the vehicle. Note that points located further
away from the sensor center contribute more.

The idea is to sample points equally distributed among those that score high for
each of the six observability values. To this end we sort the points based on all of
the six values, generating six ordered lists. For every sorted list we eventually select
the N highest-valued points. Note that this implies that fewer than 6N points can
be selected in total, as the same point can be part of multiple lists. The exact value
of N is determined through experimental evaluation and is discussed in section 4.6.
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Figure 4.4: The start of the KITTI04 sequence, in which a car is driving along a straight
line in a street with almost no buildings. In the beginning, there is only a bit of vegetation
present aside the road, causing difficulties in aligning consecutive scans.

4.5.1.2 Feature-based selection

Apart from maximizing the rotational and translational observability, it is also
beneficial to take the features into account to determine which points to select, in
order to select those that are lying in stable regions. One way of doing this, is to
select points that have a dimensionality label equalling ‘2’, denoting that they are
part of ‘planar’ regions. However, not all the points with label ‘2’ are lying on
strong solid objects. To make the point selection more robust, we can opt to conduct
an additional selection based on the entropy values eΨ. When the uncertainty about
the dimensionality label of a point is high, this will reflect in a high entropy and
should better be discarded.

Figure 4.4 depicts a scene from the KITTI04 sequence, where a car is driving
along a straight line in a street with almost no buildings aside it. Instead, some trees
and bushes are present along the street (indicated by the blue rectangles) making it
difficult to accurately estimate surface normals for these regions. This on its turn
makes it difficult to robustly match them in consecutive point clouds, which can
cause the ICP algorithm to get stuck in a local minimum.

One solution is to remove all the points lying on those bushes and trees, based
on the ‘dimensionality’ or ‘planarity’ feature defined in the previous section. A
problem that pops up in that case is that we end up with points mainly lying on
the ground plane. As explained in the previous section, the ground plane only
provides observability of the translation along the y-axis. To get observability of
the translation in the x-axis and z-axis we should keep at least some points sampled
on objects that are perpendicular to the ground plane. Ideally, these objects are solid
such as facades of houses, but sometimes there are not many of these objects present
in the scene. If the number of points lying on the ground plane is too dominant
compared to the ones lying on objects perpendicular to the ground plane, we will
run into problems. In that case, ICP will converge to the unit transformation as the
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Figure 4.5: Two examples demonstrating our geometrical stable sampling technique.
The blue points represent the ones that have the highest planarity and cover the highest
‘observability’ in each of the main directions.

way the points are sampled on the ground is the same among consecutive scans
(under the assumption that the vehicle is driving on a flat road).

We thus need an equal part of the points being sampled on the ground plane as
well as on other objects perpendicular to the ground plane. One way to deal with
this, is to extend the strategy described in the previous section. There, we sorted the
points based on their contribution to the observability comprising the translational
and rotational components. We can now scale the values with the planarity feature
defined in section 4.4, in order to give a higher weight to those points that are
sampled on robust planar regions. We propose to update the values as follows:
ψ2|ni · x|, ψ2|ni · y|, ψ2|ni · z|, ψ2(pi ×ni) · x, ψ2(pi ×ni) · y, ψ2(pi ×ni) · z,
in which ψ2 denotes the planarity of point pi. Like in the previous section, we will
then select from each list the N points with the highest value. In Figure 4.5, our
geometrical stable sampling technique is depicted in two different scenes. The blue
points represent the points that have the highest planarity and cover the highest
‘observability’ in each of the main directions.

4.5.2 Correspondence weighting and rejection

Selecting only a subset of points from each point cloud is one way of increasing the
robustness of the alignment. Another way is to cope with wrong corresponding pairs.
The ‘standard’ ICP algorithm treats all corresponding pairs equal and does not cope
with these outliers. A common approach is to only use a subset of pairs, estimate the
transformation using this subset and finally check if the other correspondences agree
on it. This technique is often referred to as random sample consensus (RANSAC),
as it usually involves a random sub-sampling. The transformation with the largest
consensus set is considered the correct one.

The main drawback of this RANSAC method is its non-deterministic behaviour
and the fact that it is computationally demanding. In this PhD we therefore opt to
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weight the corresponding pairs in order to eliminate the influence of outliers. As the
corresponding points are re-determined in each iteration of the ICP algorithm, the
weights are also recomputed, hence the name iteratively re-weighted least squares
(IRLS) ICP.

4.5.2.1 Iteratively reweighted least squares (IRLS) ICP

A graceful way of dealing with outlier correspondences is to incorporate robust
M-estimators in what is known as robust regression. In that case, the cost function
of 3.1 is adapted to:

E(T;Ps,Pt) =

N∑
i=1

wid(Rpsi + t,pti) (4.10)

where d is again a distance function, either the point-to-point, point-to-plane or
plane-to-plane distance, presented in eqs. 3.2, 3.3 and 3.12 andwi a weight assigned
to the i-th corresponding pair. Three common robust weight functions are Huber’s
function, Cauchy’s function and Beaton Tukey’s bi-weight function, respectively
defined as follows:

wHu(r) =

{
1, if|r| ≤ c
c
|r| , if|r| > c

(4.11)

wCa(r) =
1

1 +
(
r
c

)2 (4.12)

wTu(r) =

{
(1− r2

c2 )2, if|r| ≤ c
0, if|r| > c

(4.13)

in which c represents a tuning constant. In the standard ICP formulation, the
value r represents the Euclidean distance between the two corresponding points.
However, in case of lidar scanning, the distance between corresponding points
from two rotated point clouds, will be larger in case they are located further
away from the origin. Obviously, the corresponding pair should not be penalized
when it represents the same physical point in space. For that reason, we will not
weight the correspondence points based on their Euclidean distance, but rather
use their features derived in the previous section. Note that the feature distance
between the same correspondences in consecutive iterations will not change, as the
features are fixed and independent of the orientation of the point cloud. However,
the correspondences themselves will change in every iteration and therefore the
weights are re-calculated.

Each of the three robust M-estimators, plotted in Figure 4.6, have different
properties regarding handling outliers. Tukey’s bi-weight function has the highest
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Least squares Huber Tukey Bi-weight

Figure 4.6: Two examples of common robust M-estimators compared to ordinary least
squares (left): Huber’s weight function (middle) and Tukey’s bi-weight function (right).

Algorithm 1 The IRLS-ICP algorithm

Require: Ps, Pt, weight function w, distance functions d1 and d2

1: R(0) = I , t(0) = 03

2: k = 0, ps,0i = R(0)psi + t(0)

3: repeat
4: k = k + 1
5: determine closest points
6: wi = w(d1(ps,k−1

i ,pt,k−1
i )),∀i ∈ {1 . . . N}

7: [R, t] = argmin
R,t

∑N
i=1 wid2(Rps,k−1

i + t,pt,k−1
i )

8: ps,ki = Rps,k−1
i + t

9: Rk = RRk−1

10: tk = Rtk−1 + t
11: until convergence

protection against outliers, excluding them entirely from the minimization process.
Cauchy’s function does not disregard any correspondences but still protects strongly
against outliers. Huber’s function finally is the least strict. The IRLS-ICP method
is outlined in Algorithm 1. Note that we use two different distance functions d1

and d2, the former one to compute the weights, the second one to estimate the
transformation.

A special case of this IRLS-ICP algorithm integrates probabilistic data asso-
ciation. It was first proposed by [Agamennoni 16] as a technique to deal with
cases where one point cloud is denser than the other, but it can also be applied
for point clouds with similar point densities. In their method, each point in the
source point cloud (the sparse one) is associated with a set of points in the larger
target point cloud. Each association is then weighted so that the weights form a
probability distribution. The authors propose to use a t-distribution, which serves
as a heavy-tailed distribution with parameter v to control the weight of the tails.
For finite v it assigns a non-negligible probability to the tails, thereby implicitly
taking outliers into account without the need to pre-filter them or to treat them as a
special case. The weights are determined through expectation-maximization (EM):
the E-step effectively estimates the values for the weights, while the M-step updates
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the parameters in order to decrease the expected negative log-likelihood.

4.5.2.2 Feature-based weighting

As mentioned in the previous section, we will incorporate the shape features to
assign a higher weight to corresponding points psi and pti whose local neighbour-
hoods are more similar. Thus, based on the feature representations of psi and pti,
we define a similarity measure expressing how likely it is that the two matched
points are truly corresponding to the same physical point. The more similar the
local neighbourhoods of the two corresponding points are, the higher the weight we
assign to it. This will not only lead to more accurate pose estimates but will also
help ICP to converge a lot faster to the minimum of the cost function.

There are many ways of combining the features to compute a weight for each
corresponding pair. One way is to select a subset of the feature vector xp and to use
all the features in this vector jointly. However, different features constitute different
quantities, units and range. To account for this issue, a normalization, i.e. min-max
scaling, across all feature vectors is carried out. On the other hand, some features
are more expressive than others and hence they should get a higher influence in
the total distance computation. In addition, some features contain outlier values,
causing the min-max scaling to map the majority of the values close to zero. To deal
with this, we define a coefficient vector β that assigns a weight for every feature in
the vector xp.

We eventually apply the Beaton Tukey’s bi-weight robust M-estimator as it
provides the strongest protection against poor corresponding pairs. In fact, those
outlier correspondences are entirely excluded in the minimization. The weight
function is thus given by eq. 4.13, where r = ||βT(xpsi

− xpti
)||2 is the ‘feature

distance’ between two corresponding points psi and pti and c = 13σ the tuning
constant with σ = median({di}, i = 1 . . . N). The choice for a rather high tuning
constant is motivated by the fact that true outlier matches are largely deviating
from the median. We thus want to keep as much points as possible to estimate the
transformation while still providing protection against severe outliers. The use of
the median in the estimation of σ provides less vulnerability to outliers than if the
scaling were based on the actual upper distances.

4.6 Evaluation

In order to evaluate the suggested improvements, we will again use the KITTI
dataset [Geiger 12]. This time, we will conduct a comprehensive analysis for
the different sequences in that dataset. Recall that the data was captured using a
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Sequence Distance (m) Environment type

0 3714 Urban
1 4268 Highway
2 5075 Urban + Country
3 563 Country
4 397 Country
5 2223 Urban
6 1239 Urban
7 695 Urban
8 3225 Urban + Country
9 1717 Urban + Country

10 919 Urban + Country

Table 4.1: The trajectory length and type of environment for the KITTI sequences.

Velodyne HDL64-E lidar scanner mounted horizontally on top of a car. The data
was recorded in a variety of environments, including urban areas, countryside areas
and highways. As a consequence, the speed of the car largely varies for the different
sequences. Table 4.1 lists for all of the test sequences in the dataset in which kind
of environment the data was captured as well as the trajectory length.

Just like in chapter 3, we will use the relative pose error (RPE), defined in
eq. 2.9, to evaluate the results. The error is measured and averaged for different
intervals ∆ ∈ {100 m, . . . , 800 m}. We compare the ‘standard’ point-to-plane
ICP variant with our improvements presented in the previous sections including
the geometrically stable point selection and feature-based weighting. Thereby we
take into account the overall accuracy, stability, robustness and maximum initial
alignment. For all of the experiments, we adopt the point-to-plane cost function
given by eq. 3.3 as this cost function is best suited for outdoor environments, cfr.
chapter 3.

Regarding the standard point-to-plane ICP method, we use a k-nearest (k = 20)
neighbour selection for the estimation of the surface normals. In order to select the
optimal radius in our method, cfr. eq. 4.8, we first determine the average distance d
of a point to its closest neighbour, and we quantise the radius interval [rmin, rmax]

as follows: r ∈ { 1
2d, d, 2d, . . . , 2

5d}. The normals are then estimated following
the entropy-based neighbourhood selection method described in section 4.4. The
experiments were conducted on a computer with an Intel Core i7-7820X CPU @
3.60 GHz, 128GB RAM and an nVidia Geforce GTX 1080 Ti inside.
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N avg. Et (%) avg. Er (deg/m ×102) avg. time (ms) avg. no. it.

1000 1.27 0.73 60 6.17
1500 1.22 0.69 71 6.33
2000 1.18 0.68 79 6.52
2500 1.19 0.69 91 6.79
3000 1.20 0.68 95 6.79

Table 4.2: The average translational and rotational error and the computation time on
the KITTI sequences for our GSS algorithm for varying number of samples N per ‘list’.

4.6.1 Geometrically stable sampling

Regarding our geometrically stable sampling (GSS) strategy, we first determine
the optimal number of samples per ‘observability’ category or list. Sometimes,
the same point will be selected for two or more observability categories. In that
case, we only keep the point once. Table 4.2 summarizes the RPE and execution
times for a varying number of samples ranging from 1000 to 3000. We see that the
error is decreasing for a higher number of samples up to N = 2000, after which
the error is slightly increasing again. The computation time is logically increasing
for a higher number of samples going from 60 ms for N = 1000 to 95 ms for
N = 3000. However we also notice that the average number of iterations is slightly
increasing for higher N . Expressing the computation time per iteration, we see that
it is increasing from 9.7 ms for N = 1000 to 14 ms for N = 3000.

For N = 2500, we further investigate the differences between the sequences
as this value leads to the largest improvement for the majority of the sequences.
The RPE, both the translational error Et (%) and rotational error Er (deg/m ×102)
are summarized in Table 4.3. The first thing that stands out in this experiment is
that there are major differences in accuracy between the different sequences. The
main reason for this is that some of the sequences have areas along their trajectory
that lack structural information from which no geometrical features can be derived.
Sometimes, the car is driving in rural areas or on highways where there is only
vegetation along the road. This is the case for the ‘KITTI01’ sequence as can be
seen in Figure 4.7.

Apart from the lack of large structures, the high speed of the car on the highway
(more than 70 km/h) is also causing problems. In those cases, the point clouds
acquired in consecutive sweeps differ quite a lot from each other, making correct
data association very hard. On top of that, there are other cars driving at approxi-
mately the same speed of the vehicle, causing another risk to accurately estimate
the ego-motion. In our method, the points on the cars will highly contribute in the
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Et (%) Er (deg/m ×102)

Sequence ICP GSS-ICP ICP GSS-ICP

KITTI 00 1.39 1.10 0.94 0.80
KITTI 01 3.85 3.48 1.02 0.94
KITTI 02 1.58 1.24 0.81 0.66
KITTI 03 1.07 0.89 0.78 0.74
KITTI 04 0.92 0.26 0.35 0.23
KITTI 05 1.16 0.83 0.81 0.71
KITTI 06 1.08 0.82 0.68 0.63
KITTI 07 0.51 0.51 0.58 0.58
KITTI 08 1.68 1.27 0.97 0.80
KITTI 09 1.13 1.10 0.86 0.75
KITTI 10 1.94 1.62 0.93 0.75

AVG 1.48 1.19 0.79 0.69

Table 4.3: The translational (Et) and rotational error (Er) on the KITTI sequences for
our ICP algorithm with geometrically stable sampling (GSS) using N = 2500 samples
per list, compared to the standard point-to-plane ICP algorithm. For the majority of the
sequences, GSS-ICP substantially reduces the error.

Figure 4.7: Sample image from ‘KITTI01’. The fact that no large buildings are next to
the highway, in combination with the high speed of the car and the presence of other
moving cars, makes it challenging to correctly estimate the ego-motion of the vehicle.
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Figure 4.8: Sample image from ‘KITTI07’. Thanks to the presence of large buildings
and parked cars along the street, the ego-motion estimation for this sequence is highly
accurate.

pose estimation process, as they are solid objects with a high planarity. The only
solution to this problem is to entirely exclude all moving objects, which is far from
trivial when solely relying on the point cloud data. For this particular ‘KITTI01’
sequence, it is thus hard to achieve a good result. However, our improved GSS-ICP
algorithm still manages to reduce the translational error from 3.85% to 3.48% and
the rotational error from 0.0102 deg/m to 0.0094 deg/m.

The best results are logically obtained for sequences recorded in urban envi-
ronments as these scenes generally consist of large planar surfaces. Figure 4.8
depicts an image from the ‘KITTI07’ sequence that was recorded in a city center.
As the entire scene consists of large buildings and parked cars, there are almost
no geometrically ‘unstable’ areas. As a result, even the standard ICP algorithm
succeeds well in estimating the ego-motion. However, our method still benefits
from the fact that fewer points are needed to estimate the ego-motion, which results
in faster computation times. Finally, figure 4.9 depicts an image from the ‘KITTI03’
sequence, recorded in a countryside area. The environment consists of a combina-
tion of vegetation and buildings. For these environments, our GSS-ICP method has
the largest benefit compared to the standard ICP method.

From Table 4.3, we can conclude that for almost all the sequences, our GSS-
ICP method is outperforming the standard ICP algorithm. In general, we obtain
a reduction in average translational error from 1.48% to 1.19% and an average
rotational error from 0.0079 deg/m to 0.0069 deg/m.

4.6.2 Feature-based weighting

The results from the previous section can be further improved by extending our
method with feature-based weighting. To that end, we define

x
.
= [ψ1, ψ2, ψ3, O, a, c, eΨ]
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Figure 4.9: Sample image from ‘KITTI03’. The presence of abundance vegetation along
the road in countryside areas, makes it difficult to accurately estimate the ego-motion.
However, our approach, which favours planar areas, can largely increase the accuracy
compared to traditional techniques as it focuses on the more stable regions, such as the
(few) buildings that are still present.

Feature Formulae

Linearity ψ1 = σ1−σ2

σ1

Planarity ψ2 = σ2−σ3

σ1

Sphericity ψ3 = σ3

σ1

Omnivariance O = 3

√∏3
i=1 σi

Anisotropy a = σ1−σ3

σ1

Local surface variation c = σ3∑
i σi

Entropy eΨ = −
∑3
i=0 ψi ln(ψi)

Table 4.4: Summary of the 3D shape features used in the weighting process.

as the feature vector as this combination was leading to the best results in the
experiments. The definitions of these values are summarized in table 4.4. The
results of our improved method, which we denote as W-GSS-ICP, are listed in
table 4.5. We see that for the majority of the KITTI sequences, the feature-based
weighting is beneficial for the overall accuracy. The W-GSS-ICP further reduces
the translational error from 1.48 % (ICP) and 1.19 % (GSS-ICP) to 1.09 % and the
rotational error from 0.0079 deg/m and 0.0069 deg/m to 0.0067 deg/m.

To obtain a better idea of the performance gain, we have plotted the ground
truth and estimated trajectories for three different sequences. These trajectories are
the result of projecting the 6D pose on the ground plane. Figure 4.10 shows the
results for the ‘KITTI04’ sequence. We notice that the standard ICP method has
problems in the beginning to estimate the right translation due to the abundance of
vegetation and the lack of salient geometrical features. Later on, the estimation is
more accurate, but the small error is taken along the rest of the trajectory, resulting
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Et (%) Er (deg/m ×102)

Sequence ICP W-GSS-ICP ICP W-GSS-ICP

KITTI 00 1.39 1.03 0.94 0.75
KITTI 01 3.85 3.11 1.02 0.85
KITTI 02 1.58 1.15 0.81 0.66
KITTI 03 1.07 0.90 0.99 0.74
KITTI 04 0.92 0.14 0.35 0.17
KITTI 05 1.16 0.68 0.81 0.69
KITTI 06 1.08 0.61 0.68 0.52
KITTI 07 0.51 0.51 0.58 0.60
KITTI 08 1.68 1.31 0.97 0.83
KITTI 09 1.13 1.06 0.86 0.73
KITTI 10 1.94 1.51 0.93 0.78

AVG 1.48 1.09 0.79 0.67

Table 4.5: The translational (Et) and rotational error (Er) on the KITTI sequences
for our GSS-ICP method extended with feature-based weighting (hence W-GSS-ICP),
compared to the standard point-to-plane ICP algorithm. For the majority of the sequences,
W-GSS-ICP further reduces the error compared to GSS-ICP.

in an error of approximately 25 meters in the direction of the z-axis at the end of
the sequence.

A similar phenomenon can be noticed in the results on the ‘KITTI06’ sequence,
depicted in Figure 4.11. For the standard ICP algorithm, the translation in the
direction of the z-axis is wrongly estimated in the beginning, causing the entire
trajectory to be shifted from the ground truth. Finally, in Figure 4.12, the trajectory
for the ‘KITTI01’ sequence is depicted. The first thing that can be noticed from this
trajectory is that the error of standard ICP is mainly in the direction perpendicular
to the ground plane. The reason for this is that the majority of the points lie on the
ground plane. Thus, while minimizing the point-to-plane error metric, the correct
estimation of the surface normals for points belonging to the ground plane plays
a crucial role. If a fixed (small) number of nearest neighbours are taken, it can
happen that due to bumpy parts of the floor or inaccurate measurements, the normal
vector is slightly deviating. However, the slightest deviation in normal vector
can quickly degenerate the minimization of the point-to-plane distance, leading
to wrongly estimated poses with a bias mainly in the y-direction, perpendicular
to the ground plane. We thus benefit from our ideal neighbourhood function, as
the normal vectors are computed upon a lot more points making them more robust
against small inaccuracies of the sensor. We see that for our W-GSS-ICP method,
the error made in the direction of the y-axis is reduced.
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Figure 4.10: Left: the resulting trajectories on the ‘KITTI04’ sequence using our W-
GSS-ICP method (blue line) and the standard point-to-plane ICP method (orange line)
compared to the ground truth (dash line). Right: Plot of each coordinate separately.
W-GSS-ICP greatly improves the translation estimate in both the x and y direction.
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Figure 4.11: Left: the resulting trajectories on the ‘KITTI06’ sequence using our W-
GSS-ICP method (blue line) and the standard point-to-plane ICP method (orange line)
compared to the ground truth (dash line). Right: Plot of each coordinate separately.
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Figure 4.12: Left: the resulting trajectories on the ‘KITTI01’ sequence using our W-
GSS-ICP method (blue line) and the standard point-to-plane ICP method (orange line)
compared to the ground truth (dash line). Right: Plot of each coordinate separately.
W-GSS-ICP greatly improves the translation estimate in the z direction and slightly
improves the translation estimate in the y direction.

One of the main factors that influences the effectiveness of ICP-based methods
is the speed at which the sensor is moving. The KITTI sequences are captured
with a Velodyne HDL-64E, which is spinning at 10Hz, hence producing a point
cloud every 100 ms. When the speed of the vehicle is too large, the data association
process in the ICP method will obviously fail as it relies on ‘closest’ points between
two shifted point clouds. In Figure 4.13 we plotted the average translational error
in function of the speed. We can see that our W-GSS-ICP method is resulting in
a lower translational error for all speeds. However, from 65km/h onwards, both
standard ICP and our W-GSS-ICP quickly degenerate, hence imposing a maximum
on the speed that is still resulting in acceptable accuracies. We notice a small drop
in the translational error for ICP near 50 km/h, but we are uncertain about the
reason.

4.7 Conclusion

In this chapter, we proposed improvements over the standard ICP algorithm by
incorporating low-level shape-features in order to obtain more accurate and more
robust pose estimates. Our improvements are threefold. First, we designed an
optimal neighbourhood selection method upon which surface normals are more
accurately estimated. The determination of the optimal neighbourhood is a combi-
nation of an efficient point clustering and entropy-based radius selection. Second,
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Figure 4.13: The translational error (%) on the KITTI dataset for increasing speeds. Our
own W-GSS-ICP method clearly performs better than the standard (point-to-plane) ICP
method. Both methods however have a high increase of translational error at a speed of
65 km/h, hence posing an upper limit on the speed that is still resulting in acceptable
accuracies.

we proposed a geometrically stable point selection algorithm, taking advantage of
the planarity in the scene. Furthermore, we cope with wrong directional biases
due to the non-uniform point density, by proportioning the observability in all
directions. Third, we developed a feature-based weighting scheme to penalize bad
point correspondences.

The experiments on the KITTI dataset demonstrate that we are able to reduce
the translational error from 1.48% to 1.09% and the rotational error from 0.0079
deg/m to 0.0067 deg/m compared to the original point-to-plane ICP algorithm. The
careful selection of the points makes the convergence of the ICP algorithm more
stable. Because of this, the number of iterations until convergence for the KITTI
dataset averages around 6 to 7 and as a result the transformation can be computed
in less than 100 ms. Given the fact that lidar scanners, such as the Velodyne or
Ouster series, are generally acquiring 10 point clouds per second, our registration
techniques runs in real-time.

Regarding the speed of the vehicle, the performance of both the standard point-
to-plane ICP and our own W-GSS-ICP algorithm remains high until 65 km/h is
reached. From that speed onwards, the performance decreases drastically for both
methods, but our methods still yields the best results for all speeds.





5
Efficient scan-to-map

matching

The previous two chapters were dealing with the alignment of point clouds, a process
resulting in a transformation matrix that allows fusing them into one coherent
coordinate system. Doing so, we create ‘aggregated point clouds’, which can -
after conversion to a simplified 3D map - be used to perform obstacle avoidance,
navigation and path planning. The goal of this chapter is twofold. First, we explain
how these aggregated point clouds can be used to improve the scan matching
process described in the previous chapters. In other words, we elaborate on how
we can associate new sensor measurements to the reconstructed scene in order to
improve pose estimation.

The ‘fusion’ process will be based on a surface reconstruction: we approximate
the underlying surface and re-project the points on it in order to reduce noise and
small registration errors. The reconstruction also allows to fill small gaps in regions
that are not or too sparsely sampled. This process will eventually help solving
the correspondence ambiguity in the data association process. As we will have
a continuous surface available, we can correctly match the exact same physical
point among different scans. Second, we will investigate how we can efficiently
store these aggregated point clouds as a 3D map for online use. Besides obstacle
avoidance and navigation, this online use also comprises updating the maps on the
fly facilitating the challenge of ‘livelong mapping’.
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Figure 5.1: Google street view image of a road in the Belgian city Hasselt (left) and
the associated point cloud in full resolution (multiple points per square centimeter).
The Velodyne HDL-32e scanner can produce up to 700k points per seconds, leading to
approximately 8.4MB per second or 0.5GB per minute of acquired data.

5.1 Introduction

As mentioned in the previous chapters, one of the main uses of 3D maps is navi-
gation. Navigation devices today are however still dominated by static 2D maps
or meter-resolution 3D alternatives. These low-resolution maps may be sufficient
for human navigation, but autonomous cars need maps that tell them where the
curb is within a few centimeters. In addition, autonomous cars should be able to
distinguish between traffic signs, street lights, bus stop signs and so on. Even more,
they should have the ability to recognize which type of traffic sign they encounter.
All of this implies that the autonomous vehicles of the future need high-resolution
maps for them to fully operate.

On the other hand, maps need to be compact in order to fit in the memory of
computers and to be efficiently distributable among other autonomous systems.
Moreover, it should be possible to quickly update them in a way that changes, both
abrupt (e.g. sudden obstacle on the road) or long term (e.g. damages on the road
surface) can be easily integrated. Being both compact and quickly up-datable are
two prerequisites to develop fully dynamic and ever up to date maps. Whether the
map is built from scratch or not, the key challenge in the future will be on how to
maintain it and how to incorporate a tremendous amount of data in an efficient way.

Today, many approaches adopt out-of-core implementations in which a part of
the map is released from the RAM memory and saved to disk. Figure 5.1 depicts a
Google street view image of a residential area together with a full-resolution 3D
reconstruction using data from a Velodyne HDL-32e. This scanner is able to capture
700k points per second leading to approximately 0.5GB per minute of acquired
data. It is thus clear that we need data structures that make it possible to quickly
access the right data from this huge point cloud. In all this, we should keep in mind
that different applications impose different requirements on the level of detail or
the speed of retrieval.
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Often times, there is a relationship between the importance of objects and their
spatial properties. The majority of interesting objects are found in specific locations.
In case of autonomous cars, these are mostly found along the road, such as curbs,
traffic signs, bus stops, etc. We could thus model these particular areas with finer
granularity than the road area itself. On the other hand, it should still be possible to
detect unpredictable obstacles on the road or imperfections of the road surface (e.g.
bumpy parts or holes). This imposes a requirement on the minimum resolution at
which the road area should be modelled in the map. Furthermore, for autonomous
cars, buildings along the road are less critical and do not require high detail, but
they could still serve as visual cues for integration with other GIS systems. For
these elements it is thus sufficient to have their rough bounding box in the map. In
other cases such as urban planning, one might still be interested in the fine details
of buildings. A particular example is the deployment of optical fiber along the
facades of houses in order to provide internet to families. For this, the internet
service provider needs the precise layout of the street scene at centimeter accuracy
in order to figure out where to attach the wires.

Another key element in the future of map building will be how to combine
data from different modalities into one coherent space. It is clear that there is a
need for spatial partitioning algorithms as all of the existing sensors have different
properties in terms of resolution and point density. The good news is that we can
learn from algorithms in the computer graphics literature that already deal with the
efficient partitioning of 3D spaces in rendering engines. In those use cases, they are
used to perform operations like collision detection or frustum culling, which are
useful to determine the region of interest or identify obstacles.

In this chapter we will describe how we can efficiently build (or organize),
maintain and update 3D maps of large-scale environments. We will focus on two
main aspects. First, we study surface reconstruction algorithms, which reduce the
noise and measurement errors as well as errors made by the pose estimation. This
process will further enhance the quality of the map, i.e. the overall accuracy, but it
will also provide a means of lowering the spatial redundancy in the scene, which
on its turn benefits the compactness of the map. Second, we investigate efficient
data structures and spatial partitioning, which are necessities in order to keep the
computation time limited. We will discuss how octrees can serve as a compact
representation of the scene and how they can be used to compress the 3D map for
potentially streaming the data to other systems or servers.

The chapter is organized as follows. In the next two sections, we will give a brief
literature overview on the two aspects of this chapter being 1) map representation
and 2) surface reconstruction. In section 5.4 we will describe how we exploit the
two aspects in order to increase the accuracy as well as the speed of 3D mapping,
followed by a thorough evaluation.
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5.2 Map representations

In the early mapping literature, one often made the distinction between topological
and metric map models. The former one considers places and the relations between
them. The map can then be seen as a graph in which the nodes correspond to
places and the edges to the paths connecting them. This kind of representation
is well-suited to find out which other places are reachable from a given place
and is generally used when the goal is to perform navigation. However, metric
map models are way better suited for interactions with the scene or to analyse
the environment. In this work, the main focus is not on navigation but rather on
comprehensive analysis, including use cases as damage assessment, inspection,
creation of digital twins, etc. In this section we will, therefore, focus on the metric
map representations. We discuss the five most prominent ones: feature-based,
dense, spatial-partitioning-based, boundary-based and object-based.

5.2.1 Feature-based sparse representations

Most of the early SLAM systems represented the scene as a set of sparse 3D
features, derived from discriminative features in the scene. As such, they are based
on the extraction and matching of salient features in sensor data, either images
or depth measurements. Examples of appearance-based features are SIFT (scale-
invariant feature transform) [Lowe 04], SURF (speeded-up robust features) [Bay
08], BRIEF (binary robust independent elementary features) [Calonder 10] or ORB
(Oriented FAST and Rotated BRIEF) [Rublee 11]. These appearance-based features
have been widely applied in the field of robotics but are also used in the context of
structure from motion. In the latter domain, the sparse 3D point cloud is usually
densified in a subsequent step by adopting a multi-view stereo (MVS) algorithm
such as GIPUMA [Galliani 15] or COLMAP [Schönberger 16]. The complexity of
these methods, however, prevent real-time operation. Figure 5.2 depicts an example
of ORB-SLAM [MurArtal 15], a feature-based visual SLAM system that is running
in real-time, but results in a sparse map of the environment.

With the advent of novel, affordable, depth sensing modalities such as ToF
cameras and laser scanners, some researchers also focused on the use of 3D features
to conduct SLAM. Examples are SIFT-3D [Scovanner 07], Harris3D [Sipiran 10a],
Spin images [Johnson 97], NARF [Steder 10], and SHOT [Salti 14]. The main
drawback of this approach however is that it is very challenging to extract repeatable
3D features from 3D (laser) scans due to their sparse and non-uniform point density.
Apart from that, they are also extremely costly to compute. For those reasons,
feature-based systems are not often used in combination with 3D scan data.
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Figure 5.2: Example of ORB-SLAM [MurArtal 15], a feature-based SLAM system.
Left: the ORB features extracted from the image. Right: The reconstructed sparse 3D
point cloud together with the camera poses.

5.2.2 Low-level dense representations

In contrast to feature-based representations, dense representations provide high-
resolution 3D models of the scene, usually in the form of a large unstructured set of
points or point cloud. These methods lately received more attention in combination
with direct methods, which estimate the trajectory of the robot or camera directly
from the ‘raw’ data points as opposed to feature-based approaches. In the context of
visual SLAM, this means that the intensity values of all the pixels in the image are
used, like in LSD-SLAM [Engel 14] or DVO-SLAM [Kerl 13a]. Regarding SLAM
using 3D sensors, all methods based on the ICP algorithm that do not incorporate
an underlying data structure fall in this category as well.

Sometimes, the raw data points are augmented with surface information, hence
creating so-called surfel maps, which encode the geometry as a set of disks, as
shown in the right-most image of Figure 5.3. The main drawback of dense repre-
sentations is their high memory footprint. For large-scale environments a dense
representation quickly becomes intractable and is, therefore, not suitable for long-
term use in autonomous systems. Moreover, due to their unstructured nature it
is almost impossible to perform scan-to-map matching. As such, these systems
usually only integrate scan-to-scan matching.

5.2.3 Spatial partitioning representations

Space partitioning is the process of dividing the 3D space, often Euclidean, in
non-overlapping regions. The best-known spatial partitioning representation is
the spatial-occupancy map, which decomposes the 3D space into identical cubes
(voxels) arranged in a regular 3D grid. As searching and updating this kind of
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Figure 5.3: Example of dense SLAM. Left: image of an outdoor scene, middle: point-
cloud based representation and right: surfel representation.

representation is rather inefficient, the 3D grid is often organized in the form of
a hierarchical tree data structure, which has a O(log n) search complexity. There
exist several hierarchical partitioning schemes, such as the octree, the binary-space
partitioning or BSP-tree and the kd-tree. A major limitation of the latter two is
that they are complicated and time-consuming to update them. It is very likely
that the tree has to be rebuild when newly acquired points of the scene have to
be inserted as the tree would otherwise become unbalanced. In the latter case the
search complexity would degrade back to O(n). For that reason, octrees are more
often used in robotics as they are more flexible when the map is extended or in case
many moving objects are present in the scene.

In [Hornung 13], the authors presented OctoMap, a probabilistic 3D map
representation based on octrees. This framework was used by [Beno 16] to map
the environment and subsequently help in navigating autonomous robots. As
mentioned in the introduction, sometimes an application requires different levels of
detail for different regions in the environment. The authors of [Wurm 11] propose to
represent the map as a hierarchy of octrees in which each map node is represented
as a separate octree, allowing to subdivide the scene on the object level. Each
sub-map is maintained independently and the parameters, such as the resolution,
can be adjusted for each of them separately. Each sub-map can also be manipulated
independently, such that individual objects can be moved while others remain static.
Finally, in environments without hanging obstacles, 2.5D elevation maps have also
been used [Brand 14].

5.2.4 Boundary representations

Boundary representations define the scene in terms of their surface boundary. These
representations are hence better suited to conduct obstacle detection, avoidance and
path planning in the field of robotics. Moreover, they can help making the pose
estimation more accurate and more robust as they allow to conduct scan-to-map
matching in a more efficient way. First, the matching can be computed using a
larger part of the scene which limits the risk of poor data association. Second, as
they aggregate data from multiple scans, they can cope with measurement noise
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from the sensor.

As we will discuss later in this chapter, the surface can either be represented
in an explicit or implicit way. Among the explicit methods are the curve-based
representations using NURBS or B-splines and the surface mesh models, which
are connected sets of polygons, usually triangles. Implicit surfaces are defined
by the zero crossings of a function defined on R3. Examples of functions include
radial-basis functions (RBF) [Carr 01], signed-distance functions (SDF) [Curless
96] and truncated signed-distance functions (TSDF) [Zach 07]. The latter group
gained a lot of popularity after the seminal paper ‘KinectFusion’ of [Newcombe 11].
Another group of a boundary representations are plane-based maps, which have
been used by [Pathak 10; Kaess 15].

5.2.5 High-level object-based representations

Today, most of the operational SLAM systems either use a dense representation
in the form of a point cloud or a spatial partitioning data structure such as the
octree. However, we envision that the future of SLAM will embrace the use of
object-level maps or maps containing solid shapes. One of the first SLAM systems
that exploited this idea is the work of [Civera 11], in which a ‘hybrid’ solution
was proposed. Their monocular EKF-based SLAM system is extended with an
object recognition thread, which informs about the presence of an object in the
sequence by searching for SURF correspondences and checking their geometric
compatibility. When an object is recognized it is inserted in the SLAM map where
it helps estimating future poses while its position is being refined by the SLAM
algorithm at the same time.

In [Dame 13], the authors propose something similar, combining dense SLAM
with 3D object pose and shape recovery. More specifically, they augment their
SLAM system with the 6D pose and additional degrees of freedom for the objects
of known class in the scene, combining image and depth data for the pose and
shape recovery. In [SalasMoreno 13], the authors propose their ‘SLAM++’ system
comprising a localization algorithm based on complete objects thereby exploiting
the assumption that many scenes consist of repeated, domain-specific objects and
structures.

The main drawback of those high-level object-based approaches is that it comes
with the overhead of creating an object database. In case of [SalasMoreno 13], the
authors first reconstruct high quality 3D models of the objects in the scene, in order
to exploit them afterwards in their SLAM system.



100 CHAPTER 5

5.3 Surface reconstruction

The boundary representations from the previous section are in some way related to
the topic of surface reconstruction as many of them basically represent a kind of
surface model. In this section we will give a brief overview of the different ways to
reconstruct the surface from a set of sampled points. The latter can be seen as an
inverse problem: given a set of measurements, find the geometric primitives that
explain these measurements.

The reason to reconstruct the surface can vary. Some applications require a
detailed representation of the environment that is easy to interpret and analyse.
Other applications require a compact representation that can quickly be rendered,
for example on virtual reality devices. The main goal of the surface reconstruction
in this work, however, is to improve the registration in view of more accurate 3D
reconstructions.

5.3.1 Explicit vs. implicit surfaces

Surface reconstruction algorithms generally fall into two categories: explicit and
implicit reconstruction. Explicit surfaces can be seen as a description of the precise
location of the surface. This description can either be in a parametric form or can be
expressed by means of a triangulation. A parametric surface uses deformations of a
primitive model that cover an arbitrary portion of the points. Example primitives
being used are B-splines, NURBS, planes, spheres and ellipsoids. Triangulated
surfaces use the points as vertices and compute the connectivity (triangulation)
between the point samples. The main limitation of these methods is their high
sensitivity to noisy data. Moreover, scans are not always perfectly aligned, creating
additional artefacts that are incorporated in the triangulation. These methods,
therefore, require to create new vertices in overlap regions, leading to a lot of
additional computational burden.

Implicit surfaces on the other hand divide the space into two areas, inside
and outside of the object. They also come in parametric and non-parametric
representations. The former are usually defined as the zero set of an indicator
function. Examples are radial-basis functions (RBF), Poisson, Fourier or Wavelet
surface reconstruction. Non-parametric representations gained a lot of attention
after the ‘KinectFusion’ system was presented by [Newcombe 11]. The authors use
an implicit surface, represented by a truncated signed distance function (TSDF)
which is coded in a voxel map. A TSDF is thus a volumetric representation of the
scene where each location stores the distance to the closest surface.

In [Newcombe 11], the voxel data structure is implemented as a 3D array
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Figure 5.4: Example of an implicit surface, i.e. a signed distance function (SDF), in
parametric form (left) and defined by a voxel grid (right).

stored in GPU memory with each cell containing a distance value and a weight
proportional to the uncertainty of the surface measurement. During initialization,
two main parameters are configured, being the size of the TSDF in voxels and
the dimension in meters. These two values affect the size of the area that can be
reconstructed and the resolution, which on its turn affects the performance and
accuracy. KinectFusion can deliver acceptable results but the fact that the TSDF is
defined by a fixed voxel grid makes it only suitable for small ‘work’ spaces.

Figure 5.4 demonstrates the idea of implicit surfaces, both in parametric and
non-parametric form. Implicit surfaces need to be post-processed in order to
‘visualize’ them. Marching cubes [Lorensen 87] is a method that is widely used to
generate a triangular mesh from an implicit surface.

5.3.2 Interpolated vs. approximated surfaces

Another way of subdividing surface reconstruction is by distinguishing approxi-
mation methods from interpolation methods. Interpolation methods are used for
scanning data that suffer from non-uniformity or undesired holes (missing data).
An interpolated surface is one for which at least a few of the input points lie on
the actual surface. Almost all the explicit surfaces are considered interpolated
surfaces, specifically triangulated meshes as all of the scanning points rest on the
surface. Approximation methods on the other hand define a smooth function that
does not pass necessarily through the point samples. They are better able to handle
noise in the data. On the other hand, they are often limited by their incapability of
representing drastic changes on the surface, such as edges and corners.

In this work, we adopt an approximation approach, which is motivated by
the fact that we want to account for the measurement noise of the 3D sensor and
for the imprecisions in prior pose estimation steps. Interpolation methods could
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enlarge these artefacts and deteriorate the reconstructed surface. By approximating
a continuous function, we avoid that flat areas grow perpendicular to the plane,
e.g. points sampled on a wall are prevented from being ‘spread’ and forming a
‘thick’ wall in the point cloud. The latter will improve further localization as in that
case the ICP energy function has a well-defined minimum. In order to cope with
smoothing along edges and corners, we rely on the ideal neighbourhood selection
method described in the previous chapter. There, we proposed to select the set of
neighbours that are part of the same object or geometric primitive and for which
the Eigen entropy is minimized.

5.4 Proposed approach

The previous chapters were dealing with the alignment of consecutive scans in
order to find the transformation matrix defining the position and orientation of the
sensor. We have demonstrated that due to inaccurate measurements, the estimate of
this pose matrix can also be inaccurate. For that reason, it is beneficial to conduct
an additional scan-to-map alignment in order to further refine it. The result from
the scan-to-scan matching can herein be used as a prior estimate.

Our final approach consists of two main components. First, we adopt an octree-
based map to accelerate spatial queries, such as nearest neighbour searches for
the data association step. Second, on top of the octree backbone we conduct a
moving least squares (MLS) surface reconstruction to deal with noise as a result
of inaccurate measurements and prior pose estimates. The MLS technique is an
approximation method that smooths the data, handling well the noise without over-
smoothing as is often the case for Poisson reconstruction. The MLS approximation
can be used to re-sample the point cloud afterwards, ensuring a uniform point
density, which improves the robustness and accuracy of the scan-to-map alignment.
Finally, it can also be used to fill small gaps in the surface.

5.4.1 Octree-based map

One of the main limitations of the TSDF used in KinectFusion is its fixed-size voxel
grid. However, the final extent of the scene to be mapped is not always known
in advance. To overcome this, we propose to use an octree, which can be more
easily resized. As shown in Figure 5.5, an octree is a hierarchical data structure
that represents the environment as a cube, which is iteratively subdivided by 8
smaller disjoint sub-cubes or octants. The cube at the root level thereby serves as
an axis-aligned bounding box of the environment. If a sub-cube is not occupied,
i.e. there are no objects or points present, the division of that cube stops at that
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Figure 5.5: The octree data structure (b) and its representation in 3D (a). In a linear
octree representation, each child octant is represented by a location code based on its
position in the parent octant. The location code of any child node in the tree is computed
recursively by concatenating the octant numbers of all the nodes from the root down
to the node under consideration. Only leaf nodes are saved and stored contiguously in
memory. This hierarchical space partitioning is the backbone of our ‘map’, making it
possible to quickly associate new sensor measurements to the map under construction.

resolution. Each node in the tree can hence have at most eight children but can also
have no children at all.

During initialisation it is still necessary to define a bounding box of the scene.
However, once the sensor is leaving its original bounding volume, a new root node
is created and the ‘old’ bounding box is fitted in one of the eight child nodes of
the new root node. Still, it is crucial that the octree is expanded into the direction
where new measurements are acquired. Therefore, we choose the center of the root
node in such a way that the new ‘outlying’ measurements fall into it.

5.4.1.1 Common octree representations

Octrees can be represented in several ways. As it would lead us too far too describe
them all in detail, we briefly discuss the three common approaches below.

Full octree

In a full octree every internal node has eight children and all leaf nodes have exactly
the same tree depth d. A full octree, therefore, has N = 8d leaf nodes and the
total number of tree nodes is given by

∑d
i=0 8d. The main benefit of this approach

is that the address of any node can be calculated based on its location in the tree,
making the use of explicit pointers unnecessary, which saves memory. However,
if many nodes contain no objects, the memory savings of small nodes quickly get
lost by the huge amount of allocated nodes. Full octrees are, therefore, only useful
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for scenes that are non-sparse and static with evenly distributed geometry. In case
of mapping large-scale 3D environments, many nodes will be empty and for that
reason full octrees are not the best choice.

Pointer-based octree

One of the most common approaches are the pointer-based implementations, also
referred to as explicit octrees. There are two common representations. In the
first ‘exhaustive tree’ representation each node has eight pointers to each of the
children and a reference to the data. The second representation, called sibling-child
representation, stores for each node a pointer to its first child and to the next child
of its parent and a reference to the data. The second approach is a lot more memory
efficient as it only needs 2 pointers instead of 8, but it requires on average more
pointer dereferences to access a given node. Sometimes an additional pointer is
stored to access the parent node, in order to accelerate bottom-up traversals.

Linear octree

Linear octrees are a variation on pointer-less octrees in which only leaf nodes are
saved and stored contiguously in memory. In linear octrees, each node is represented
by an interleaved base-8 code, called a location code or Morton code [Morton 66],
based on its relative position in the octant (cfr. Figure 5.5): bottom-left-front
(000), bottom-right-front (001), bottom-left-back (010), bottom-right-back (011),
top-left-front (100), top-right-front (101), top-left-back (110), top-right-back (111).
The location code of a child node in the tree is then computed recursively by
concatenating the octant numbers of all the nodes from the root down to the node
under consideration. The key kn of the parent of node n can simply be obtained
by removing the 3 last bits: kn � 3. With three bits per octree level, a 32 bit
location code can represent a tree with a maximal depth of 10, a 64 bit location
code a maximal depth of 21. Thus, rather than connecting the leaf nodes via interior
nodes, the leaf nodes are sorted by location code and then laid out sequentially in
memory. When the leaf nodes are sorted according to their location codes, the order
is the same as the pre-order (depth-first) traversal of the tree, often referred to as
the Morton-order or Z-order indexing, cfr. Figure 5.6. Doing so, the data locality is
preserved as well, which leads to superior performance in memory access.

Linear hashed octree

The octree nodes can further be stored in a hash map - an associative container data
structure - which allows to address them based on their Morton code. A hash table
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Figure 5.6: We store the leaf nodes in memory according to their Morton codes, which
corresponds to the pre-order (depth-first) traversal of the tree, also referred to as the
Z-order. The main benefit of this approach is the spatial coherence, leading to superior
memory performance.
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Figure 5.7: Example hashing of the linear octree of Figure 5.5.

potentially provides O(1) access to its elements as long as there are no collisions
in the hash table. In practice, this condition is difficult to fulfil and collisions do
happen when the hash function generates the same index for different keys. Figure
5.7 shows an example for which the three least significant bits are used as index.
Using linear hashed octrees, moving down or up the tree is a simple two-step
operation which consists of deriving the code of the next node and looking-up the
node in the hash-map. However, creating and deleting nodes at the top of hashed
octrees can be very costly, as the location code of all nodes below the new root
node gets 3 bits longer and must be updated. In some cases, the hash map must
therefore be updated as well.

5.4.1.2 Our octree implementation

In our implementation we make use of the 8-base location code as depicted in Figure
5.5. However, we do not use a hash map as the overhead in case of expanding the
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octree is too expensive. Usually, the location codes are used for linear octrees in
order to get rid of the pointers and to obtain a more compact representation. In true
linear octrees, only the leaf nodes are stored.

As we will describe in section 5.4.4, we will use the inner nodes to store
information, in order to have a multi-resolution representation of the map. For that
reason, we integrate the location codes in a pointer-based representation to get the
best of both worlds. The location codes facilitate more efficient queries for point
location, region location and neighbour finding. In our implementation we use three
integers for the x, y and z-axis of our axis-aligned bounding box (AABB). The
location code or key kn of node n can then also be generated from the depth d and
the position (x, y, z) of its center. The key kn is computed by interleaving the bits
of x, y and z: if x = x1x2 . . . xM , y = y1yx2 . . . yM and z = z1z2 . . . zM , then
kn = z1y1x1z2y2x2 . . . zdydxd.

The pointer implementation on the other hand mitigates the creation and deletion
of octree nodes. Especially the creation of nodes needs to be efficient as our goal is
to build the 3D map incrementally. Furthermore, we support on-demand allocation
of nodes, as the octree in 3D mapping use cases will generally be sparsely populated.
The latter will save quite some memory compared to a pre-allocation in the form of
a full octree.

The octree serves as the backbone of our map representation. The next question
is what to store in the octree. Obviously, we gain little to no memory if we store all
the acquired points. Therefore we will, in each octant, reconstruct the surface and
only store the parameters of this surface and a centroid point in it. The next section
will describe how we approximate this underlying surface using the moving least
squares technique.

5.4.2 Moving Least squares surface

Moving least squares (MLS) is a method for approximating a continuous function
from a set of unorganized point samples. Thereby, a weighted least squares measure
is calculated for the region around the point at which the reconstructed value is
needed. The term ‘moving’ comes from the fact that we change the weights ‘as we
move’ on the surface. MLS thus leads to a ‘point set surface’ as the method creates
a point function for each sample in the dataset.

In [Kolluri 08], the authors defined the implicit moving least squares (IMLS)
surface as the set of zeros of the function I(pi) given by eq. 5.1. The function
serves as an approximate distance of any point pi ∈ R3 to the implicit surface
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defined by the ‘map’ point cloudM:

IM(pi) =

∑
pj
θ(||pj − pi||)((pi − pj) · ni)∑

pj
θ(||pj − pi||)

(5.1)

In this equation, pj ∈M are the ‘closest neighbours’ of pi, ni the normal vector
of the point pi and θ(x) = e−( x

σr
)2 an exponential weighting function that is based

on the Euclidean distance between pj and pi and the average separation σr of the
3D points. Thus, neighbouring points pj ∈M located further away from pi get a
lower weight than points located closer.

As can be seen, the IMLS representation defined in eq. 5.1 is computed directly
on the map point cloud M and can be used to conduct scan-to-map matching.
When a point cloud Pk, acquired in a new scan k, needs to be aligned with the map
M, the transformation T = (R, t) can be estimated by minimizing the sum of
squared IMLS distances:

argmin
R,t

∑
pi∈Pk

|IM(Rpi + t)|2. (5.2)

This approach, however, has two major limitations. First, due to the exponential
weights, this non-linear least-squares optimization problem can not be approximated
by a linear least-squares one. Second, because the IMLS is computed directly from
the raw point cloud, all of the points should be kept in memory. As such, we can
end up with a too dense map as many points might be sampled in a small portion
of the 3D space. This concentrated map impacts the performance of the system:
the time and memory efficiency degrades while there is minimal improvement in
accuracy.

The above means that this approach is not scalable for large environments or
for long-term operation. For that reason, we propose to use the MLS surface in its
explicit form and re-sample the original point cloud in order to keep fewer points.
More specifically, we approximate the underlying surface around a point pi by
fitting a second degree polynomial pi through the distances of its neighbouring
points to its tangent plane Hi. The bivariate case of this quadratic function is given
by pi(x, y) = ax2 + by2 + cxy + dx+ ey + f and has 6 parameters. To obtain an
estimate on these parameters we minimize the following objective function:

p̃i = argmin
pi

∑
pj

(pi(xj)− fj)2θ(||pj − pi||), (5.3)

in which pj are once again the neighbours of pi, xj the orthogonal projections of
pj onto the tangent plane Hi , (ni, di) and fj , 〈pj ,ni〉 − di the distance of pj
to Hi. The normal vector ni defining the tangent plane is computed as described in
chapter 4. Finally, θ(x) = e−( x

σr
)2 is the same weighting function as used in eq.

5.1.
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5.4.3 Resampling

As it is infeasable to solve the minimization problem of eq. 5.2, we propose to
resample the point cloud by projecting the original points onto the estimated surface.
For each point pi ∈ M the polynomial in eq. 5.3 is estimated and the point is
projected on its local surface as follows:

p′i = pi − p̃i(xi)ni, (5.4)

in which p̃i is the estimated polynomial and xi the projection on the tangent plane
of pi. This projection step will account for the noise resulting from inaccuracies in
both the measurements and the pose estimates.

Right now, we are still dealing with the same number of points originally
acquired by the sensor. As some regions are overly dense we subsample them in
order to obtain a more uniform point density in the point cloud. To that end, we
use the octree-based voxel grid and compute for each leaf node one point to store.
More specifically, we compute the centroid point using all the points in the voxel,
subsequently estimate the underlying (point set) surface according to eq. 5.3 and
finally project the centroid point back on this surface. Eventually, we store the 6
parameters from the estimated polynomial together with the projected centroid in
the node of the octree. The other points are removed in order to save memory.

Sometimes, the map contains small gaps because a region was not sampled at
all, for example due to occlusion (so called ‘lidar shadows’). In order to make the
map more complete and hence increase the robustness of the mapping, we conduct
an additional voxel dilation. We, therefore, dilate empty voxels with a point located
at their center position. Subsequently, we project these center points on the surface
estimated at the closest point (in a neighbouring voxel) in the map point cloud.

The surface is reconstructed for each voxel or octant individually and is triggered
each time new points are added to it. The beauty of this approach is that it lends itself
perfectly for parallel computing, for example by means of distributed computing
using several clusters or by using multiple GPUs. Each cluster is then responsible
for computing the MLS surface for one voxel.

The surface reconstruction is thus applied several times and as such it is con-
tinuously refined. At some point, however, the gain of the refinement will be too
minimal compared to the computational and memory resources that need to be
spend. In addition, as the sensor is moving in the 3D space some voxels will not be
updated anymore and therefore they could be removed from the RAM memory and
stored on disk.

In order to perform scan-to-model matching we can now, instead of minimizing
the IMLS cost function of eq. 5.2, use the same point-to-plane or plane-to-plane
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Figure 5.8: Top-down view of a point cloud before (left) and after (right) the projection
on its underlying surface. Before projection, we can see that the measurement noise
and imprecisions in the pose estimation cause flat areas such as the walls, to grow
‘perpendicular’ to the plane, hence creating a ‘thicker’ wall, as indicated by the red
ellipses. After projection, the points belonging to the wall are lying on a thin surface.

cost function defined in eqs. 3.3 and 3.12, using the new ‘projected’ points in the
map point cloudM. Note that for the new points, the point normal is also updated
based on the computed polynomial.

Figure 5.8 shows a top-down view of a point cloud captured in a lab. The
left image shows the point cloud resulting from scan-to-scan matching, without
applying a projection on the underlying surface. The right image shows the same
point cloud resulting from scan-to-map matching with projection. We clearly see
that the walls in the left point cloud are spread out over a few centimetres (indicated
by the red ellipses) whereas the walls in the right point cloud are more ‘thin’. By
performing re-sampling, small errors can thus be corrected and the ‘double walls’
artefacts can be smoothed.

5.4.4 Multi-resolution ICP

The surface reconstruction and resampling explained in the previous sections have
three major benefits. First, as the map point cloud gets a more uniform point density,
the pose estimation is not biased towards the regions that are more densely sampled.
This in turn leads to a higher robustness of the system. Second, the noise due to
inaccurate measurements and previous errors from the pose estimation is reduced,
leading to more accurate 3D models. Third, the scan-to-map alignment can be
conducted using fewer points leading to faster computation times. As most of the
time of the ICP algorithm is spent on the computation of corresponding pairs, the
largest speed-up can be obtained by lowering the number of points used to estimate
the transformation. To facilitate this down-sampling, we exploit the octree-based
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voxel grid to select a point cloudM with a uniform point density, consisting of the
projected centroids up to some level in the tree.

The main idea is to perform registration using different resolutions, going from
the lower to the higher one, hence adopting a coarse-to-fine procedure. For every
iteration, the result of the previous one serves as an initial guess and doing so we
iteratively refine the transformation. In every iteration we conduct the main steps of
the ICP algorithm, but in contrast to standard approaches, we change the resolution
each time. In other words, based on the octree representation of the map, we ‘filter’
the point cloud spatially and keep as it were a summarized version of it.

Each occupied octree cell at all levels in the tree contains the projected centroid
as well as the parameters of the polynomial representing the surface in that point.
It is important to note that the projected centroid point is computed on the fly and
changes dynamically when more points are acquired within the same voxel. In
order to limit memory usage, we use a threshold on the number of points that are
being kept in one voxel. When this threshold is reached, the final projected centroid
point is computed and the other points in the voxel are removed in order to free up
memory space.

Apart from the target point cloudM, the source point cloud Ps to be aligned
can also be down-sampled to the same spatial resolution, using a similar octree-
based voxel grid. As the point density of a single point cloud is low, the surface
reconstruction can be omitted and the original (instead of projected) centroid point
can be kept in each voxel.

Our hierarchical octree-based ICP method has a few major advantages. First, it
helps finding nearest neighbours in a quick way. Second, since the transformation
computed at a low resolution can serve as an initial guess for the transformation
estimated at higher resolutions, it is not necessary to perform multiple iterations at
the same level. This way we can lower the total number of iterations. These two
advantages thus lead to a significant speed-up.

The environments that benefit the most from this approach are indoor scenes
with large planar surfaces such as conference rooms or university campuses. For
these environments, the octree cells at some point in the hierarchy will contain
only points that are lying on a planar surface and can hence easily be summarized
by its parametric form. Figure 5.9 depicts an example of a reconstructed 3D
map at different resolution levels, going from a voxel size of 64 centimeters to 8
centimeters.
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Figure 5.9: The same map depicted using different leaf resolutions. From left to right
and top to bottom, the voxel size is respectively 64, 32, 16 and 8 centimeters.

Convergence and time complexity

The algorithm starts by using a low resolution representation of the mapM and the
source point cloud Ps, obtained by considering all nodes down to the level with a
certain voxel size. It can start for example with a voxel size of 64 centimeter and end
up with a voxel size of 1 centimeter. In every iteration the closest points between
the two point clouds are determined. Thanks to the octree representation of the
map, finding the (approximate) closest points between Ps andM is an extremely
fast operation. For each point in Ps we just have to traverse the tree until the voxel
at depth d has been reached. The approximated closest point is then the centroid
point projected on the reconstructed surface. This operation takes O(d) time as it is
not depending on the number of points that have been acquired or that are currently
stored in the map.

Important to note is that we only consider mutual closest point pairs, i.e. we
consider two points matching as both the ‘source’ point is the closest one to the
‘target’ point in the map and vice versa. It is thus not possible for two points
in the source point cloud to be matched with the same point in the map. The
total time complexity for finding corresponding points at resolution r is therefore
given by O(Ns,r), Ns,r representing the number of points in the source point
cloud at resolution r. The computation time for the scan-to-map alignment is thus
only dependent on the resolution level and the size of the bounding box, i.e. the
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octree level leaf size (cm) avg. residual (cm) t (ms) acc. t (ms)

initial 3.1907
11 32 0.6309 5 5
12 16 0.3027 11 16
13 8 0.2799 16 32
14 4 0.2725 32 64
15 2 0.2719 51 115
16 1 0.2716 77 192

non-MR 0.2730 7212

Table 5.1: Results of the octree-based alignment process. The term residual denotes the
final cost of the ICP procedure after convergence, i.e. the point-to-plane distance of all
corresponding point pairs. The time t denotes the time that is needed to compute the
transformation using the respective resolution and ‘acc. t’ denotes the accumulated time.
Our multi-resolution algorithm reduces the total processing time from 7212 ms to 64 ms
(to reach the same accuracy).

dimensions of the map, and not on the total number of acquired points.

It can still happen that some of the approximate closest points are bad corre-
sponding pairs and are hence acting as outliers. To cope with this, we can adopt the
same strategy as proposed in chapter 4 using the low-level shape features to assign
a weight for each corresponding pair based on the distance in feature space. By
using the Beaton Tukey robust M-estimator from eq. 4.13, outlier correspondences
are entirely rejected. The downside of this weighting is that the shape features have
to be computed, which is a time consuming operation and not worth to spend the
resources in some cases. Using our multi-resolution technique, it is in any case no
longer needed to continue to iterate until convergence for each resolution. In fact,
only one iteration seems to be sufficient for the intermediate resolutions. Only at
the highest resolution the iterations can continue until convergence, but even there
one iteration suffices most of the time.

To demonstrate this convergence behaviour, we conducted an experiment using
data that was captured with a Velodyne HDL-32e lidar scanner at a campus of
Ghent University. The experiment was executed on a laptop computer with an
Intel Core i7-4712HQ, 2.30Ghz CPU inside and 16GB RAM. The 4 cores of the
CPU were used simultaneously through OpenMP for several parts of the algorithm,
including the correspondence estimation. In total, 14 sequences were evaluated, all
of them containing 30 seconds to 3 minutes of lidar data. Table 5.1 summarizes
the processing times as well as the average residuals for the different resolution
levels. The term residual denotes the final ‘cost’ of the ICP procedure after conver-
gence, i.e. the Euclidean distance of all corresponding point pairs. The results are
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obtained using the standard point-to-plane cost function without any weighting of
correspondences.

As can be seen, the process converges quite quickly to the optimal residual.
Between the iterations at resolution level 12 and 13, the total gain is less than one
millimeter. For some applications, e.g. map building for navigation in autonomous
robots, the level of accuracy achieved at resolution level 13 is sufficient and can
be achieved in ±31 ms. Even if we pursue the highest possible accuracy we can
conclude that our multi-resolution approach is beneficial in terms of processing
speed. Processing at resolution levels higher than 16 no longer leads to a decrease
of the residual. In fact, when the processing stops at resolution level 14, more
or less the same residual as for a non-multi-resolution approach is achieved. The
difference in processing time is, however, tremendous, reducing from more than 7 s
to only 64 ms.

5.5 Escaping from local minima

One of the main drawbacks of the standard ICP method is that it is still prone to
get stuck in local minima. This problem gets even more severe when the difference
between the two point clouds is large. Recall that in case of scan matching we
consider point clouds acquired from consecutive sweeps or frames. However, in
case there is an abrupt movement of the sensor, or in case the (angular) velocity of
the moving sensor is too high, the probability that ICP got stuck in a local, wrong,
minimum is high. For that reason, we propose to incorporate the ICP algorithm
into a Branch-and-Bound (BnB) registration scheme that explores a part of the 3D
motion space, similar to the work of [Yang 13].

More specifically, based on the structure of the underlying geometry we define
upper and lower bounds for the ICP residual, which alleviates the choice for a
good initialization, hence leading to efficient transformation computations. The
algorithm can be summarized as follows. Starting from an initialization, which is
based on the transformation estimation of the previous point cloud, conduct ICP to
find the minimal residual. Use this residual as an upper bound and subsequently
search the motion space for a better solution, until a good solution is found. A
graphical representation of the algorithm is depicted in Figure 5.10. Now, two
important questions remain unanswered: 1) how do we parametrize and branch the
domain of 3D motions and 2) how to efficiently find an upper and lower bound.
The answers are given in the following sections.

The BnB algorithm is obviously very time-consuming as the ICP algorithm
is run several times. As such, it is not a part of our real-time SLAM system. We
used the technique as a correction method when we noticed that for a part of a lidar
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Figure 5.10: Graphical representation of the Branch-and-Bound registration scheme
integrating the ICP algorithm, as presented in [Yang 13].

sequence our ICP-based scan matching was making a severe error due to an abrupt
movement. In that case, the BnB helps to escape from the local minimum and to
prevent that a severe error is made.

5.5.1 Domain parametrization

Like in the previous section, we use the angle-axis representation to encode rotation
and we use Rr to denote the rotation matrix with angle-axis representation r. The
entire space defined by all 3D rotations can then be represented as a solid radius-π
ball in 3D. To ease the search, we use the minimum cube [−π, π]3 that encloses the
π-ball as the rotation domain. Regarding the translation, we use a bounded cube in
which we assume that the optimal translation is lying. During the BnB process, we
use the octree datastructure to subdivide the initial cubes into smaller sub-cubes Cr
and Ct.

5.5.2 Uncertainty radii

The bounding functions are based on the concept of uncertainty radius. This
uncertainty radius is defined as the region in which a 3D point p can be transformed
if it undergoes a 3D rigid motion with rotation r ∈ Cr and/or translation t ∈ Ct.
Using Figure 5.11 we derive an upper bound for the rotation uncertainty radius as
follows. Given the sine rule, we find the expression:

||Rrp−Rr0p|| =
sin(α)

sin( 1
2 (π − α))

||p||, (5.5)
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Figure 5.11: Uncertainty radii at a point, as presented in [Yang 13]. Left: rotation
uncertainty ball for Cr (in blue) with center Rr0x (red dot) and radius γr . Right:
translation uncertainty ball for Ct (in blue) with center x + t0 (red dot) and radius γt.
In both diagrams, the uncertainty balls enclose the range of Rrx or x + t (in green).

in which α = ∠(Rrp,Rr0p). Using the double angles formula in the numerator
and the difference formula in the denominator we obtain:

||Rrp−Rr0p|| =
2 sin(α2 ) cos(α2 )

sin(π2 ) cos(α2 )− cos(π2 ) sin(α2 )
||p||, (5.6)

which simplifies to:

||Rrp−Rr0p|| = 2 sin(
α

2
)||p||. (5.7)

Now, we use the lemma of paper [Hartley 09]:

∠(Rrp,Rr0p) 6 ∠(Rr,Rr0) 6 ||r− r0||, (5.8)

which states that the angular distance between two rotations in the underlying
manifold is less than their vector distance in the angle-axis representation.

Using this lemma, we can derive the following inequality:

||Rrp−Rr0p|| 6 2 sin(min(

√
3σr
2

,
π

2
))||p|| .= γr (5.9)

in which we call γr the uncertainty radius and σr the half side-length of the rotation
cube Cr. We can also derive a translation uncertainty radius γt for a translation
cube Ct with half side-length σt centered at t0:

||(x + t)− (x + t0)|| = ||t− t0|| 6
√

3σt
.
= γt. (5.10)

Figure 5.11 shows the geometrical representation of these uncertainty radii γr and
γt. They are both used to subsequently derive upper and lower bounds for the ICP
residual.
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Figure 5.12: Graphical explanation for the derived lower bound, as presented in [Yang
13]. It can be seen that a ≤ b ≤ c while a = ei and c = ei(Rr, t).

5.5.3 Bounding functions

An upper bound for the per-point L2 residual error ei(R, t) = ||Rpsi + t − pti||
within a given rotation cube Cr centered at r0 can be trivially found as:

ei
.
= ei(Rr0 , t0) > min

∀(r,t)∈(Cr×Ct)
ei(Rr, t). (5.11)

A suitable lower bound for this residual error appears to be a harder task.
However, using the concepts of the uncertainty radii, we can derive the following.
Like before, we consider the point pti ∈ Pt to be the closest to Rrp

s
i + t, psi ∈ Ps,

i.e. the points in Ps and Pt are again indexed according to their closest points.
Now, let pti0 be the closest point to Rr0p

s
i + t0. Then, ∀(r, t) ∈ (Cr × Ct):

ei(Rr, t) = ||Rpsi + t− pti|| (5.12)

= ||(Rr0p
s
i + t0 − pti) + (Rrp

s
i −Rr0p

s
i ) + (t− t0)|| (5.13)

> ||Rr0p
s
i + t0 − pti|| − (||Rrp

s
i −Rr0p

s
i ||+ ||t− t0||) (5.14)

> ||Rr0p
s
i + t0 − pti|| − (γri + γt) (5.15)

> ||Rr0p
s
i + t0 − pti0 || − (γri + γt) (5.16)

= ei(Rr0 , t0)− (γri + γt), (5.17)

where eq. 5.14 results from the reverse triangle inequality, eq. 5.15 from the
definition of the uncertainty radii and 5.17 from the closest-point mechanism.

Now we can derive the lower bound of the per-point residual for Cr × Ct as:

ei
.
= max(ei(Rr0 , t0)− (γri + γt), 0) 6 min

∀(r,t)∈(Cr×Ct)
ei(Rr, t). (5.18)

Summing up the squared upper and lower bounds of the per-point residuals of
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eqs. 5.11 and 5.18, we arrive at the following bounds for the L2 error:

E
.
=

N∑
i=1

ei
2 =

N∑
i=1

ei(Rr0 , t0)2, (5.19)

E
.
=

N∑
i=1

ei
2 =

N∑
i=1

max(ei(Rr0 , t0)− (γri + γt), 0)2, (5.20)

for a 3D motion domain Cr × Ct centered at r0, t0 with uncertainty radii γri and
γt.

5.5.4 Branch and bound algorithm

One single BnB loop would be quite complex and inefficient to search for the
motion space. Therefore, it is more appropriate to adopt a nested branch and
bound scheme in which the rotation and translation part are separated. The ro-
tation part is integrated in an outer BnB, whereas the translation part is incor-
porated in an inner BnB. In the outer rotation BnB, for a cube Cr the bounds
of the registration error can be set as Er = min∀t∈Ct

∑
i ei(Rr0 , t)2 and Er =

min∀t∈Ct
∑
i max(ei(Rr0 , t)− γri , 0)2 where Ct is the initial translation cube. To

solve Er with the inner translation BnB, the bounds for a translation cube Ct can be
chosen as Et =

∑
i max(ei(Rr0 , t0− γri), 0)2 and Et =

∑
i max(ei(Rr0 , t0)−

(γri + γt), 0)2 in which we set the uncertainty radii γri to zero.

5.6 Evaluation

We evaluated the accuracy of our ‘final’ scan matching algorithm on the same
datasets used in chapter 3. We again make the distinction between indoor, man-
made environments with strong ‘Manhattan world’ characteristics and outdoor
scenes. For the former environments, we use the same eight sequences that were
recorded inside buildings on different campuses of Ghent University. For the
outdoor sequences, we use the KITTI benchmark as well as our own recorded
dataset in the Belgian city Hasselt. The main difference between the two datasets is
the fact that the lidar scanner was tilted for the latter one, in view of capturing the
entire area in high detail, including the facades and rooftops of the houses.

5.6.1 Indoor environments

The specifications of the eight different sequences are listed in Table 3.2. We are
evaluating the same four scan matching techniques described in chapter 3, but this
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Sequence NDT ICP GICP S-GICP

Corridor 2.0 0.5 0.3 0.3
Corridor tilt 1.5 1.7 0.9 0.9
Lab 3.3 2.3 1.1 0.7
Lab tilt 4.4 2.5 0.6 0.4
Lab extended × 4.7 1.3 0.8
UFO foyer 8.1 8.8 0.7 1.8
UFO entrance 5.3 26.0 1.3 0.9
Schoonmeersen × × 102.3 52.5

Table 5.2: The error in centimeter on the indoor sequences acquired by a Velodyne VLP-
16 for four different scan matching techniques combined with scan-to-map alignment.
The error was computed by calculating the Euclidean distance between the start and end
position after creating a loop. The trajectories resulting from our own S-GICP method
are the least subject to drift. Note that these results, integrating scan-to-model matching,
tremendously improve the results presented in Table 3.3.

time in combination with scan-to-model matching: NDT, ICP, GICP and S-GICP.
Recall that all of the sequences were recorded in such a way that a loop was created
at the end. We consider the Euclidean distance between the first and final estimated
position as the error. This Euclidean distance is determined using the translational
components of the pose matrices. Regarding the scan-to-map alignment, we picked
a voxel size of 10 cm for the leaf nodes. The results are presented in Table 5.2.

Compared to the results presented in Table 3.3, the performance of our final
registration algorithm - combining scan-to-scan and scan-to-map alignment - is
tremendously improved. For almost all of the sequences (1-7), the error at the
end of the sequence is below 1 centimeter. Especially for the longer sequences
‘Lab extended’ or ‘UFO entrance’ the error reduction is significant, dropping from
respectively 51.7 and 31.3 cm to 0.8 and 0.9 cm. Given the total length of these
sequences, 52.98 m and 113.72 m, the translational error is respectively 0.015
% and 0.008 % which is negligible. The experiments show that our scan-to-map
alignment is able to prevent the system from heavily drifting.

Figure 5.13 depicts a zoomed in image of the result we obtain for the sequence
‘Lab tilt’ using our final scan matching algorithm. One can see that the trajectory
results in an almost perfect loop and that little to no artefacts are visible in the point
cloud. Table 5.2 also affirms the conclusions from chapter 3 that our own S-GICP
cost function is the best performing for indoor, man-made environments. The other
techniques NDT, ICP, and GICP also benefit from the integration with scan-to-map
alignment, but none of them reach the accuracy of our S-GICP method.

The sequence ‘Schoonmeersen’ remains challenging. Using the NDT or stan-
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Figure 5.13: Reconstructed point cloud and trajectory from the sequence ‘LAB TILT’,
zoomed in. The sequence was recorded with our Liborg robot equipped with a Velodyne
VLP-16 tilted in order to capture the overhanging structures.

dard point-to-plane ICP method, the drift - even with the scan-to-map alignment
- remains too large to obtain a meaningful reconstruction. Regarding our own
S-GICP method, the error is reduced from 212.7 centimeter to 52.5 centimeter,
hence leading to an improvement with a factor of approximately 4. The main reason
for this poor result is the abrupt motion of the lidar scanner when ascending or
descending a staircase. The errors made in those particular regions of the trajectory
contribute for the larger part to the total drift. It is thus a matter of robustness rather
than accuracy as for the rest of the sequence the scan matching estimates the poses
with sufficient accuracy.

5.6.2 Outdoor environments

In order to test our final registration method on outdoor sequences, we use both the
KITTI benchmark as well as our own dataset captured in Hasselt. The latter dataset
was recorded with a tilted lidar scanner and is therefore a lot more challenging. As
in chapter 4, we will use our W-GSS-ICP method instead of our S-GICP as it has
been proven more successful for outdoor datasets. To recap, W-GSS-ICP consists
of a geometrical stable point sampling part, to make sure that the majority of the
points are taken from stable, planar, areas. In addition, it prevents directional biases
due to the non-uniform point sampling by picking points in such a way that the
observability in all directions is proportioned. Finally, the point correspondences
are weighted based on the mutual ‘shape’ similarity of the two points.
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Sequence Environment type LOAM OUR

KITTI 00 Urban 0.78 1.03
KITTI 01 Highway 1.43 2.80
KITTI 02 Urban + Country 0.92 1.15
KITTI 03 Country 0.86 0.68
KITTI 04 Country 0.71 0.14
KITTI 05 Urban 0.57 0.56
KITTI 06 Urban 0.65 0.61
KITTI 07 Urban 0.63 0.41
KITTI 08 Urban + Country 1.12 1.16
KITTI 09 Urban + Country 0.77 1.06
KITTI 10 Urban + Country 0.79 1.05

AVG 0.84 0.97

Table 5.3: The translational (Et) in % on the KITTI sequences for our map-based
tracking algorithm compared to the best state-of-the-art method LOAM presented in
[Zhang 14].

5.6.2.1 KITTI dataset

Just like in the previous chapters we will use the RPE error defined in eqs. 2.13
and 2.14 to evaluate the performance. The translational errors Et in % for the test
sequences of the KITTI dataset are presented in 5.3. The translational errors are
again computed as the average for different distance intervals ranging from 100 m
to 800 m. The results are compared with the state-of-the-art method presented in
[Zhang 14], named ‘lidar odometry and mapping’ (LOAM), which is currently still
listed as the best performing lidar-based SLAM method on the KITTI benchmark.

The experiments show that we are able to further reduce the error from 1.09%

using our W-GSS-ICP scan matching to 0.97% when we combine it with scan-to-
model matching. We also notice that for some sequences we obtain better results
than the LOAM method. The sequences ‘05’, ‘06’ and ‘07’ are recorded in urban
environments, where our method greatly benefits from the large planar structures
that are present. Also for the sequences ‘03’ and ‘04’, which are classified as
‘Country’, our method is more accurate. For the sequences classified as ‘Urban +
Country’ our method performs only slightly worse.

The worst result is obtained for the sequence ‘01’, which was recorded on a
highway. As mentioned in chapter 4, the difficulties for this sequence are two-fold.
First, the areas next to the highway are dominated by vegetation for which it is
difficult to accurately estimate surface normals. Second, a lot of other cars are
driving at approximately the same speed causing the pose estimation to be biased
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Figure 5.14: Schematic drawing of the acquisition platform, consisting of a velodyne
HDL-32e lidar scanner that was mounted on a mobile mapping van of the company
Grontmij.

towards the identity transformation. Often times, the cars are also driving close
by which causes a lot of points to be sampled on them instead of on the static
environment. If we only consider sequences recorded in urban and countryside
areas, we obtain the same average error as LOAM being 0.78%.

5.6.2.2 Hasselt survey

The main ‘shortcoming’ of the KITTI dataset is that all sequences are recorded
with a horizontally mounted scanner as its main purpose is to test algorithms in
view of autonomous driving. For those applications, it makes sense to mount the
scanner horizontally as it maximizes the (horizontal) field of view, which facilitates
the detection of road users. We, on the other hand, want to test our algorithms
on data that is captured with a tilted scanner as well. The latter can be beneficial
in those cases where we want to map the entire area in high detail, including the
facades and rooftops of the houses. For that reason, we recorded our own data
by mounting a Velodyne HDL-32E lidar scanner on a mobile mapping van of the
Grontmij company (later acquired by Sweco). As depicted in Figure 5.14, the
sensor was tilted, making an angle of approximately 44◦ with respect to the ground
plane.

The Velodyne lidar scanner has 32 collinear lasers, which cover a vertical FOV
of 41.3◦ hence resulting in a vertical resolution of 1.29◦. This vertical FOV covers
30.67◦ below the middlepoint and 10.67◦ above it. Just like the other Velodyne
scanners, the head is continuously spinning at approximately 10 Hz covering a
horizontal FOV of 360◦. A picture of the starting point - taken from Google
Streetview - is depicted in Figure 5.15. The corresponding point cloud - acquired
during the first sweep of the scanner - is depicted in Figure 5.16.

The exact longitude and latitude of this starting point was respectively 5.30935◦

and 50.9416◦. The mobile mapping van was driving at an average speed of ap-
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Figure 5.15: The starting point of the sequence recorded in Hasselt, taken from Google
Street View.

Figure 5.16: The point cloud captured at the starting point, acquired with the set-up
depicted in Figure 5.14. Due to the tilted scanner, the ‘horizontal’ field of view is limited.
On the other hand, the facades and rooftops of the houses are richly sampled.
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proximately 25 km/h and stopped at the exact same position from where it has
started, hence creating a loop. Apart from data captured with the Velodyne scanner,
we also recorded accurate positioning information using the POS LV 420 sensor
developed by Applanix. This INS system incorporates both an inertial measurement
unit (IMU), a distance measurement indicator (DMI) and Trimble’s BD960 GNSS
receiver. The positioning system is, therefore, highly accurate and we will use it
in the experiments as the ground truth. Since each point of the Velodyne data is
timestamped we can derive its precise geolocation. We used the Belgian Lambert72
geographic information system (GIS) to express this geolocation.

To be able to evaluate our outcome against the ground truth we transformed both
the ground truth trajectory P = {P1, . . . ,Pk, . . . ,PN} and estimated trajectory
P̂ = {P̂1, . . . , P̂k, . . . , P̂N} into the same reference system. We set the origin of
the first laser frame as global origin. As such we define an initial transformation
T0 as follows:

T0 =

[
R0 t0

0T3 1

]
= T

(las2geo)
0 = T

(veh2geo)
0 T(las2veh). (5.21)

The matrix T(las2veh) represents the transformation from the laser frame to the
vehicle frame and is obtained by accurate calibration. The vector of transformation
matrices T(veh2geo) = {T(veh2geo)

0 , . . . ,T
(veh2geo)
k , . . . ,T

(veh2geo)
N } is derived

from the POS LV positioning system at the timestamp of the first acquired point
p0
k ∈ Pk acquired during sweep k. The first pose of the ground truth trajectory is

thus defined as follows:

P1 = T
(veh2geo)
1 T

−1

0 . (5.22)

The rest of the ground truth trajectory is subsequently given by:

Pk =

[
Rk tk

0T3 1

]
= P

(veh2geo)
k Pk−1. (5.23)

Similarly, for the estimated trajectory, we put each sensor frame in the same
reference system by transforming it using the same rotation R0. We thus define the
initial estimated pose matrix P̂0 as:

P̂0 =

[
R0 03

0T3 1

]
. (5.24)

The estimated trajectory is then given by:

P̂k =

[
R̂k t̂k

0>3 1

]
= P̂kP̂k−1. (5.25)
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Figure 5.17: The translational errors in function of the speed (left) and trajectory length
(right), for the Hasselt survey. The error for speeds ranging from 2 to 30 km/h is quite
stable and is situated near 1.3%. The error for varying trajectory lengths is also stable
and averages around 1.4%.

The matrix P̂k represents the outcome of our pose estimation. Yet, in order to
be able to evaluate our system quantitatively, we projected the ground truth and
estimated position of the vehicle onto the ground plane and derived the translational
error et and rotational error er from it. Since we have set the first sensor frame
as the origin, the ground truth and estimated position of the vehicle at the start of
sweep k is given by respectively tk and t̂k. Recall that our original sensor was
tilted by 44◦, but the rotation R0 aligned the ground plane with the xz-plane in the
final reference system.

Just like for the KITTI sequences, we used the point-to-plane cost function of
eq. 3.3 in combination with geometric stable sampling and feature-based weighting
as presented in chapter 4, referred to as the W-GSS-ICP method. In Figure 5.17,
two graphs are depicted showing the translational errors (in %) for varying speeds
and trajectory lengths. The errors for speeds ranging from 2 to 30 km/h remain very
stable and average out around 1.3%. Also for different trajectory lengths of 100 m
to 700 m the error is quite stable and averages out around 1.4%. Note that these
results are only slightly worse than the ones we obtained for the KITTI dataset. We
can thus conclude that even for challenging sequences with a limited ‘horizontal’
FOV, our method is able to generate accurate results.

In Figure 5.18, the trajectories are shown for standard point-to-point and point-
to-plane scan matching (left) as well as for our final scan matching algorithm
comprising both scan-to-scan and scan-to-map registration (right). The pose esti-
mation of the standard point-to-point ICP method is very poor and a meaningful
trajectory can hardly be obtained. The problems related to this failure are due to the
challenges and shortcomings described in chapter 3. The standard point-to-plane
method performs a lot better, but we see that it still suffers from the inhomogeneous
point sampling and the lack of strong shape characteristics in the scene. Our own
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Figure 5.18: The resulting trajectory of the Hasselt survey for the standard point-to-point
and point-to-plane cost function (left), and our final registration combining scan-to-scan
and scan-to-map registration (right).

method (right in Figure 5.18) on the other hand is performing very well, indicated
by the almost entire overlap of the estimated trajectory with the ground truth trajec-
tory. At the end, the difference between the start and estimated end position equals
1.38 meter, which can be considered as the error. Note that this estimated trajectory
is the outcome before loop closure. As we will see in chapter 6, we can further
improve this result by exploiting the fact that the van was riding in a closed loop
and by correcting the error at the end of this loop.

5.7 Conclusion

In this chapter we extended the scan-to-scan matching from chapters 3 and 4 with
scan-to-model matching. The latter is facilitated by a surface reconstruction and
resampling algorithm that guarantees that the point cloud remains bounded in size.
We evaluated our approach on both indoor and outdoor datasets.

Regarding the indoor datasets we used the same Velodyne VLP-16 sequences as
in chapter 3. They were recorded in such a way that a loop was created and the error
is evaluated by comparing the start- and end position of the sequence. The dataset
included both sequences recorded with a horizontally mounted scanner as well as
a tilted one. We evaluated the same four scan matching techniques as in chapter
3: NDT, ICP, GICP and S-GICP. We integrated them in a registration algorithm
comprising both scan-to-scan and scan-to-model alignment, the latter including our
surface reconstruction and resampling technique. The experiments demonstrated
that our S-GICP method lead to the best results for almost all of the sequences.
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Moreover, the errors for the longer sequences dropped from tens of centimeters
(in case of only applying scan-to-scan matching) to less than 1 centimeter (in case
of scan-to-scan and scan-to-model matching) for trajectories of more than 100 m,
hence resulting in a translational error of as low as 0.01%.

To evaluate the performance on outdoor scenes, we used the KITTI dataset
as well as our own ‘Hasselt’ dataset recorded with a tilted lidar scanner. On the
former, we are able to reduce the translational error from 1.09% (scan-to-scan
alignment) to 0.97% (scan-to-scan and scan-to-model alignment). Considering
only those sequences that are recorded in urban or country side areas we obtain
an average translational error of 0.78%, which equals the state-of-the-art method
LOAM for those sequences. The advantage of our method over LOAM is that ours
also performs well in case of a tilted scanner resulting in a limited (horizontal) field
of view. On the ‘Hasselt’ dataset we achieve an average translational error of 1.4%,
which is only slightly higher than the result on the KITTI dataset.

Finally, in this chapter we also proposed multi-resolution ICP to limit the
execution time. Experiments on the indoor sequences demonstrated that the multi-
resolution ICP converges in less than 100 ms whereas the standard ICP needs
several seconds to converge.



6
Globally consistent maps

In this chapter we will explain the concept of globally consistent maps and review
the techniques that can be applied in order to obtain them. As mentioned in chapter
2, the scan matching process - referred to as the front-end of the SLAM system -
does not produce perfect pose estimates. Imperfections are caused by a plethora
of reasons including the inhomogeneous and sparse point density leading to the
correspondence ambiguity, numerical rounding errors or approximations in case
of closed-form solutions. On top of that, the sensing modalities themselves are
inherently imperfect and produce inaccurate measurements.

When all these small errors accumulate over time, which is inherent to dead
reckoning, we can eventually end up with large absolute errors between points
acquired in the beginning and at the end of the acquisition. This phenomenon
is called drift and when the robot or vehicle is visiting places more than once,
inconsistencies such as the one depicted in Figure 2.2, can occur.

Fortunately, when the robot returns to an earlier visited place, we are able to
quantify the total error that has been made along the way and propagate it back
in the pose graph. This evidently requires algorithms that can recognize those
revisited areas as well as algorithms that can close the loop and correct the errors
properly. However, existing solutions for loop detection and correction in 3D data
are computationally demanding.

In this chapter we aimed at speeding up both loop detection and correction,
thereby focussing on data produced by scanning lidar devices. We propose two
different algorithms that are able to respectively detect and correct loops in 3D lidar
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data in a highly efficient way while at the same time increase their effectiveness
compared to the state-of-the-art.

6.1 Loop detection

Before we can actually ‘close’ loops and correct the accumulated error, we need to
recognize them first. There are a lot of loop detection methods - also referred to as
place recognition - in the SLAM literature, but none of them are really successful.
Many of them use a regular RGB-camera as it provides rich information about
the scene. Detecting loops using lidar sensors alone turns out to be a lot more
challenging. Below we will give a brief overview of place recognition methods that
are based on 3D scan data.

6.1.1 Literature overview

A quick review on the literature reveals that loop detection in 3D data can roughly
be categorized into three main classes: local keypoint detection and matching in
combination with a Bag-of-Words (BoW) approach, global descriptor matching
and loop detection based on geometric primitives or whole objects.

The algorithms in the first category generally detect salient keypoints in a
point cloud, compute signatures for these keypoint positions, build a BoW and
finally match them in different scans [Steder 11]. Many 3D keypoint detectors have
been proposed in literature, including SIFT 3D [Scovanner 07], the intrinsic shape
signatures (ISS) [Zhong 09], Harris 3D [Sipiran 10a], NARF [Steder 10], as well as
many descriptors such as spin images [Johnson 97], fast point feature histogram
(FPFH) [Rusu 09], SHOT [Salti 14], etc. However, despite this abundance of
choice, the detection of distinctive keypoints with high repeatability remains a
challenging problem in 3D point cloud analysis, especially when the point clouds
have a sparse and inhomogeneous point density as is the case for those acquired
with lidar scanners.

One way of dealing with this lack of high repeatability is by using global
descriptors which usually come in the form of histograms. Examples are the View-
point Feature Histograms (VFH) [Rusu 10] or multiview 2D projection (M2DP)
[He 16]. The latter is a global descriptor especially designed for loop detection
and is based on the projection of the point cloud on multiple non-parallel planes.
Another global descriptor is the normal distributions transform (NDT) [Magnus-
son 09a], which was discussed in chapter 3. As the normal distributions transform
offers a compact surface shape representation, it lends itself perfectly to describe
the general appearance of a location.
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However, global descriptors along with their local counterparts still suffer
from respectively the lack of descriptive power or the lack of invariance for scale
or rotation. As a result, when used for loop detection, many loops will not be
recognized or too many false positives will be present, which on its turn imposes a
restriction on fast and reliable loop closure. Another drawback of keypoint-based
methods is that it is often hard to find a priori a suitable threshold for matching
scores in such a way that the system is not overwhelmed by false positives nor
starved for true matches. A final drawback of both local or global feature matching
is its high computational cost, especially as most existing approaches employ a
pairwise comparison of place descriptors. Finding matches in that case requires
linear time per place.

One way to achieve sub-linear matching times is by using a keypoint voting
approach as was proposed by [Bosse 13]. In their algorithm, a set of keypoints
is chosen from a place πi’s local point cloud and a descriptor is computed for
each keypoint. Next, a database containing the descriptors from all other places is
queried for the k nearest neighbours to each descriptor in place πi. Each descriptor
match subsequently votes for its associated place πj and the places with a sufficient
number of votes, i.e. above a certain threshold, are considered as candidates for
place matches.

More recently, researchers tend towards the application of convolutional neural
networks (CNNs) to learn both the feature descriptors as well as the metric for
matching them in a unified way [Zeng 17a; Yin 17a; Yin 17b; Dewan 18]. A severe
limitation of these methods on the other hand is that they need a tremendous amount
of training data. Moreover, they do not generalize well when trained and applied on
data with a varying point density or acquired under different conditions. A model
that was trained on data originated from traffic environments, might perform poorly
on indoor scenes and vice versa.

A third group of methods focus on place recognition based on either complete
objects or planes. In [Moral 13], the authors presented a place recognition algorithm
based on plane-based maps. Unfortunately, their approach is only suitable for indoor
man-made environments and is hardly applicable for large outdoor scenes. [Dubé
16] on the other hand proposed a method based on segments for which they compute
several descriptors that are integrated in a learning framework. Before feeding the
segment descriptors to the recognition model, they first subject them to a geometric
verification test. Note that their method differs from local keypoint matching as it
is based on the recognition of whole objects. As it does not rely on the presence
of planes, but also exploits other objects, it is a lot more widely applicable than
the work of [Moral 13]. However, when used in man-made environments such as
buildings, some scans (e.g. parts of corridors) might still lack geometrical features.
The last resort to detect loops in that case is to combine the lidar data with visual
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information, as they did in [Zhu 18].

In this PhD, we improved the global descriptor multiview 2D-projection (M2DP)
proposed in [He 16]. Compared to other global descriptors, it is a lot more suitable
for 3D scan data with a non-uniform point density. In addition, it lends itself
perfectly to be executed in parallel, which inspired us to develop a GPU-based
implementation of it. Besides the improvements on the M2DP method, we propose
a global registration technique based on 4-points congruent sets to determine the
transformation between the two loop ends, which also provides an additional
verification test. We improved the efficiency of the original algorithm of [Mellado
14] significantly by omitting its randomized component, which leads to faster
execution times. Moreover, our improvements make the registration technique
more robust for non-uniform 3D scan data.

6.1.2 Proposed approach

Our loop detection pipeline consists of two main steps: 1) descriptor matching
through multi-view 2D projection and 2) registration of the point clouds representing
the two loop ends. Prior to these two steps, we additionally perform a quick selection
of loop candidates by testing for each newly computed position whether or not
it is close to a place we already visited. Assuming that the local registration is
quite accurate, we set a threshold on the distance between two positions (i.e. the
translational components of the poses) for them to be considered as a loop candidate.
For example, we set a distance threshold of 10% of the total trajectory length since
the last loop closure. When the robot then travelled for 100 meter, we consider a
location to be matchable if its computed position is within 10 meter. Once such a
potential loop is detected, the next step tries to the match the ‘start’ and ‘end’ point
cloud. In order to avoid several consecutive point clouds to be detected as loop, we
enforce a minimal number of intermediate scans between the loop start and end.

The actual matching is done using a global signature that we compute for each
of the two point clouds. The signature is based on the projection of the point cloud
on several non-parallel 2D planes, similar as the method of [He 16]. If the matching
residual of this method is sufficiently low, we consider it as a strong loop candidate.
To guarantee that we are not dealing with a false positive, the next step seeks for
the transformation that aligns the two point clouds. In case the loop candidate
is a true positive, we expect the overlap of the two point clouds P and Q after
registration to be very high. We define this overlap by the largest common point set
(LCP) criterion, which denotes the set of points S ∈ P that are within a predefined
distance ∆ from a point in Q after applying the transformation.

To determine this transformation between the two ends of the loop, we adopt
a global alignment technique, based on 4-points congruent sets. The alignment
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Figure 6.1: Our loop detection pipeline. The global descriptor MD2P detects loop
candidates, after which the 4-PCS and ICP algorithm try to align both ends of the loop.
Finally, the geometric verification step checks if the different segments in the scene are
relatively at the same position.

of the two ends is essential to eventually close the loop, as it can happen that the
same position is reached from different directions. The lidar scans can thus be
acquired from different viewpoints. The use of an ICP-based method is in this case
not effective as the point clouds might be too much rotated compared to each other,
which would keep ICP from converging to the correct transformation. We still use
the ICP algorithm after the rough alignment in order to refine the transformation
estimate.

Eventually, we perform a quick geometric verification test to check if the objects
in the two (transformed) point clouds are relatively still located at the same position.
To that end, we use the point clustering algorithm described in chapter 4. Figure 6.1
depicts a schematic overview that summarizes our approach.

6.1.2.1 Multiview 2D-projection

The method of multiview 2D-projection (M2DP) was initially presented by [He 16].
The main idea is to define a set of planes on which the 3D points are projected.
The planes are then further subdivided by circular sectors (or bins) and finally
the number of points in each sector is counted. One of the main benefits of this
approach is that it is not relying on the estimation of surface normals for the points,
which are often inaccurate for lidar data given their non-uniform point density.
When used in a global point cloud descriptor, a slight normal deviation can lead to
non-repeatability issues.

The algorithm is summarized as follows. In order to achieve rotation invariance,
we first compute the centroid of the point cloud P and shift it towards this centroid
to achieve zero mean for the points. Second, we define a reference frame by
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estimating two dominant directions of the point cloud using PCA. The two principal
components are then set as the x- and y-axis of the descriptor reference frame. The
third step consists of generating several 2D signatures by projecting 3D data onto
several predefined planes. Each plane can be represented using the azimuth angle θ
and elevation angle φ. Thus, each pair of parameters [θ, φ] leads to a unique plane
Xj with normal vector nj = [cos θ cosφ, cos θ sinφ, sin θ]>. The projection of a
point pi ∈ P on Xj is then given by:

pji = pi −
p>i nj
||nj ||22

nj . (6.1)

To describe the distribution of the points on Xj , the 2D plane is further divided
into bins as follows (cfr. Figure 6.2). Starting from the projected centroid on Xj ,
l concentric circles are generated, with radii [r, 22r, . . . , l2r] and the maximum
radius is set to the distance of the centroid and the furthest point. Each ring is
divided in t bins, hence defining l × t different bins. For every bin, the number of
projected points lying in it are counted, generating a signature vector vj of length
lt describing the points projected on plane Xj . This signature is computed for
p different azimuth angles and q different elevation angles where the stride on
azimuth is π

p and the one on elevation π
2q . Hence, there are p× q different planes,

leading to a signature matrix A of size pq× lt, in which each row corresponds with
a single signature vector vj . Finally, a SVD decomposition is run on the matrix
A and the first left and right singular vectors are concatenated to form the final
descriptor.

Many parts of this algorithm can be computed in parallel, allowing us to exploit
the multi-core nature of modern GPU’s. For that reason, we developed a novel
implementation that exploits the GPU to its maximum, making use of the Quasar
programming language presented in [Goossens 14]. Specifically, three major
parts were accelerated, the first one being the determination of the two dominant
directions of the point cloud computed using PCA. Our PCA implementation
uses a parallelized version of the SVD algorithm. The second part deals with the
projection of the points on the different planes Xj , j = 1 . . . pq, all of which can be
computed in parallel. This leads to a speed up for this part of pq ×N , N being the
number of points in P , compared to a serial version of the algorithm. Finally, once
the projections are computed for all planes and all points, the numbers of points
belonging to each bin can also be determined in parallel.

6.1.2.2 4-points congruent sets

Using the M2DP descriptor described in the previous section, we can pairwise
compare the descriptors for each scan. If the Euclidean distance between two
descriptors is lower than a threshold, we consider the two locations as potential
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Figure 6.2: The generation of a 2D signature by projecting the 3D data onto a plane. The
plane is divided into bins as follows: starting from the projected centroid, l concentric
circles are generated and the maximum radius is set to the distance between the centroid
and the furthest point. Each ring is subsequently subdivided into t bins, generating a
signature vector of length lt. Finally, the number of points lying in each bin are counted.

loop candidates. However, as the same location can be visited from two different
directions, we need to compute the transformation between the two point clouds in
order to discard this transformation from the error back propagation. We therefore
need a registration algorithm that can deal with large variations in orientation.

In chapter 3 we discussed point cloud registration in view of scan matching.
In that case, we assumed that the two point clouds are only slightly shifted from
each other. However, when the user is revisiting a place, this assumption no longer
holds true as both point clouds can be heavily rotated compared to each other. The
techniques described in chapter 3 such as ICP and NDT can, therefore, no longer be
used. What we need is a registration algorithm that can deal with large variations in
orientation, which we will denote as a global point cloud registration method. One
such registration method is based on the matching of 4-points congruent sets, first
presented by [Aiger 08] and later improved by [Mellado 14].

Figure 6.3 depicts a bird’s-eye view of the point clouds at both ends of the
loop and demonstrates why the registration is necessary. The black and gray point
clouds are respectively the start and end point of a loop. The green point cloud is
the transformed version of the gray one. If after registration the overlap between
the two point clouds (green and black) is sufficiently high, we accept it is a true
loop. Recall that we define the overlap between two point clouds using the largest
common point set (LCP) criterion.

Another key thing to keep in mind is that the scene can change between the two
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Figure 6.3: Bird’s-eye view of two point clouds from the KITTI 00 sequence. The
black and gray scans have been selected by the M2DP algorithm as the start and the
end point of a potential loop. One point cloud is however slightly rotated compared to
the other one. Our registration technique aligns both (the green one is the transformed
version of the gray point cloud) and determines their overlap. When the overlap - defined
by the ‘largest common point set’ (LCP) criterion - is sufficiently high, the loop candidate
is eventually selected as a true loop.

acquisitions processed in loop closing. For example, a parked car present in the first
acquisition may no longer be present in the second. Local feature descriptors used
in a BoW approach are vulnerable in these scenarios. For that reason, our global
registration technique takes into account the main geometry of the scene instead of
relying on keypoint positions.

The 4-points congruent sets (4-PCS) method is thus a global point cloud regis-
tration technique that does not rely on the extraction of feature points. Instead it is
matching congruent sets in both point clouds thereby adopting a generate-and-test
paradigm, known from random sample consensus (RANSAC) solutions. In its
most simple form, RANSAC randomly selects three points from both the source
point cloud P and the target point cloud Q and subsequently computes the rigid
transformation using these points. Next, it tries to verify this transformation by
determining how many points from P are within a ∆-distance from points in Q
after applying the transformation. If this count - usually referred to as the size of
the consensus set - is sufficiently high, the transformation is accepted as a good
solution. Otherwise, the process is repeated by randomly selecting another triplet
of points. The transformation with the largest consensus set is finally accepted as
the best fit.

The 4-PCS method builds on this randomized alignment approach, but instead
of exhaustively testing all the triplets from Q, it introduces the concept of planar
congruent sets to select only a small subset of bases from Q that can potentially
match a given base from P . The first step in the 4-PCS method, therefore, consists
of selecting a 4-point coplanar base B from the source point cloud P . Next, from
the target point cloudQ, all 4-point sets {U1, . . . , UN} = U that are approximately
congruent to B are determined. Third, for all sets Ui, the rigid transformation Ti
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that aligns B and Ui is computed and verified according to the largest common
point set (LCP) criterion. This criterion denotes the set of points Si ∈ P that are
within a predefined distance ∆ from a point in Q after applying the transformation.
Finally, the best transformation Topt, i.e. the one leading to the set Sk with the
highest cardinality, is kept.

In summary, the algorithm consists of three major steps: 1) selecting a coplanar
base in one point cloud, 2) find the (approximate) congruent sets in the second point
cloud and 3) compute and test the rigid transformations and select the best one. In
the next sections we will describe each step in more detail.

Selecting a coplanar base

One of the main limitations of the original method by Aiger et. al [Aiger 08] is
its random search for coplanar points, which is leading to a lot of unnecessary
computations. Instead, we propose to cluster the 3D points and subject them to a
plane fitting process, which we described earlier in section 4.2 of chapter 4. Once
we have found some clusters that are part of a plane, we can extract coplanar bases
very easily as any four points lying in the same cluster are coplanar. Following
this procedure, we can omit the randomized base selection process of the original
4-PCS method.

Obviously, it is still beneficial to pick wide bases (by selecting points that are
located far from each other) as they are in general leading to more stable alignments.
To this end, we prioritize points lying at the boundaries of the planar cluster to serve
as a base. Of course, the base should still lie in the overlap region between the
two point clouds in order not to miss the desired solution. As we are considering
point clouds that are captured at more or less the same position (but at different
moments in time) we assume that the overlap will be quite large. Only in the case
that a large object close to the scanner is causing a huge occlusion in one of the
point clouds, this assumption might be violated. Therefore, we propose to compute
for each planar region its convex hull and select a coplanar base by picking four
points that are close to this convex hull.

Finding congruent sets

Once a coplanar base is selected, the next step consists of finding 4-points sets
in the other point cloud that are congruent to this base. This matching step is
based on a specific property of affine invariants of 4-points congruent sets, which
we will explain with the help of Figure 6.4. In a nutshell, given 4 points, we
can compute two independent ratios between the line segments they are defining
that are preserved under affine transformations. Given a set of coplanar points



136 CHAPTER 6

a

b

c

d

e

r1 = a−e
a−b

a

b

c

d

e

r2 = c−e
c−d

q1

q2

q3

q4

q5

q1

q2

r1

r1

r2

r2

e1

e1

e2

e2

a'

b'
b'

a'
c'

d'
d'

c'

e1 ≈ e2

Figure 6.4: The principle of finding congruent sets in a point cloud Q =
{q1,q2, . . . ,qi, . . . ,qN} given a 4-points coplanar base B = {a,b, c,d} selected
from point cloud P . The two ratios r1 and r2 are invariant under affine transformation,
and uniquely define 4-points up to affine transformations. For each point q1,q2 ∈ Q,
we can compute two intermediate points e1, e2. Any two pairs whose intermediate
points e1 and e2 are coincident, potentially correspond to a 4-points set that is an affine
transformed copy of B.

B = {a,b, c,d} from point cloud P that are not all collinear. Let ab and cd be
the two lines that intersect at an intermediate point e. The two ratios

r1 =
||a− e||
||a− b||

, r2 =
||c− e||
||c− d||

(6.2)

are invariant under affine transformation, and uniquely define 4-points up to affine
transformations. Now, for each pair of point q1,q2 ∈ Q, we can compute two
intermediate points:

e1 = q1 + r1(q2 − q1), e2 = q1 + r2(q2 − q1). (6.3)

Any two pairs whose intermediate points e1 and e2 are coincident, potentially
correspond to a 4-points set that is an affine transformed copy of B. Of course, as
this set of 4-points sets are the affine invariants of the base B, it is a superset of the
4-points sets that are a rigid transformation of the base. For that reason, we also
check the angle between the two line segments to determine if the 4-points set is a
rigid transformation of the base B.

Naturally, the intermediate points e1 and e2 will in practice never exactly be
coincident due to noise and other inaccuracies. Instead, they will end up on being
nearby points. For that reason, we set up a k-d tree search data structure that allows
for fast spatial queries. We then accept the set as being congruent to the base B in
case the distance of the two intermediate points e1 and e2 are within ∆-distance
from each other.
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Another limitation of the original method of [Mellado 14] is that it computes
and tests for all possible combinations of points their intermediate points e1 and e2.
This is leading to a tremendous amount of unnecessary computations. Instead, we
propose to only process points that are lying in a physical plane that is present in
the scene. Only these points qualify to be matchable with a given coplanar base, as
the bases themselves were picked on the detected planar regions.

Test rigid transformation

The final step in the 4-PCS method is to test the rigid transformation computed
using the base and its congruent sets. One way of verifying the transformation is
by using the LCP criterion. Following this criterion one should count the number
of points from the source point cloud that are within a ∆-distance from any point
from the target point cloud after alignment. The transformation that yields the
largest LCP is considered as the true transformation. We emphasize that we only
compute the transformation and LCP for the congruent sets that we have selected in
the previous step. This group of congruent sets is thus a lot smaller than the original
method proposed by [Mellado 14].

6.1.2.3 Verification through ICP and geometrical consistency

The 4-PCS method yields a rough transformation from the source to the target point
cloud but it will not perfectly align them. We therefore refine the transformation
by using our improved ICP algorithm described in chapter 4. This ICP algorithm
moreover offers an additional verification to conclude that the two point clouds
yield a true loop. If the residual of ICP, i.e. the average distance between all
corresponding points, is too large we still discard the loop candidate.

Finally, the object clustering mentioned in the previous section also provides
a means of verification as we can check if all the object clusters are relatively
still at the same position. To that end, we compute for each cluster its centroid
and compute a bipartite matching using the Hungarian algorithm. In case these
two verification steps are positive we can eventually proceed to the actual loop
correction.

6.1.3 Evaluation of the loop detection

This evaluation section will cover two parts. First, we conduct an experiment
to determine the speed-up factor of our GPU-accelerated descriptor computation.
Second, we compare our loop detection accuracy to other commonly used methods
from the literature.
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Sensor avg. |P| Matlab ([He 16]) in ms GPU (ours) in ms
VLP-16 25446 250 110

HDL-32E 51687 273 121
HDL-64E 62594 476 127

Table 6.1: Computation times for our GPU implementation of the M2DP descriptor
compared to the CPU version implemented in Matlab by [He 16]. The speed-up factor for
data originated from the HDL-64E is almost x4 whereas for the VLP-16 and HDL-32E
the speed-up factor is rather x2.5.

6.1.3.1 Speed analysis global descriptor computation

In order to compare our GPU implementation of the M2DP descriptor against the
original CPU version implemented in Matlab by [He 16], we ran several experiments
using data originated from several Velodyne scanners. To evaluate the performance
on point clouds of different sizes, we use data from both the VLP-16, HDL-32E and
HDL-64E lidar scanners. We used the Velodyne HDL-64E data from the KITTI
dataset [Geiger 12] and extended it with our own recorded sequences in indoor and
outdoor scenes using the Velodyne HDL-32E and VLP-16. The experiments were
conducted on a computer with an Intel Core CPU i7-7820X @ 3.60Ghz, 128GB
RAM and an nVidia GeForce GTX 1080ti GPU. The results are summarized in
Table 6.1.

As can be seen, our GPU implementation scales well for larger point clouds.
The overhead of copying data to the GPU memory is lower for larger point clouds,
hence yielding a larger speed-up. For point clouds produced by the HDL-64E
scanner our implementation only takes 127 ms on average compared to 476 ms for
the original implementation of [He 16] which is a speed-up factor of nearly 4. For
smaller point clouds - captured with the VLP-16 or HDL-32 - we notice a speed-up
factor of almost 2.5.

6.1.3.2 Loop detection accuracy

In order to evaluate the accuracy of our final loop detector against the state-of-the-
art, we once again use the KITTI dataset. More specifically, we used the sequences
‘00’, ‘05’ as these contain the most ‘revisited’ locations. To generate ground truth
we used the known trajectories and considered a loop to be present when the
distance between two poses is less than 1 meter. Thereby, we used a threshold of
100 scans between two loops to avoid that two subsequent poses would wrongly be
classified as a loop.

In Figure 6.5 the ‘ground truth’ revisited locations in the two trajectories are
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Figure 6.5: The ground truth loops in the sequences ‘00’ and ‘05’ of the Kitti benchmark
[Geiger 12]. We consider a loop to be present when the distance between two positions
is less than 1 meter.

depicted as green dots. For some sequences the same road has been taken multiple
times, hence the whole part of the road is considered as a loop. However, sometimes
green dots are missing along a road that has been visited multiple times, meaning
that the difference in pose is larger than 1 meter. This could be due to the fact that
some roads consist of multiple lanes and that a different lane was taken.

We used four different descriptors to compare our results with. The first one
is the original M2DP method described in [He 16]. The other descriptors are the
ensemble of shape functions (ESF) [Wohlkinger 11], spin images [Johnson 97]
and SHOT [Salti 14]. The latter two are local descriptors so in order to use them
as a global descriptor we computed the centroid of the point cloud and estimated
the spin image and SHOT descriptor related to this centroid. Thereby we use the
maximum distance from the centroid to any other point in the cloud as the radius to
compute the descriptor.

Furthermore, both the spin images and the SHOT descriptors are based on
normal vectors. To compute these, we use a radius that equals five times the average
distance of a point to its closest neighbour. Regarding the spin images, the other
parameters that need to be set are 1) the number of bins along one dimension, 2)
the minimal allowed cosine of the angle between the normals of the input cloud
and search surface (for the point to be retained in the support) and 3) the minimal
number of points in the support to correctly estimate the spin image. We have set
these parameters to respectively 8, 0.5 and 16. The SHOT descriptor does not have
any other parameters to be set and for the ESF we again used the maximum distance
of the centroid to any other point in the cloud. Finally, the M2DP method needs the
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Figure 6.6: ROC curves for the several loop detection methods on the KITTI sequences
‘00’ and ‘05’. Our method performs better than the original M2DP method, the second
best performer in our experiments. The SHOT detector also produces acceptable results.
The results from the spin and ESF detectors are too unreliable to be used in practise.

number of bins for each plane (or expressed as the number of circles l and number
of bins in one ring t) and the number of planes to use (or expressed as the azimuth
p and elevation q). For our experiments we have set these values to l = 8, t = 16,
p = 4 and q = 16 for all tests.

The ROC curves for the different loop detectors are depicted in Figure 6.6. We
clearly see that our method along with the methods M2DP and SHOT result in the
best detections. The performance of the ESF descriptor and spin images turns out
to be insufficient to reliably recognize revisited areas. To obtain a recall of at least
90%, the precision drops to respectively 45% and 20% for the KITTI sequence
‘00’, which is unacceptable in an operational system. For the KITTI sequence ‘05’
the precisions corresponding to a recall of 90% are even worse, resp. 30% and 15%.
On the contrary, the M2DP and SHOT descriptor are leading to a precision of 70%

on the ‘00’-sequence and higher than 95% on the ‘05’-sequence for a 90% recall.

In Table 6.2, the exact precision is listed that corresponds to a recall of about
99.9%. We observe that our combined method further improves the performance of
the M2DP detector. For the KITTI sequence ‘05’, to obtain 99.9% recall, we reach
a precision of 90.4%, an improvement of more than 7.1%. For the KITTI sequence
‘00’, we obtain a smaller improvement of 0.8% reaching a precision of 60.5%. The
lower performance on the KITTI ‘00’ dataset could be due to the inaccuracies in
the ground truth. A higher threshold on the distance for a pose to be considered as
a ground truth loop affects the results tremendously. The value of this experiment
is therefore in the comparison between the different detectors rather than in the
absolute numbers on the actual accuracy.
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Sequence Spin Image SHOT ESF M2DP Ours

KITTI00 0.025 0.575 0.143 0.597 0.605
KITTI05 < 0.01 0.632 0.037 0.833 0.904

Table 6.2: Precision at 99.9% recall of the different loop detection methods for the
KITTI dataset. Clearly, only the detectors SHOT, M2DP and ours produce ‘acceptable’
results. Our combined algorithm improves the original M2DP method by 0.8% and 7%
for KITTI sequences ‘00’ and ‘05’, leading to a precision of, respectively, 60.5% and
90.4%.
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Figure 6.7: Left: the ground truth and estimated loops of the sequences recorded in
the city center of Ghent, Belgium. We consider a loop to be present when the distance
between two poses is less than 3 meter. Right: the ROC curve for the sequence recorded
in the city center of Ghent, Belgium. Our loop detector is clearly outperforming the
other methods. For a recall of 93% we still obtain a precision of 100%, which is a 5.2%
gain compared to the SHOT descriptor. The latter along with the M2DP descriptor are
the only two other point cloud matchers that are producing acceptable results. The loop
detection quality of the spin images descriptor and ESF are too limited.

Besides experiments on the KITTI benchmark, we acquired a lidar sequence
ourselves in the city of Ghent (Belgium) thereby mounting the Velodyne VLP-16
lidar scanner on top of a car. While acquiring the lidar data we used a Garmin GPS
to generate ground truth. The trajectory is shown in Figure 6.7. As can be seen, a
part of the trajectory was taken twice, making all the poses along this part act as
loops. This time we used 3 meters as a threshold for two poses to be considered as
a loop as this threshold was leading to more coherent loops along roads that were
taken twice.

As the sequence was recorded in the historical city center of Ghent, the GPS
signal was often times inaccurate leading to a noisy trajectory. To deal with these
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anomalies, we used the Google API to clean-up the trajectory by computing the
most likely roads that were taken. This eventually lead to resp. 843 loops on a
trajectory of approx. 15.7km travelled in 47 minutes thereby acquiring 31745 lidar
point clouds. For this experiment we used the exact same parameters as for the
KITTI sequences.

The ROC curve is depicted in Figure 6.7. In this experiment, our loop detector
is clearly outperforming the other point cloud matchers. For a recall of 93% we
still obtain a precision of 100%, which is an improvement of 5.2% compared to
the SHOT descriptor. Only the latter method along with the M2DP descriptor
are generating acceptable results. The spin images are performing better than for
the KITTI sequences, but the overall accuracy is still too low to be usable in an
operational system. Finally, for the ESF descriptor it is very difficult to achieve any
acceptable precision, even for low recall values. Due to inaccuracies of the GPS
data, and hence the ground truth, it was not possible to reach 100% recall for any
of the methods, as was the case for the KITTI.

6.2 Loop correction

Once a loop has been detected, we can determine the error that has been accumulated
through time and propagate it back in the pose graph. This loop correction process
corresponds to the problem formulation of SLAM that we described in chapter 2.
In chapter 2 we defined the SLAM problem as a maximum a posteriori (MAP)
estimation. We also mentioned that this MAP formulation can be expressed by
factor graphs and that for this reason it is also referred to as graph-SLAM. As it
would lead us too far to give an exhaustive list of all solutions presented in the
literature, we will limit ourselves mentioning the most important ones.

The history of MAP or graph SLAM started with the seminal work of [Lu 97],
which was still conducted in 2D. Later on, [Borrmann 08] extended the approach to
3D. Since then, numerous improvements on the efficiency and robustness of the
underlying optimization problem have been proposed in the literature. The most
important ones are the Tree-based netwORk Optimizer (TORO) [Grisetti 09] and
the g2o framework [Kümmerle 11].

6.2.1 The fundamentals

Consider an observer travelling along the trajectory x = (x1, . . . ,xi, . . . ,xM )

where at each pose xi the sensor, either a lidar scanner or ToF camera, is capturing
a point cloud Pi. During the scan matching process a set of neighbour relations was
determined between the poses. As mentioned in chapter 2, in a typical pose graph
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SLAM formulation, the poses represent the nodes in the graph whereas the edges
are represented by the constraints, in our case the neighbour relations. We now want
to optimally estimate all poses to build a consistent map of the environment. We
will use zi,j to denote the ‘difference’ in pose xi and xj . The true difference zi,j
is unknown and we model the ‘observation’ ẑi,j of the true underlying difference
as ẑi,j = zi,j + ei,j where ei,j is a Gaussian distributed error with zero mean and
a covariance matrix Σi,j , that is assumed to be known. The probability density
function is hence given by:

p(ẑi,j − zi,j) =
1

|2πΣi,j |
1
2

e−
1
2 (ẑi,j−zi,j)

TΣ
−1
i,j (ẑi,j−zi,j). (6.4)

Instead of maximizing the above probability density function, one rather attempts
to minimize its negative logarithm:

ln p(ẑi,j − zi,j) = −1

2
ln |2πΣi,j | −

1

2
(ẑi,j − zi,j)

TΣ
−1

i,j(ẑi,j − zi,j). (6.5)

This provides more numerical stability as the magnitudes of the likelihoods can
be very small and doing a log transform converts these small numbers to larger
negative values.

Omitting the constant terms in this expression and using Ωi,j = Σ−1

i,j , we obtain
a cost function which is equivalent to:

F(x) ,
∑
i,j

(ẑi,j − zi,j)
TΩi,j(ẑi,j − zi,j) (6.6)

=
∑
i,j

eTi,jΩi,jei,j . (6.7)

The goal of generating a globally consistent map is to find the configuration of
poses x∗ that minimizes this log-likelihood function F(x):

x∗ = argmin
x

F(x). (6.8)

Almost all pose graph optimization or bundle adjustment techniques in the literature
use this cost function. They only differ in the specific method they use to find the
global minimum of Eq. 6.7. Using the signed incidence matrix H, the concatenated
measurement vector z can be written as z = Hx and Eq. 6.7 can be re-formulated
as follows:

F , (ẑ−Hx)TΩ(ẑ−Hx). (6.9)

The concatenation of all observations ẑi,j forms the vector ẑ, and Ω is a block-
diagonal matrix comprised of Ωi,j as sub-matrices. The solution that minimizes
this equation is given by:

x = (HTΩH)
−1

HTΩẑ. (6.10)
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The matrix G , HTΩH and the vector b , HTΩẑ simplify the notation of the
solution. The matrix G consists of sub-matrices

Gi,j =

{∑M
j=0 Ωi,j if(i = j)

Ωi,j if(i 6= j)
(6.11)

and the entries of b = (b0, . . . ,bi, . . . ,bM ) are obtained by:

bi =

M∑
j=0,j 6=i

Ωi,j ẑi,j . (6.12)

Solving equation 6.10 is thus equivalent to solving the following linear equation
system:

Gx = b. (6.13)

6.2.2 Error minimization by matching 3D scan data

In order to be able to solve the above equation, the pose differences zi,j need
to be linearized. In other words, we need to derive relations for the 6DoF poses
by matching data obtained by the 3D sensor. We define a 6D pose relation at
the time that scan i is acquired as xi = (xi, yi, zi, θxi , θyi , θzi). At scan j, the
pose has been changed by ∆x = (x, y, z, θx, θy, θz) to end up at pose xj =

(xj , yj , zj , θxj , θyj , θzj ). The two poses xi and xj are related by the ‘compounding’
operation xj = xi ⊕∆x. Similarly, a 3D point pk = (xk, yk, zk) is compounded
with the pose xi by p′k = xi ⊕ pk given by:

p′k = RxRyRzpk +

xiyi
xi

 , (6.14)

in which Rx, Ry , Rz denotes the rotation matrix derived from the Euler angles θx,
θy and θz .

The scan matching described in chapter 3 determined a set of N corresponding
point pairs pik, pjk between two scans i and j, each representing a single physical
point. The positional error made by identifying these two points in different scans,
is described by:

fi,j(xi,xj) ,
N∑
k=1

||xi ⊕ pik − xj ⊕ pjk||
2
2 (6.15)

=

N∑
k=1

||fk(xi,xj)||22 (6.16)
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If the global coordinates of a pair of matching points pk = (xk, yk, zk), then
(pik,p

j
k) fulfils the following equation:

pk ≈ xi ⊕ pik ≈ xj ⊕ pjk. (6.17)

Consider x̂i = (x̂i, ŷi, ẑi, θ̂xi , θ̂yi , θ̂zi) and x̂j = (x̂j , ŷj , ẑj , θ̂xj , θ̂yj , θ̂zj ) to be
close estimates of xi and xj . For small errors ∆xi = x̂i−xi and ∆xj = x̂j −xj ,
we can approximate the error function fk(xi,xj) by its first order Taylor expansion,
leading to:

fk(xi,xj) , xi ⊕ pik − xj ⊕ pjk (6.18)

≈ fk(x̂i, x̂j)−
[
∇x̂i(fk(x̂i, x̂j))∆xi −∇x̂j (fk(x̂i, x̂j))∆xj

]
(6.19)

= x̂i ⊕ pik − x̂j ⊕ pjk −
[
∇x̂i(x̂i ⊕ pik)∆xi −∇x̂j (x̂j ⊕ pjk)∆xj

]
.

(6.20)

where ∇x̂i(x̂i ⊕ pik) denotes the gradient of the pose compounding operation.
Using the matrix decomposition

MkHi , ∇x̂i(x̂i ⊕ pik), (6.21)

MkHj , ∇x̂j (x̂j ⊕ pjk), (6.22)

Eq. 6.20 simplifies to:

fk(xi,xj) ≈ x̂i ⊕ pik − x̂j ⊕ pjk −Mk

[
Hi∆xi −Hj∆xj

]
(6.23)

= f̂k(x̂i, x̂j)−Mkzi,j (6.24)

with zi,j = Hi∆xi −Hj∆xj the new linearized measurement equation,

Mk =

1 0 0 0 −yk −zk
0 1 0 zk xk 0
0 0 1 −yk 0 xk

 , (6.25)

Hi =



1 0 0 0 ẑi cos(θ̂xi) + ŷi sin(θ̂xi) ŷi cos(θ̂xi) cos(θ̂yi)− ẑi cos(θ̂yi) sin(θ̂xi)

0 1 0 −ẑi −x̂i sin(θ̂xi) −x̂i cos(θ̂xi) cos(θ̂yi)− ẑi sin(θ̂yi)

0 0 1 ŷi −x̂i cos(θ̂xi) x̂i cos(θ̂yi) sin(θ̂xi) + ŷi sin(θ̂yi)

0 0 0 1 0 sin(θ̂yi)

0 0 0 0 sin(θ̂xi) cos(θ̂xi) cos(θ̂yi)

0 0 0 0 cos(θ̂xi) − cos(θ̂yi) sin(θ̂xi)


(6.26)

and Hj given analogously. For the details on the derivation of the matrix decompo-
sition and Hi and Hj we refer the reader to the work of [Borrmann 08]. We can
now rewrite Eq. 6.15 in matrix form as follows:

F(zi,j) ≈ (f −Mzi,j)
T(f −Mzi,j). (6.27)
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The concatenated matrix M consists of all Mk’s and the concatenated vector f

consists of all fk’s. The vector ẑ that minimizes F(z) is given by

ẑi,j = (MTM)−1MTf . (6.28)

Since minimizing F(zi,j) constitutes a least squares linear regression, we model
the Gaussian distribution of the solution with mean ẑi,j and standard covariance
estimation

Σi,j = s2(MTM) (6.29)

where s2 is the unbiased estimate of the covariance of the identically, independently
distributed errors of fk, given by:

s2 =
(f −Mzi,j)

T(f −Mzi,j)

2N − 3
=

F(zi,j)

2N − 3
. (6.30)

The algorithm for graph optimization can be summarized as follows. From the
scan matching process (front-end) collect the point correspondences pik, pjk. Next,
for any link (i, j) in the given graph compute the measurement vector ẑi,j given by
eq. 6.28 and its covariance Σi,j given by eq. 6.29. Using zi,j and Σi,j , construct
the linear system Gx = b with G and b given by eqn. 6.11 and 6.12. Finally,
solve for x and update the poses and their covariances.

The above procedure is usually repeated until convergence is reached. Thus,
after one iteration, the updated poses of the SLAM back-end are given to the
front-end, the scan matching process is rerun and the correspondences between
the point clouds are redetermined. After that, the outcome is fed back to the back-
end to check if this re-investigation has lead to a better result. Based on the new
correspondences, the graph optimization is eventually recomputed and the whole
process is repeated.

6.2.3 Heuristic loop closing

The procedure described in the previous section is computationally very expensive.
When the goal is to implement loop closure as an online process one has to seek
refuge in heuristic loop closing approaches. These are often times a lot faster, but
generally lead to a sub-optimal solution. In our solution, presented in [Vlaminck
18a], the idea is to bypass the iteration between the SLAM front- and back-end.
Recall that the front-end is referring to the scan matching process whereas the back-
end deals with the global consistency of the 3D map and hence the correction of the
loops. We propose to avoid the iterative behaviour by passing the local information
from the scan matching just once to the back-end, but not the other way round. The
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idea is to investigate how much each pose contributes to the final accumulated error,
thereby considering the residuals for every transformation estimated during the
scan matching process.

The actual correction is then done as follows. We assume that the loop detection
method provided us with two point clouds Ps and Pe, resp. the start and end of
the loop and let us denote their pose matrices as respectively Ps = (Rs, ts) and
Pe = (Re, te). Next, the difference in pose, i.e. the loop transform, is given by
∆ = (Ts,ePe)

−1Ps. Note that the transformation Ts,e is the result of aligning Ps
and Pe. It should be ‘discarded’ from the loop correction process as it does not
yield an error, but results from visiting the same place from different directions.
The transformation moreover ‘corrects’ small translations between the two ‘loop’
poses, as it is unlikely that a scan was taken from exactly the same spot.

The loop transform ∆ is considered the true error as both poses Ts,ePe and Ps

should be equal. We therefore suggest to project ∆ back in the pose graph. The key
idea is to use the residuals of the scan matching process, i.e. the final (ICP) costs
after transformation, to assign a weight ci,j to each edge in the pose graph. We
assign a higher weight to those transformations that yield a high residual in the scan
matching step. This is motivated by the fact that a high residual indicates that two
consecutive point clouds were potentially inaccurately aligned. Thereby we assume
that the scan matching process was already converging in the right direction.

Next, we define the distance between two poses Pk and Pl as d(Pk,Pl) =∑
i,j ci,j . Herein, {i, j} denotes the set of all edges in the path from xk to xl.

Finally, we define a weight

wi =
d(Ps,Pi)

d(Ps,Pe)
(6.31)

for each pose in the graph that specifies the fraction of the matrix ∆ by which the
pose has to be transformed. The poses Pk are then updated replacing tk by tkwk∆

and Rk by slerp(Rk, wk∆), slerp denoting the spherical linear interpolation
function as described in [Shoemake 85].

6.2.4 Evaluation of the loop correction

To assess the quality of our loop correction algorithm, we use the same ‘Hasselt’
dataset as in chapter 5. In order to obtain the initial trajectory we use the W-GSS-
ICP scan matching approach in combination with scan-to-model alignment. In
Figure 6.8, the result of this reconstruction process, before loop closure, is shown
in the left image whereas the right picture depicts the point cloud after loop closure.
As can be seen in the left point cloud, the end of the loop is not connected with the
start of the loop. After correction the two ends are connected and the accumulated
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Figure 6.8: The two resulting reconstructions for the ‘Hasselt’ dataset, before loop
closure (left) and after loop closure (right). After loop correction, the two ends of the
loops are attached and the error is propagated back in the pose graph.
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Figure 6.9: The two resulting trajectories for the ‘Hasselt’ dataset corresponding to the
reconstructions in Figure 6.8, before loop closure (left) and after loop closure (right).

error is propagated back in the pose graph. In order to evaluate this quantitatively,
we again used the POS-LV positioning system from Applanix as ground truth.
Figure 6.9 and Figure 6.10 depict both the ground truth and the final estimated
trajectory before and after performing loop closure. After loop closure, there is
almost no difference noticeable between the estimated and ground truth trajectory.

To evaluate the performance quantitatively, we computed the average Euclidean
distance between the positions (i.e. the translational components of the poses) in
the estimated trajectory and the positions in the ground truth trajectory. Before loop
closure the average Euclidean distance is 5.65 meter whereas after loop closure it is
reduced to 3.13 meter. Furthermore, the median errors before and after loop closure
are respectively 3.98 meter and 2.13. The loop closure process thus reduces the
total error by a factor of almost 2.

As small errors are quickly leading to large errors between the estimated and
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Figure 6.10: Zoomed in version of the resulting trajectory of the Hasselt survey at the
start and endpoint of the sequence before loop closure (left) and after loop closure (right)

true positions, we also consider the absolute pose error (APE), which was defined
in eq. 2.16 of chapter 2. To evaluate the APE of eq. 2.16 the estimated trajectory is
first transformed in such a way that it is mapped onto the ground truth trajectory
in a least-squares manner (referred to as the ‘Umeyama’ method). Doing so, the
influence of a severe outlier poses is limited. The result of this mapped trajectory
before and after loop closure is depicted in respectively the left and right image of
Figure 6.11. Note that the colouring has a different scale for each of the two graphs.
The RMSE of the APE before and after loop closure is respectively 2.35 meter and
0.90 meter, which is an improvement with a factor 2.6.

The colouring of the right graph of Figure 6.11 also demonstrates in which
areas our method has the most difficulties. The right upper turn of the trajectory is
coloured in red, meaning that the largest part of the total error is made there. This is
not surprising as it corresponds to a turn which is part of an intersection. At the time
of acquisition, some cars were passing by, disturbing the scan matching process.
On top of that, one side of the road is fully covered with large trees. The cyan to
yellow parts of the trajectory also denote areas that are surrounded by vegetation
and lack the presence of buildings.

The total time to correct the loop on an Intel Core i7-4712HQ CPU @ 2.30 GHz,
was only 11 milliseconds. This extremely fast operation is thanks to the bypass of
the iteration between the SLAM front- and back-end. During the SLAM front-end
a residual score was computed that is later on used in the loop correction phase.
The loop correction itself only involves one single manipulation of the poses.

In a second experiment, we close the loop in sequence ‘09’ of the Kitti dataset.
The result is shown in Figure 6.12. The trajectory after loop closure (in green) and
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Figure 6.11: The two resulting trajectories for the ‘Hasselt’ dataset corresponding to
the reconstructions in Figure 6.8, before loop closure (left) and after loop closure (right),
together with the absolute pose error (APE). The RMSE error of the APE before and
after loop correction is respectively 2.35 and 0.90 meter, hence proving the effectiveness
of the loop correction.
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Figure 6.12: The resulting trajectory (left) of sequence ‘09’ of the Kitti benchmark,
before loop closure (blue) and after loop closure (green). The estimated and the ground
truth trajectory are almost entirely overlapping after loop correction. Right: the corre-
sponding reconstruction at the start and end-point of the loop after correction. Little
to no artefacts can be seen in the reconstruction. The pose error before and after loop
correction is respectively 9.89 and 4.80 meter, hence proving its effectiveness.

the ‘ground truth’ trajectory (in red) are almost entirely overlapping. On the right
image, the point clouds at the start and end-point of the loop are shown. Little to no
artefacts are noticeable in the point cloud. The average pose error before and after
loop correction is respectively 9.89 meter and 4.80 meter. The median value before
and after loop correction is 7.85 meter and 3.53 meter respectively. In summary, we
can conclude that we are able to reduce the error with a factor 2 after loop closure.
The results of both experiments are summarized in Table 6.3.
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Sequence Length (m) Avg. Error (m) Med. Error (m)

no LC LC gain no LC LC gain
HASSELT 715 5.65 3.13 × 1.81 3.98 2.13 × 1.87
KITTI09 1705 9.89 4.80 × 2.06 7.85 3.53 × 2.22

Table 6.3: The average and median pose error before and after loop closure for the
Hasselt and KITTI “09” sequence. Our correction algorithm reduces the error by a factor
of approximately 2 after closing the loop.

6.3 Conclusion

In this chapter, we presented several contributions on both loop detection and
correction. Regarding loop detection, we accelerated the process by developing a
GPU-accelerated global feature descriptor for point clouds that is very effective to
provide loop candidates. We showed that our implementation is a factor 2.5 to 4
times faster than the original version.

In addition, we proposed a registration technique based on 4-points congruent
sets (4-PCS) that is able to align two point clouds with a large deviation in orien-
tation. We improve over existing techniques regarding both accuracy and speed.
The former is achieved by taking wide bases to compute the transformation upon.
The latter is achieved by avoiding the randomized planar base selection from the
original 4-PCS method. More specifically, we exploit the knowledge of the planar
areas in the scene - which we estimated using our clustering algorithm presented in
chapter 4 - to select 4-point bases that are coplanar.

Furthermore, we showed the effectiveness of combining this registration tech-
nique with the global feature descriptor to evaluate potential loop candidates. The
experiments have demonstrated that we can gain up to 7% in precision for a recall
of 99.9%. The experiments also showed that our method works for data acquired
with different Velodyne scanners consisting of 16, 32 or 64 lasers.

Finally, we proposed a novel loop correction method with superior execution
time. We achieved this by avoiding the iteration between the SLAM front-end and
back-end. Instead we exploit the residuals from the ICP scan matching front-end
to assign a weight to each pose in the graph and we only optimize the graph once.
Experiments demonstrated that our loop correction method is able to reduce the
absolute pose error before and after loop closure by a factor of approximately 2.





7
Use cases of lidar-based

mapping

This chapter will describe several use cases that demonstrate the effectiveness
and applicability of our mobile mapping system. The use cases cover a broad
variety of environments from typical ‘Manhattan world’ scenes to more advanced
sculptural buildings or complex industrial sites. The experiments also include
outdoor environments, which are inherently challenging due to the presence of
unstructured natural phenomena. In all this, we tested multiple lidar devices
with different specifications regarding the number of lasers, the field of view or
angular resolution. We also experimented with both a horizontally mounted scanner
and a tilted one, the latter yielding the additional difficulty that the ‘horizontal’
field of view of the scanner becomes limited, making consecutive scan matching
challenging.

To ease the 3D reconstruction from a practical point of view, we furthermore
developed an autonomous robot, which we named Liborg as its main sensor is
based on lidar technology. All of the 3D point cloud models that we created served
their own specific purpose. In one of the use cases we dealt with the mapping of a
chemical plant that was disused and planned to be partly demolished. The chemical
site was mapped in view of a ‘built-as-planned’ AR-application and had to be
mapped with high precision, i.e. sub-centimeter accurate. The other 3D models
either served as a digital twin or were meant to be used in VR applications or to be
3D-printed in view of exposing them at an architectural exhibition.
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Figure 7.1: Our Vellady mobile acquisition platform in close-up (left) and mounted on a
four wheel trolley (right).

7.1 The Vellady platform

Prior to the development of the Liborg robot, we designed the Vellady mobile
mapping platform, which consists of a Velodyne HDL-32e scanner and a Ladybug
panoramic camera system (hence its name). As can be seen in Figure 7.1, the
Ladybug camera system is mounted perpendicular to the ground plane, whereas
the Velodyne is tilted on its head making an angle of approximately 66◦ with the
ground plane. The Ladybug is a fixed system that comes in the form of a pentagonal
prism consisting of five vertical-oriented sides, each one incorporating a camera.
A sixth camera is mounted on top, pointing upwards. During the experiments, we
mounted this Vellady platform on a moving vehicle, either a kitchen cart or a four
wheel trolley, cfr. Figure 7.1.

A rotation of the Velodyne scanner around its roll or pitch axis will only occur
in case the ground plane has a slope but these situations were not encountered
during the experiments. Our system still operates as a full 6 degrees of freedom
(6DoF) SLAM algorithm, incorporating three unknown position coordinates x, y,
z and three rotation angles θx, θy, θz . The main benefit of adopting 6 DoF is that
we are able to cope with small vibrations of the lidar scanner. For clarity, the main
specifications of the Vellady sensors are summarized in table 7.1.
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Sensor Feature
Ladybug system - 6 camera’s in pentagonal prism

- resolution of 1600×1200 per image
- 1 frame (6 images) per second
- perpendicular w.r.t. ground plane

Velodyne HDL-32E - 360◦ horizontal FOV, 41.3◦ vertical FOV
- 32 lasers spinning at 10 sweeps per second
- ± 700.000 points per sweep
- angle of 66◦ w.r.t. ground plane

Table 7.1: A summary of the main specifications of the Vellady platform.

7.1.1 Synchronisation

In order to synchronise the Velodyne scanner and the Ladybug, a synchronisation
module was developed on a an Arduino development board. The latter emits a pulse
to the Ladybug every second, triggering each of the six cameras to take a picture.
The frequency of this pulse can be increased or decreased depending on the needs
of the application. At the same time as the pulse, a signal is sent to the Velodyne
scanner in order to receive a ‘GPRMC NMEA’-record. The timestamp of this record
corresponds with the amount of seconds past since the synchronisation device was
powered on. In case an external GPS system is added to the Velodyne, the exact
location can be added in this record as well.

The synchronisation device is useful for many reasons. First, it is necessary to
match the pixels of the image to the right 3D points acquired by the lidar scanner.
Second, the 3D reconstruction can be computed using a combination of both the
camera and the lidar scanner. Finally, loop detection can be conducted using both
sensors, making it more reliable.

7.1.2 Calibration

As the Velodyne and the Ladybug each have their own coordinate system, we need
to define a reference coordinate system to harmonize both. To ease this task, the
Ladybug was mounted straight on top of the Velodyne scanner in such a way that
the vector connecting both origins is perpendicular to the ground plane. Doing so,
it is sufficient to determine the orientation of the Velodyne sensor with respect to
the ground plane and to measure the offset of the origins of both sensors.

To determine the orientation of the Velodyne scanner, we use the output of
its accelerometer. Accelerometers measure the difference between any linear
acceleration in the accelerometer’s reference frame and the earth’s gravitational
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Figure 7.2: Schematic drawing of the rotation performed after nullifying the offset of
the sensor origins, i.e. after subtracting the two vectors that project both origins to the
ground plane. The angle about the x-axis, i.e. the pitch angle, was computed using the
output of the 2-axis accelerometer a = (ay, az) from the Velodyne HDL. The subscript
L denotes the coordinate system of the Ladybug whereas V denotes the coordinate
system of the Velodyne.

field vector. In the absence of linear acceleration, the output is a measurement
of the rotated gravitational field vector and hence it can be used to determine the
accelerometer pitch and roll orientation angles. Specifically, given the accelerometer
output a = (ay, az), cfr. Figure 7.2, the angle about the x-axis, i.e. the pitch angle,
can be computed as α = atan(az/ay). The final transformation T(vel2lady) ∈
R4×4 from the Velodyne coordinate system to the Ladybug coordinate system is
then given by:

T(vel2lady) =

[
R t

0>3 1

]
=


1 0 0 tx

0 cosα sinα ty

0 − sinα cosα tz

0 0 0 1

 . (7.1)

Herein, the values of t = (tx, ty, tz) were determined by nullifying the offset of
the sensor origins, i.e. subtracting the two vectors that project both origins to the
ground plane. In case of the Velodyne coordinate system, the projection of the
origin is performed after applying the rotation R.
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Figure 7.3: The laser points projected on the stitched panoramic image.

7.1.3 UFO building

The first series of sequences were recorded inside the UFO building of Ghent Uni-
versity, in order to obtain an accurate 3D point cloud of the building. Additionally,
we conducted a registration of the color images onto the point cloud in order to
colorize the points. To map the colors onto the point cloud, we first applied the
extrinsic calibration using eq. 7.1. Based on the pinhole camera model, each
point in the cloud is subsequently projected on the image plane of each lens, cfr.
Figure 7.3. In order to obtain the stitched panoramic image, the stitching algorithm
(provided by Ladybug) assumes that all points in the scene are at the same radius
from the camera. This assumption forces the real world onto a sphere surrounding
the camera, which causes parallax stitching errors. We have set the sphere radius at
20 meters, as most objects in the scene are within this distance, which limited the
parallax stitching errors.

As shown in Figure 7.3, the number of pixels in the stitched image does not
equal the number of points acquired in one sweep. Moreover, a 3D point is often
‘seen’ from multiple cameras. In that case, a weighted average is used depending
on the distance of the pixel location to the center of the image: the further from the
center, the lower the weight. Doing so, we cope with the vignetting of the lenses,
which causes a reduction in brightness or saturation towards the edges of the image.
In Figure 7.4, a part of the reconstructed, colored, 3D point cloud is shown.

In Figure 7.5, some example images and reconstructed 3D models are depicted.
The blue line represents the path that was followed. Visually, the reconstructions
look accurate, apart from the window reflections causing a part of the interior
to be mirrored ‘outside’. Unfortunately, we do not have any ground truth for
the trajectories available, nor do we have a reference 3D model of the campus.
Therefore, we cannot evaluate the results quantitatively.
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Figure 7.4: A colored 3D point cloud of the UFO building of Ghent University obtained
by our 3D reconstruction algorithm using data acquired by the Vellady platform.

Figure 7.5: Some example images of the 3D reconstructions obtained by applying our
algorithm on the recordings of a campus of Ghent University.
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Figure 7.6: Several experiments were conducted at a chemical site of the company DOW

in Terneuzen, in the Netherlands.

Figure 7.7: An image acquired by stitching the six images of the Ladybug together. It
depicts the starting point of a video sequence captured at a chemical site of the company
DOW in Terneuzen in the Netherlands.

7.1.4 DOW chemicals

During the GIPA project, a set of sequences was captured at a chemical site of
the Dow Company in Terneuzen in the Netherlands. The environment is part of
a disused area that is planned to be demolished. It consists of a lot of pipelines
that were formerly used to carry liquids or gases, as can be seen in figure 7.6.
Although the environment is outdoors, the GPS signal is far too unreliable due to
the abundance of pipelines.

The acquired data consists of video sequences recorded with our Vellady plat-
form, which was moving at walking speed, i.e. approximately 4 km/h. A stitched
image obtained by the Ladybug camera system is shown in Figure 7.7. The corre-
sponding point cloud is depicted in Figure 7.8. To reconstruct the DoW scene, we
used our W-GSS-ICP scan matching algorithm. The geometric stable point sam-
pling, proportioning the observability in all directions, is highly beneficial as the tilt
of the scanner causes a lot of points to be sampled on the ground plane, which would
bias the transformation estimation towards the identity matrix. Furthermore, we
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Figure 7.8: A 360◦ point cloud associated with the stitched Ladybug image of Figure
7.7, captured at the DOW chemical company.

Figure 7.9: Part of the ‘ground truth’ 3D point cloud of the DOW chemical site acquired
using a Leica static terrestrial lidar scanning system.

adopt our feature-based weighting integrated in the IRLS-ICP framework. Finally,
we combine the scan-to-scan matching with the scan-to-model matching described
in chapter 5.

In order to evaluate this approach on the DoW dataset, an accurate 3D point
cloud was acquired by means of static terrestrial laser scanning using a Leica
system.1 We will use this ‘Leica point cloud’ - depicted in Figure 7.9 - as the
ground truth, as we do not have any ground truth for the actual trajectories. For the
comparison it is necessary that both point clouds are aligned. Therefore, we first
conducted a rough alignment based on key points that we manually selected from
both point clouds. Subsequently, we performed ICP to align them in a finer way.

1www.leica-geosystems.be
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plane d(φg, φr) in degrees dµ(Hg, Hr) in cm
1 0.76 0.8
2 0.28 0.7
3 1.13 0.8
4 0.29 1.2
5 0.29 1.6
6 0.49 1.1
7 1.81 1.2
8 1.68 0.1

avg. 0.84 0.9

Table 7.2: The difference in angle between two corresponding planes φ(Hs, Ht) ,
acos(ns · nt) (in degrees) and the average distance of two corresponding planes
d(Hs, Ht) , 1

|Ht|
∑

pt∈Ht〈pt,ns〉 − ds (in centimeter) for the eight most dominant
planes in the scene.

The final residual of the ICP process, i.e. the Euclidean distance between
all closest point pairs, could be considered as a measure for the accuracy of the
reconstruction. The experiments demonstrated that the final residual of this ICP
process is approximately 2.1 cm for our reconstruction. However, as the closest
point pairs do not necessarily represent the same physical points in space, the ICP
residual is not the best measure for the evaluation of the accuracy. For that reason
we conducted a second evaluation in which we use the dominant planes in the scene
to make the comparison.

To that end, we estimated the parameters of the most dominant planes in both
the Leica and reconstructed point cloud and determined the corresponding planes
between the two. Subsequently, we computed for all inliers of the planes from the
reconstructed (source) point cloud the distance to its corresponding plane in the
Leica (target) point cloud. We define the average distance of two corresponding
planesHs , [ns, ds] andHt , [nt, dt] as d(Hs, Ht) , 1

|Ht|
∑

pt∈Ht〈pt,ns〉−ds.
In addition, we define the difference in angle of the two corresponding planes as
φ(Hs, Ht) , acos(ns · nt).

The results for the eight most dominant planes in the scene are summarized in
Table 7.2. The table shows that on average, the angle deviation of two corresponding
planes is approximately 0.84◦ whereas the average distance between two planes
is approximately 9 mm. In Figure 7.10, an image is depicted in which both the
ground truth and estimated point cloud are shown after alignment seen from a bird’s
eye view. Visually, we can see that the walls and edges of both point clouds are
overlapping, which demonstrates the accuracy of our 3D reconstruction system.
This is best visible in areas for which the ground truth point cloud has a lidar
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Figure 7.10: Bird’s-eye view of the ground truth (black) and reconstructed (blue) point
cloud aligned with each other. Visually, one can see that the walls and edges of both
point clouds are overlapping, which demonstrates the accuracy of our 3D reconstruction
system. This is best visible in areas for which the ground truth point cloud has a lidar
shadow due to occlusion.

shadow due to occlusion, such as the wall at the bottom of the image.

In Figure 7.11 the same two point clouds are depicted, overlaid on each other,
but after they have been projected onto the ground plane to make it easier to evaluate
the accuracy. To obtain the image, the ground plane was removed from both point
clouds and a quantization in 2D cells was conducted. Brighter areas denote a higher
point density in the cell and hence emphasize the overlap of both point clouds.
Visually, there are little to no discrepancies noticeable.

The 3D reconstruction from Figure 7.10 was obtained by pose estimation solely
based on lidar data, i.e. lidar odometry. In fact, we also have the cameras available
and therefore we also estimated the pose of the Vellady system based on visual
odometry or structure from motion. The estimated trajectories are plotted in figure
7.12. Herein, six plots are depicted representing the trajectories obtained by the
visual structure from motion approach using SIFT features, presented in [Wu 13]
(in red) and the trajectory obtained by our proposed lidar mapping system (in blue).
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Figure 7.11: 2D projection on the ground plane of both the reconstructed and the
‘ground truth’ 3D model in order to evaluate the accuracy qualitatively. To obtain the
image, the ground plane was removed from both point clouds and a quantization in
2D cells was conducted. Brighter areas denote a higher point density in the cell and
hence emphasize the overlap of both point clouds. Visually, one can notice little to no
discrepancies as the walls and edges of both models are almost perfectly overlapping.

Each red graph is the result of the visual SfM method run on the output of one
camera of the Ladybug system.

As can be clearly seen, for some images (or set of images) the pose could not
be estimated, cfr. the gaps in the trajectory. This is due to the fact that sometimes
too few good matches could be found between one image and the others. As a
consequence, the point cloud resulting from visual SfM is far more sparse than the
one obtained by the lidar system. In addition, a lot of outlier poses are present. The
SfM framework of [Wu 13] is also far from real time. We can, therefore, conclude
that the performance of visual SfM is far less compared to what we obtain from
our odometry and mapping algorithm using lidar data. The former is less suited to
generate accurate 3D models of large-scale environments compared to our mobile
mapping solution.

7.2 The Liborg platform

During the previous experiments, the Vellady platform was mounted on a kitchen
cart or a four-wheel trolley that was moved manually. The goal is, however, to
design a fully automated system, by means of a robot, that can explore and map the
environment on its own. For that reason we started the development of Liborg, a
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Figure 7.12: Five plots of the trajectories estimated by the visual structure from motion
(SfM) framework presented in [Wu 13] using the images of each Ladybug camera
separately (red color). The result of the camera pointing upwards is omitted. The blue
plot represents the trajectory estimated using our method. For the visual SfM approach,
some poses could not be estimated due to the lack of good feature matches. Also, a lot
of outlier poses are present. The visual SfM needs several hours to compute, whereas
our system can generate the full 3D model in less than one hour.
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Figure 7.13: Our prototype mapping platform Liborg 1.0 (left) and Liborg 2.0 (right).
The first version is controlled by a raspberry pi and is only able to acquire, save and
transmit the data. The second version is able to perform the actual 3D mapping online
allowing a whole range of additional applications, e.g. live monitoring for inspection
purposes. Liborg 2.0 also integrates a RGB-camera.

lidar-equipped robot that can drive autonomously. In order to ease the experiments
we also made it possible to control it remotely by ourselves.

The first version of Liborg was running on a simple raspberry-pi computer,
which is just powerful enough to control the engines, acquire and save the data and
transmit it to a remote server. The actual mapping had to be done on a desktop
computer or server. However, in order to make Liborg truly autonomous, we later
on replaced the raspberry-pi with an NVidia Jetson TX2. This development board
integrates both a CPU and NVidia GPU and is powerful enough to do the 3D
mapping real time. The latter allows a whole range of additional applications for
which the robot can be used such as live monitoring of the acquired 3D model, for
instance to perform inspection or assess damages in areas that are difficult to reach.
The two versions of Liborg are depicted in Figure 7.13.

As can be seen, Liborg 2.0 is also equipped with a Allied Vision Prosilica
RGB-camera, in view of being able to extend the 3D model with visual information.
To fuse the information of the camera and lidar scanner, we developed a synchroni-
sation and calibration method, similar to the one that was developed for the Vellady
platform.

In order to evaluate the effectiveness of Liborg, we recorded several sequences
at the Telin department, located in the Technicum building of Ghent University. All
of them were acquired while the scanner was put under a tilt angle of approximately
30 degrees, in order to capture overhanging structures such as the ceiling. In Figure
7.14, four different 3D reconstruction results are depicted. The results were obtained
using our own S-GICP based scan matching technique, combined with the scan-to-
map matching integrating surface reconstruction and re-sampling as explained in
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Figure 7.14: Four 3D reconstructions obtained by our Liborg platform with a tilted lidar
scanner. Top left: an empty office at the Telin department, top right: the corridor at the
Telin department. The red dots denote the trajectory of Liborg.

chapter 5. Unfortunately, we do not have ground truth for the trajectories. Visually,
no discrepancies could be noticed

7.3 Sculpture House Gillet

For the final use case, we created a 3D point cloud of the special sculpture house
Gillet, located in Angleur, close to Liège, in Belgium. The house is extraordinary
as it was entirely built using shotcrete - also known as sprayed concrete - which
allowed the creation of walls that are irregularly shaped, as can be seen in Figure
7.15. As a result, the house does not meet the ‘Manhattan-world’ assumption
and lacks any kind of organization in the form of orthogonal and parallel planes.
This made it the ideal use case for testing our mobile mapping system in a highly
challenging environment.

The actual goal of the 3D reconstruction was to print a miniature 3D model of
the house in order to expose it at an architecture exhibition. As the house consists
of steps and bumpy parts on the floor, it was not feasible to use Liborg. We thus
held the Velodyne VLP-16 scanner in our hand while walking through the house,
as is depicted in the bottom left image of Figure 7.15. This way of working yielded
another difficulty as the trajectory of the lidar scanner was far more jaggy while
walking compared to the smooth trajectories usually resulting from Liborg.

The final 3D point cloud and trajectory are depicted in Figure 7.16. The 3D
reconstruction is the result of our surface-based GICP scan matching technique,
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Figure 7.15: The extraordinary shaped sculpture house Gillet in Angleur. The house
was built using shotcrete, a.k.a. sprayed concrete, which allows the walls to be irregularly
shaped. The lidar scanner was hand-held during acquisition because the floor had too
many irregularities for Liborg to be able to move around.

combined with scan-to-model matching integrating surface reconstruction and re-
sampling. In Figure 7.17, two cross sections of the model are depicted, which show
the difference in elevation of the house. Unfortunately, we do not have any ground
truth model, nor can we compare with a different type of odometry. It is, however,
hard to see any artefacts in the 3D model, which demonstrates the effectiveness of
our system.

7.4 Conclusion

In this chapter we presented a few use cases that show the effectiveness and usability
of our mobile 3D mapping system. In an early stage, we developed the Vellady
platform consisting of a Velodyne HDL-32e lidar scanner and a Ladybug panoramic
camera system. Back then, we used the Vellady in combination with a kitchen cart
or four-wheel trolley to create the 3D reconstructions. Later on, we developed the
Liborg robot, which is able to drive autonomously but that can also be controlled
using a remote control. The first version of Liborg was running on a Raspberry-pi
computer, which was just able to collect the data and stream it to a server. The
second version of Liborg has an NVidia Jetson TX2 integrated and is able to perform
live mapping on the embedded platform itself.

We further demonstrated that our 3D mapping system is able to produce ac-
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Figure 7.16: Bird’s-eye view of the 3D reconstruction of the Sculpture House Gillet in
Angleur. The red line represents the trajectory of the lidar scanner.

Figure 7.17: Two intersections of the 3D reconstruction of the Sculpture House Gillet
in Angleur. The red line represents the trajectory of the lidar scanner.
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curate 3D reconstructions in different kinds of environments, going from typical
‘Manhattan world’ scenes recorded in the buildings of our department to a complex
industrial site with lots of overhanging pipelines as well as an extra-ordinary shaped
sculpture house located in Angleur.

Throughout this PhD we developed several slightly different algorithms that
are each beneficial in a specific environment. For the indoor scenes like the UFO
building and the sculpture house Gillet we used our S-GICP scan matching method,
presented in chapter 3. For the mapping of the chemical plant, for which the
point clouds were very sparse, we used our W-GSS-ICP scan matching method
integrating both geometrical stable point sampling and weighting based on low-
level shape features. Finally, we also showed that our algorithm is able to cope with
data captured with a tilted scanner limiting the horizontal field of view.





8
Localization and mapping

using depth cameras

In the previous chapters we mainly focused on 3D mapping using data acquired
from lidar scanners. For some applications, however, a lidar scanner is not feasible,
for example due to its size and weight. This chapter will deal with projective
depth devices or depth cameras based on either ToF or structured light, sometimes
accompanied by a regular camera, referred to as RGB-D cameras in that case.
Those sensors are more appropriate for user-based applications, e.g. in the domain
of augmented reality or the guidance of visually impaired people, as they are more
lightweight and usually a lot cheaper. The main difference between these depth
cameras and lidar scanners is their lower accuracy and shorter range. The latter is
of the order of magnitude of a few meters, up to 4 or 5, compared to 100 meters
or more for the more expensive lidar scanners. For user-based applications in the
domain of AR this is not a major problem as the operation range there is usually a
lot smaller. On the other hand, projective depth devices have a higher resolution,
which is beneficial for AR-applications to obtain a more dense 3D model of the
workspace.

8.1 Introduction

More and more augmented reality (AR) applications are using head-mounted
devices to give users a fully immersive experience. Among the examples are the
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HoloLens and its successor, the HoloLens 2, introduced by Microsoft in 2015
and 2019 or the Meta 21 released in 2017. One of the main prerequisites for
these AR-devices to fully operate is the precise tracking of the user’s head at all
times. This is necessary to find out what the person is looking at and to eventually
augment his view with virtual objects. Current AR-devices achieve this tracking
by using accelerometers and gyroscopes. However, these instruments are either
too expensive or accumulate too much drift over time, causing virtual objects to be
shifted from their ‘initial’ - let’s say intended - position.

As a result, developers of head mounted devices are trying to use cameras in
order to apply visual SLAM to track the head. Many visual tracking solutions have
been presented in the literature so far, but none of them have been really successful.
The main reason is that current SLAM methods often lack robustness, especially
in case of abrupt head motion. They are also subject to subtle changes in lighting
conditions or shadows and heavily rely on the presence of textured objects in the
scene. As a result, many applications still use artificial markers that are put onto the
scene instead of using natural landmark tracking or full-blown SLAM solutions.
However, this way of working is not very scalable.

With the advent of affordable depth cameras, more and more researchers ex-
plored ways to integrate depth information in the tracking process. Using depth
cameras has clear advantages: they are tolerant to common problems that appear
in monocular camera tracking, including changes in illumination, repetitive tex-
tures and lack of features. However, the available RGB-D SLAM solutions are
still limited in terms of accuracy and robustness. The main problem with existing
techniques is that they are usually only incorporating scan-to-scan matching instead
of integrating the entire 3D (point cloud) map being built. The main reason is that
scan-to-model matching is often too time-consuming - especially in case the 3D
map has become too large - making real-time execution impossible.

Another issue is that in AR we often want to know the precise location and
orientation of the person related to an existing 3D model in order to be able to
fully interact with it. This is especially the case for industrial applications, where
tasks have to be performed based on specific components of machinery. In addition,
this ‘ground truth’ 3D model from the database can also be used to relocate the
camera and to cope with drift. The latter brings us to another benefit of integrating
depth cameras: it is far better suited to estimate the pose related to an existing
3D model compared to regular cameras. In industrial companies, existing BIM or
annotated CAD models of plants or machinery are often available. These models
usually consist of additional semantic information or even instructions about some
components that could be overlaid in the view of the user. Linking them with the
estimated pose of the user, allows for AR-applications such as augmented assembly

1http://www.metavision.com/
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Color imageDepth map Annotated CAD model

Kinect 2

Figure 8.1: Sometimes a model of the scene is already present by means of a (annotated)
CAD or BIM model. It can be used to relate the pose of a ToF sensor such as a Kinect
or HoloLens in order to localize the user in the scene, for example in case of AR
applications. Left: a depth map and color image acquired with a Kinect. Right: a BIM
model of a cooling container to which we want to map the user’s pose.

or augmented maintenance of machinery.

In this chapter, we will propose a dual solution, in which we combine the
registration of consecutive point clouds as well as a model-based approach for the
fight against drift. The latter can be performed using an available ‘ground truth’
model but also using the 3D model that is being built on the fly (similar to the
algorithms proposed in chapter 5. The former makes it possible to link with a 3D
model from a database and hence to relate the view of the user to what is known
about this part of the scene as is depicted in Figure 8.1. The model-based tracking
can be conducted at a lower frequency to keep the processing time limited. Doing
so, we keep the best of two worlds by being both fast, robust and being able to
cope with drift. Regarding the model-based tracking, we will use the same surface
reconstruction and re-sampling process described in chapter 5. In addition, we
apply the multi-resolution registration scheme of chapter 5 to speed-up the pose
estimation.

The main application that we focused on is that of an engineering coach in
which a layman is guided towards the completion of a particular task without having
the knowledge to do so. The precise instructions are provided to the layman by
means of visual cues. The task the layman has to deal with in our application is the
replacement of an oil filter of a cooling machine. In Figure 8.2, an image is depicted
of the working environment (left) and the layman performing the task (right).

8.2 Related work

As our solution consists of two different parts, we will split this related work section
into two subsections. The first one will deal with the RGBD-SLAM literature
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Figure 8.2: The cooling container that was the subject of an AR-applications supporting
its maintenance. Maintenance instructions can be virtually attached to an object of
interest in the real world.

whereas the second one will deal with the registration of a point cloud derived from
a depth camera with an existing CAD-based model from the scene.

8.2.1 RGBD-SLAM

Many of the current methods for handheld or user-based SLAM are using regular
cameras. They either use features such as ORB-SLAM [MurArtal 15], Fast Odome-
try from Vision Systems (FOVIS) [Huang 11] and PTAM [Klein 07] or they adopt
a direct approach by registering two consecutive images directly upon each other
by minimizing a photometric error such as LSD-SLAM [Engel 14] or the work of
[Kerl 13a; Kerl 13b].

As mentioned in the introduction, all of these systems lack robustness as they are
subject to subtle changes in lighting conditions or shadows and heavily rely on the
presence of textured objects in the scene. With the advent of cheap RGB-D sensors
such as the Kinect, many researchers have started to focus on the combination of
RGB-SLAM with the output of an accompanied depth camera [Endres 12; Sturm
12; Kerl 13a].

In [Endres 12], for example, the authors compute ORB keypoints in the image
and determine the corresponding 3D point using the accompanied depth map.
Thanks to the full 3D position, they can efficiently avoid outlier matches by refusing
the ones for which the Euclidean distance in 3D space is too large. Moreover, they
can use the knowledge of a point’s 3D position to compute the transformation
between two sensor poses instead of relying on triangulation.

ICP-based

We consider the system “KinectFusion" presented in [Izadi 11] to be the true mile-
stone in RGB-D SLAM as it was the first solution for projective devices integrating
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an ICP-based point cloud alignment that runs in real-time. However, due to this
real-time constraint, the initial system also came with a few limitations, mainly
related to its lack of robustness in case of moving objects or abrupt movements
of the camera. Therefore, many researches have proposed improvements over
the initial algorithm, some of them incorporating visual odometry to enhance the
performance in geometrically deprived environments.

In [Henry 12], the authors propose RGB-D ICP, in which visual features and
their associated depth values are used to obtain an initial alignment. The final
transformation is then determined by jointly optimizing over the sparse feature
matches and dense point cloud correspondences. A similar approach was followed
by [Whelan 13], in which depth-based ICP is combined with FOVIS visual odome-
try. The authors propose a switching strategy in which the ICP estimate is favoured
in case of geometrically rich scenes and the FOVIS estimate is favoured in case of
monotone planar environments.

The same authors also ‘spatially’ extended the original KinectFusion system
[Whelan 12], as the latter was bounded by its initial truncated signed distance
function (TSDF) volume, a volumetric representation of the scene where each
location stores the distance to the closest surface. The system of [Whelan 12]
maintains, at any point in time, a TSDF of the region of space that is currently
being mapped. However, the region represented by this TSDF varies dynamically
during processing and when new regions enter the TSDF, previously mapped ones
are extracted into a more parsimonious triangular mesh representation.

Apart from integrating visual odometry to improve the robustness of the tracking,
other work has focused towards making ICP more robust itself. In [Serafin 15b],
the authors determine the transformation by minimizing the distance between the
corresponding features instead of minimizing the point-to-plane distance between
corresponding points as in standard ICP. More specifically, they minimize the
Mahalanobis distance of each corresponding point pair and their normals, resulting
in minimizing a distance among 6D vectors instead of 3D points.

3D keypoints

The ICP-based methods from the previous section have at their core the alignment
of consecutive scans by minimizing distance measures between all (or the majority)
of the points. Just like with scan matching for spinning lidar sensors, an alternative
approach is the extraction and matching of (sparse) 3D features for use in RGB-D
SLAM applications. One advantage over spinning lidar data is that the point clouds
generated from projective devices are in general less sparse, which makes it more
suitable to construct more sophisticated keypoint detectors.
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Several papers have proposed such 3D keypoint detectors, including the intrinsic
shape signatures (ISS) [Zhong 09], Harris 3D [Sipiran 10b], Sift 3D [Scovanner 07]
and NARF [Steder 10]. Others have proposed descriptors such as spin images
[Johnson 97] or the SHOT descriptor [Salti 14]. However, none of these keypoint
detectors and descriptors have been widely used to conduct real-time scan matching
as they are in general too slow and they suffer from the lack of high repeatability
and descriptive power.

Deep learning

To deal with the shortcomings of hand-crafted features, many researchers shifted
towards the use of deep local feature descriptors obtained by a neural network, for
example MatchNet [Han 15], DeepCompare [Zagoruyko 15], 3DMatch [Zeng 17b],
DeepCD [Yang 17] or the work of [He 18]. The authors of [Kang 19] eventually
used those deep local feature descriptors to build their full-blown DF-SLAM system.

Another way of incorporating neural networks is to let them predict depth data
from the images themselves. Recently, the performance of depth prediction from
images is rising strongly and as a result, more SLAM researches are focusing on
combining them with direct monocular SLAM, hence ‘avoiding’ the need to use an
accompanied depth sensor [Tateno 17].

Plane-based

Finally, also for projective devices, some plane-based SLAM solutions have been
proposed. In those works, the authors exploit the Manhattan world assumption, in
which a scene consists of large vertical planes that are perpendicular to the floor
and ceiling and in which many are parallel to each other. Examples are the Dense
Planar SLAM method of [SalasMoreno 14] or the work of [Le 17]. As mentioned
before, the applicability of these methods is limited to indoor scenes with a lot of
structure.

8.2.2 Model-based alignment

Regarding model-based alignment, the academic literature is much more limited,
especially when it comes down to the registration of point clouds from noisy
depth cameras. In [Kim 13], a system was designed to automatically register
3D CAD models with 3D point cloud data from a construction site. The authors
propose to use principal component analysis (PCA) to find a coarse registration and
subsequently refine the alignment using ICP. The main difference with our use case
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is, however, that the point clouds will never comprise the whole CAD model, so in
our situation PCA is not applicable.

In [Corsini 13], the authors present another fully automatic registration frame-
work to align image sets with ‘approximate geometry’, which can be seen as a CAD
model. To this end, they adopt the 4-points congruent sets (4-PCS) method [Aiger
08], based on the matching of 4-points coplanar bases using the generate-and-test
paradigm. They propose a scale independent version of 4-PCS by introducing two
modifications. The first modification is a preprocessing step to overcome the differ-
ence in sampling between the CAD model and the point cloud that was obtained
by structure from motion. The main idea is to partition the two point clouds into a
set of quasi planar regions and then re-sample the clouds uniformly with respect to
their area. The second modification consists of a rasterization based algorithm that
considerably reduces the time needed to test candidate transformations.

In [Chen 16], the authors also tried to match a point cloud acquired using
structure from motion with a CAD model. The main idea of their method also
comprises a ‘sampling’ of the CAD model, which they denote as a virtual scan. To
overcome the density difference between the sampled model and the ‘SfM point
cloud’ they propose a coarse-to-fine down-sampling strategy on the SfM point
cloud.

The aforementioned methods were developed in view of aligning a large point
cloud obtained by SfM with a CAD model, which is different from aligning a
single image or depth map from a depth camera with a CAD model in view of AR
applications. A few studies focused on localization through the alignment of regular
RGB images with a (CAD) model [Lepetit 05; Bleser 05; Wuest 05; Klein 06].
Those model-based tracking methods try to fit features, such as edges, extracted
from the camera image to 2D projections of the 3D model of the reference target to
estimate the transformation between them. However, as mentioned in the previous
section, regular images often lack detectable 2D features, making it very difficult
to estimate the camera pose. This is especially the case when the captured scene
has untextured monochromatic surfaces or when the lighting conditions are bad.
Strong shadows can be indistinguishable from actual edges and reflections or dim
illumination can disturb the feature detection.

Motivated by these shortcomings, the authors of [Korkalo 16] present a method
for tracking a depth camera with an existing CAD model. The main idea of their
approach is to construct a 3D point cloud from the latest incoming raw depth frame
and align it with a point cloud that they generate from the reference model using
the sensor intrinsic and extrinsic parameters from the previous time step. The
actual alignment is done using the ICP algorithm. In our work, we will use a
similar strategy, but we will adopt the multi-resolution ICP registration scheme
from chapter 5 to guarantee that the tracking can be conducted in real-time.
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8.3 Proposed approach

In this section we will propose a depth-based system that consists of two main parts:
1) initial pose estimation based on a CAD model and 2) camera tracking using point
cloud registration. Regarding the initial pose estimation, we start from the initial
idea proposed by the authors of the 4-PCS method [Aiger 08; Mellado 14]. As
opposed to the methods of [Corsini 13] and [Chen 16] we do not sample the CAD
model to determine the initial pose. Instead we exploit the knowledge of adjacent
triangles in the mesh-based model to determine 4-points sets that are coplanar.
The latter is an easy operation as it only involves a check on the direction of the
normal vectors of two adjacent triangles. The resulting 4-points sets are then used
as coplanar bases. Using this strategy, we avoid the randomized base selection
process of the original 4-PCS method, which makes our method fully deterministic.

8.3.1 Initial pose estimation

Finding the initial pose of the camera relative to a CAD model using data from
depth cameras is a challenging task as this data typically contains a lot of noise. As
a result, extracting low-level geometrical features is not trivial, let alone matching
them with features derived from the CAD model. A CAD model is in fact the
opposite as it contains no noise and is usually pretty accurate. On the other hand,
a CAD model lacks detail, but the model itself is already a set of geometrical
primitives which can be exploited to easily align it with the point cloud derived
from the depth camera.

The main idea of our algorithm is to exploit the 4-points congruent sets (4-PCS)
properties, which we also used to align two lidar point clouds in view of loop
detection, cfr. chapter 6. To summarize, the 4-PCS method is a global point cloud
registration technique that is based on the matching of congruent sets in two point
clouds. It uses the same generate-and-test paradigm known from RANSAC-based
solutions, but instead of exhaustively testing all the bases from a source point cloud
P , it exploits planar congruent sets to select only a small subset of bases from P

that can potentially match a given base from a target point cloud Q.

Our final algorithm consists of the following steps: 1) selecting a coplanar base
in the CAD-model, 2) finding the (approximate) congruent sets in the point cloud
derived from the depth camera, 3) computing and testing the rigid transformations
and selecting the best one.
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Figure 8.3: A part of the CAD model of Figure 8.1, which is defined as a triangular
mesh. The vertices of the CAD model, shown by red dots, are used in our 4-PCS method
to select coplanar bases consisting of 4 points that are not all collinear.

8.3.1.1 Selecting a coplanar base

As we are dealing with a CAD model as target instead of an acquired point cloud,
we can extract coplanar points more easily as they are represented by the vertices
of planar patches. One way of selecting coplanar bases is to consider adjacent
triangles and determine whether their normal vectors point in the same direction.
Doing so, we omit the randomized base selection process of the original 4-PCS
method. We can test all the bases found this way but as wide bases are leading to
more stable alignments we prioritize those. Thereby, we verify whether they are
still lying in the overlap region between the point cloud and the CAD model in
order not to miss the desired solution. In Figure 8.3 all the vertices are drawn for a
part of the CAD model shown in Figure 8.1.

8.3.1.2 Finding congruent sets

This step is the main component of the algorithm and is based on affine invariants
of 4-points sets. As this step was already detailed in chapter 6, we will briefly
summarize it here.

Suppose we have a set of coplanar points B = {a,b, c,d} from the CAD
model that are not all collinear, cfr. Figure 8.4. Let ab and cd be the two lines
that intersect at an intermediate point e. Recall from chapter 6 that the two ratios,
r1 = ||a − e||/||a − b|| and r2 = ||c − e||/||c − d|| are invariant under affine
transformation, and uniquely define 4-points up to affine transformations. For each
point p1,p2 ∈ P , we compute two intermediate points e1 = p1 + r1(p2 − p1)
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Figure 8.4: A 4-points coplanar base B = {a,b, c,d} selected from the CAD model
C (left) and the corresponding congruent set B′ = {a′,b′, c′,d′} from the point cloud
(right). The ratios r1 = ||a− e||/||a− b|| and r2 = ||c− e||/||c− d|| are preserved
under affine transformation.

and e2 = p1 + r2(p2 − p1). When the intermediate points e1 and e2 of two point
pairs are coincident, they potentially correspond to a 4-points set that is an affine
transformed copy of B. The set of 4-points sets are the affine invariants of the
base B, so it is a superset of the 4-points sets that are a rigid transformation of the
base. Just like in chapter 6, we check the angle between the two line segments to
determine if the 4-points set is a rigid transformation of the base B.

Figure 8.4 demonstrates the main idea of the algorithm: a potential coplanar
base in the CAD model (left) is selected and its corresponding congruent set in the
point cloud (right) - here depicted as a depth map - is determined. The procedure
can be summarized as follows: given a selected coplanar base from the CAD model,
determine all 4-points sets in the point cloud P that are approximately congruent.
This means that the distance of the two intermediate points e1 and e2 should be
close to each other. Because of noise and inaccuracies, we use a threshold ∆ to
decide whether the two points e1 and e2 are coincident.

8.3.1.3 Computing the best rigid transformation

In the original 4-PCS method, the largest common point set (LCP) criterion is used
to verify the estimated transformation and to determine the ‘best one’. This LCP
is determined by counting the number of points from the source point cloud that
are within a predefined distance ∆ from any point in the target point cloud, i.e. the
CAD model in this case, after alignment. However, the number of vertices in this
CAD-model is too small to reliably check whether the transformation is a good one
or not. A better way, therefore, is to compute for all the points that are part of the
plane the distance to its corresponding plane in the CAD model and consider the
sum of all distances as the criterion. The transformation leading to the smallest sum
can then be selected as the ‘best’ transformation.
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Figure 8.5: A point cloud sampled from the CAD model of Figure 8.3.

Alternatively, the CAD model can be sampled in order to obtain a dense point
cloud model. Even though this method is more complex, it allows to use the ICP
algorithm to refine the transformation. After applying ICP, we obtain the ‘closest’
points between both point clouds (the scan and the ground truth). The final residual,
i.e. the sum of Euclidean distances between all corresponding points serves as an
additional verification for the correct alignment. Figure 8.5 depicts a point cloud
obtained by sampling the CAD model from Figure 8.3.

8.3.2 Camera tracking

Once the initial pose of the user has been related to the CAD model, the next step
is to track the movements of the user. Our camera tracking consists of three main
steps. First, we conduct a preprocessing step to convert the depth measurements
from the depth camera to an organized point cloud and to lower the noise. In
addition, we compute a surfel representation from the point cloud by estimating
several local features, including the normal vector for each point in the point cloud,
cfr. chapter 4. The second step deals with the alignment of consecutive point clouds,
which gives us an initial guess for the current pose. Third, we align the point cloud
derived from the depth camera with the point cloud of the scene. The latter can
either be the one that is built on-the-fly, or it can comprise the CAD model that
has been sampled, if available. The main idea of our scan-to-model alignment is to
derive a multi-resolution representation of the model and to adopt a coarse-to-fine
registration, similar to what we have proposed in chapter 5.

8.3.2.1 Preprocessing

Low-cost depth cameras such as the Kinect have a limited accuracy and the point
clouds acquired by them usually contain a lot of noise. In order to cope with this,
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we apply the surface approximation algorithm from chapter 5. This algorithm
estimates the underlying surface, which allows us to re-sample the points in the
point cloud. Recall that our algorithm estimates for each point a second order
polynomial through the distances of its neighbours to its tangent plane. Therefore,
we first need to estimate the surface normals for each point, for which we use the
same approach as in chapter 4 by first computing an optimal neighbourhood set
for each point. This procedure gives us for each point pk a set of neighbours Nk

that we use to compute the normal vector nk and thus the tangent plane defined as
Hk , [nk, dk] in which dk represents the distance to the origin.

For all points lying in Nk, we compute the distance to this tangent plane and
we fit a polynomial in this set of distances. This second degree polynomial p̃k is
estimated by minimizing the following weighted least-squares error:

p̃k = argmin
pk

∑
pi∈Nk

(pk(xi)− fi)2θ(||pi − pk||), (8.1)

where xi is the orthogonal projection of the point pi onto the tangent plane and
fi , 〈pi,n〉 − d is the distance of pi to the tangent plane. Finally, θ(x) = e−( x

σr
)2

represents the weighting function that is based on the distances to the tangent plane
and the average separation σr of the 3D points.

Once the parameters of the polynomials p̃k are known, we project the original
points on this surface. This procedure manipulates the points in such a way that the
noise is reduced and also allows to fill small gaps in the point cloud. For the latter,
we first define a voxel grid upon the point cloud, which we dilate with new points
and the center positions. Subsequently, we project the newly created points to the
approximated surface of the closest point in the point cloud.

8.3.2.2 Scan-to-scan alignment

In chapter 3 we described several scan matching techniques to align two point
clouds that are slightly shifted. The two most prominent ones are the normal
distribution transform (NDT) and the ICP algorithm. Regarding ICP, we evaluated
many cost functions including the point-to-point, point-to-plane and plane-to-plane
cost function. We also proposed our own S-GICP algorithm. For AR-applications,
it is important that the scan matching is fast enough. Chapter 3 revealed that the
point-to-plane cost function is the fastest among them and therefore we will adopt
that one to conduct the scan-to-scan matching here:

E(R, t;Ps,Pt) =

N∑
i=1

wi((Rpsi + t− pti) · nti)2. (8.2)

In this equation, Ps and Pt are respectively the source and target point cloud,
which are indexed according to their N correspondences. In this case, the target
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and source point cloud are respectively the current and previous one acquired by
the depth camera. Finally, nt represents the normal vector of target point pt.

Usually, the closest point correspondences are determined using the Euclidean
norm in 3D space. However, in chapter 3 we learnt that due to the non-uniform
and sparse point density, it is unlikely that exactly the same physical point is
sampled in two consecutive point clouds. This so called correspondence ambiguity
problem is less severe for point clouds derived from depth cameras compared to
point clouds acquired from laser scanners, but it is still present and causes the
point correspondences to be inaccurate. Therefore, we again propose to introduce a
weight for every corresponding pair, which is determined using the feature distance
as explained in chapter 4. The actual weight is computed using the Beaton-Tukey
estimator defined in eq. 4.13, and is updated in every iteration in order to filter
out inaccurate correspondences, hence denoted as an iteratively re-weighted least
squares (IRLS) ICP solution.

8.3.2.3 Scan-to-model alignment

The scan-to-scan ICP described in the previous section provides an initial estimate
on the camera pose. As this estimation is subject to drift we perform an additional
alignment step using the 3D model of the scene. This model can either be the one
that is being built or the one that is derived from the CAD model.

The former one is resulting from fusing all the acquired 3D points into one
aggregated map. However, if we would store all the points that were captured
by the depth camera, the map would quickly contain billions of points. It would,
therefore, become intractable to determine corresponding points between the point
cloud derived from the depth camera and the one derived from the 3D model. For
that reason, we convert the model into an octree-based data structure as we did
in chapter 5. Recall that this octree comprises a hierarchical space partitioning,
subdividing the 3D space recursively into 8 smaller sub cubes of the same size. At
the leaf level, only one point is kept, which is computed using an approximation of
the underlying surface, as follows. First, we select the closest points of the centroid
of the (leaf) voxel, which can be easily determined based on the space partitioning
of the octree. Second, using this neighbour set we estimate the underlying surface
using the same surface approximation algorithm described in chapter 5. Finally, we
project the centroid point on the estimated surface. Apart from reducing the noise,
this process allows us to extract point clouds with a lower point density.

Following this procedure, we can select multiple point clouds with different
resolutions and perform the ICP algorithm in a coarse-to-fine manner like we did in
chapter 5. The octree data structure thereby alleviates the search for approximate
nearest neighbours as we only have to traverse the tree to the leaf voxel, leading to



184 CHAPTER 8

Figure 8.6: Several resolution levels of the cooling machine from Figure 8.1. From left
to right, the voxel size is respectively 0.32, 0.16, 0.08 and 0.04 meter corresponding
to resolution level 11 to 14. This multi-resolution representation is the core of our
scan-to-model matching, which allows real-time camera tracking.

O(log n) time complexity.

In case a 3D model from the scene is available, we skip the map building part
of the algorithm and we use the available model instead. If the latter is available in
the form of a CAD-model, we first sample it in order to be able to conduct ICP. To
that end, we again build an octree data structure on top of the CAD-model in order
to be able to extract point cloud models of different resolutions. In Figure 8.6, the
same cooling machine as in Figure 8.1 is depicted for five different resolutions with
a leaf size ranging from 0.32 to 0.04 cm.

8.4 Evaluation

In order to evaluate our method, we use the video sequences that are part of the
Freiburg RGBD-SLAM dataset, presented in [Sturm 12]. All of the sequences are
recorded with the Kinect and have both a color video stream and a depth video
stream. The sequences come with accurate ground truth on the camera trajectory
and for that reason many (visual) SLAM algorithms have been evaluated on this
dataset in the past. As with the KITTI dataset, the sequences do not come with a
ground truth model of the scene and therefore we cannot perform a geometrical
comparison. Instead we compare the different poses of the camera through time.
To that end, we carefully selected five sequences that cover some of the main
difficulties in existing SLAM systems, including a high (angular) velocity or the
absence of salient features. The main specifications of the sequences are listed in
Table 8.1.

In Figure 8.7, three images from three different sequences are depicted. The
sequence fr1_floor is challenging because there is not a lot of structure in the depth
maps as a a large part of the scan covers the ground plane. The other sequences are
recorded around a desk and the depth maps contain more structure thanks to the
clutter on top of the desk. For sequences fr1_floor and fr1_desk, the speed of the
camera movement is fairly high, causing another challenge for the algorithms.
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sequence
name

length (m) duration (s) avg. ang.
velocity (deg/s)

avg. transl.
velocity (m/s)

frames

fr1_xyz 7.11 30.09 8.92 0.24 788

fr1_floor 12.57 49.87 15.07 0.26 1214

fr1_desk 9.26 23.40 23.33 0.41 575

fr2_xyz 7.029 121.48 1.716 0.058 3666

fr2_desk 18.880 69.15 6.338 0.193 2965

Table 8.1: Information about the five video sequences that were used in this work to
evaluate our system and to compare it against existing SLAM methods. The sequences
are part of the RGB-D SLAM benchmark presented in [Sturm 12].

Figure 8.7: The sequences fr1_desk, fr1_floor and fr2_desk from the RGBD-SLAM
benchmark presented in [Sturm 12]. The other two sequences that were used, fr1_xyz
and fr2_xyz were recorded in the same environment as fr1_desk and fr2_desk but have
different camera trajectories.
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Figure 8.8: The 3D reconstruction and trajectory (in blue) obtained by our system for
the sequence fr1_desk from the RGBD-SLAM benchmark presented in [Sturm 12].

In Figures 8.8, 8.9 and 8.10, the 3D-reconstructions obtained by our algorithm
are depicted for the sequences fr1_desk, fr1_floor and fr2_xyz. Note that the 3D
point clouds were generated in real-time on a laptop computer with 16GB RAM, an
Intel Core i7-4712HQ, 2.30Ghz CPU and an nVidia Quadro K1100M inside. The
small color discrepancies that are noticeable near the edges of objects are mainly
due to small errors in the calibration of the color and depth camera as well as small
synchronisation issues.

Relative pose error

We again use the relative pose error as one of the metrics to evaluate our camera
tracking algorithm. This time we measure the local accuracy of the trajectory over
a fixed distance ∆ = 1.0 m. Between two poses Pi and Pj , the average rotation
and translation error, is again defined as in eqs. 2.13 and 2.14. The results of our
method for this RPE metric are given in Table 8.2.

As can be noticed, the scores for the different sequences differ a lot from each
other, which is mainly due to their difference in (angular) velocity. Our method is
prone to quick camera motions because of the ‘closest point’ criterion of the ICP
registration process. This imposes a maximum (rotational) speed given a certain
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Figure 8.9: The 3D reconstruction and trajectory (in blue) obtained by our system for
the sequence fr1_floor from the RGBD-SLAM benchmark presented in [Sturm 12].

Figure 8.10: The 3D reconstruction and trajectory (in blue) obtained by our system for
the sequence fr2_xyz from the RGBD-SLAM benchmark presented in [Sturm 12].
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sequence name Et(∆) Er(∆)

fr1_xyz 0.036 m 2.44◦

fr1_floor 0.092 m 3.85◦

fr1_desk 0.143 m 8.03◦

fr2_xyz 0.011 m 0.65◦

Table 8.2: The relative pose error (RPE) for the sequences of the RGB-D Slam bench-
mark using ∆ = 1.0 meter. The RPE is deviating a lot for the different sequences, which
is mainly due to the variations in angular velocities, cfr. Table 8.1. Sequence fr2_xyz is
giving the best results as its average angular velocity is quite low.

frame rate in order for our solution still to work properly.

Sequences fr1_floor and fr1_desk have a much higher average (angular) velocity
compared to the other sequences and for that reason the results are worse. The
average angular and translational velocity of sequence fr2_xyz, respectively 1.7
deg/s and 0.058 m/s, is very low and the best results are, therefore, obtained for that
sequence. Our algorithm leads to an average translational error of approximately
0.01 m and a rotational error of 0.65◦ degrees. Thus, as we picked ∆ = 1.0 m,
we can conclude that under good conditions, i.e. a sufficiently low velocity of the
camera, the translational error is near 1%.

In order to obtain a better understanding what causes the drift of our system,
we examined the RPE at different time intervals. For brevity, we only include the
graphs for sequences fr1_desk (Figure 8.11) and fr2_xyz (Figure 8.12) as these
are the sequences for which our system generates respectively the worst and best
results. Regarding sequence fr1_desk, we see that the large errors are due to a few
outlier pose estimates, e.g. the large one around 16s caused by an abrupt movement
of the camera. Figure 8.12 shows that for sequence fr2_xyz there is a still some
variation in RPE for different time intervals, but there are no sever outlier pose
estimates.

Absolute pose error

Alternatively, we consider the absolute pose error (APE), computed by comparing
the absolute distances between the estimated and the ground truth trajectory, cfr. eq.
2.15. The APE scores for our solution on the five proposed sequences are listed in
Table 8.3. As can be seen, the results measured by the APE metric are in line with
the results measured by the RPE metric: sequences fr1_floor and fr1_desk have a
higher error because of the higher velocity. Pure feature-based methods, such as
ORB-SLAM, naturally have a higher resistance against fast and abrupt movements
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Figure 8.11: The RPE (RMSE) in function of time for sequence fr1_desk (with high
angular velocity). The large APE of our solution is due to some outlier pose estimates,
e.g. the large outlier around 16s. The cause of this is an abrupt movement of the camera
at that time.
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Figure 8.12: The RPE (RMSE) in function of time for sequence fr2_xyz (with low
angular velocity). As in Figure 8.11, there is still a lot of variation along the sequence
but there are no severe outliers of multiple centimeters.
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Sequence ORB-
SLAM

PTAM LSD-
SLAM

RGBD-
SLAM

D-VSLAM Ours

fr1_xyz 0.90 1.15 9.00 1.34 1.1 2.45
fr2_xyz 0.30 0.20 2.15 2.61 - 0.69
fr1_floor 2.99 - 38.07 3.51 - 6.09
fr1_desk 1.69 - 10.65 2.58 2.1 8.12
fr2_desk 0.88 - 4.57 9.50 1.7 1.36

Table 8.3: The absolute trajectory error (APE) for the sequences of the RGB-D SLAM
benchmark presented in [Sturm 12]. Our approach is compared with 6 other state-of-
the-art systems. The best result is obtained for sequence fr2_xyz, while the sequences
fr1_floor and fr1_desk have the worst outcome. The reason for this is that the first
sequence has a very low angular velocity (1.7 deg/s) compared to the latter two sequences
(15.1 and 23.3 deg/s respectively).

of the camera. On the other hand, LSD-SLAM, which is - like ours - a dense and
direct approach, is suffering a lot from high (angular) velocities of the camera. Still,
our solution outperforms LSD-SLAM in case of abrupt camera movements.

Similar as for the RPE, the best results are obtained for sequence fr2_xyz. With
an APE of 0.69 it outperforms both the methods LSD-SLAM and RGBD-SLAM.
The algorithm D-VSLAM suffered from tracking losses and no meaningful APE
could be computed for sequence fr2_xyz. The systems ORB-SLAM and PTAM,
generated better results. However, they rely on visual features in the scene and the
RGBD sequences from [Sturm 12] are particularly well suited as they are highly
textured. The PTAM method still suffered from tracking losses for the sequences
fr1_floor, fr1_desk and fr2_desk.

Even though it seems that the ORB-SLAM system is the best performing one
according to Table 8.3, it is important to note that this system integrates an extensive
loop closure mechanism, whereas our results are obtained without any form of loop
closure. The techniques for loop detection described in chapter 6, more specifically
the M2DP descriptor, is not perfectly suited to cope with data acquired with a
Kinect camera or another ToF camera. The main reason is that the FOV of these
cameras is too small and for that reason, the M2DP descriptor will be different
when the scene is captured from the same position but with a different orientation.
As a result, the technique should be adapted in order to be able to deal with data
from ‘projective’ ToF cameras.

For lengthy sequences (in terms of travelled distance), such as the fr1_floor
sequence, our method will, therefore, suffer more from error propagation compared
to ORB-SLAM. Another point of difference is that ORB-SLAM is a feature-based
visual method that only results in a sparse 3D point cloud, whereas our method
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results in a dense 3D point cloud.

Because of the fact that there is no loop closure mechanism present in our
camera tracking algorithm, the relative pose error is a better way to express its the
accuracy. We conclude that for sequences having an angular velocity lower than
approximately 10 deg/s, we are able to achieve a translational error between 1%

and 4%. This means that when the camera moves 1 m, the error on the estimated
position lies between 1 cm and 4 cm.

8.5 Conclusion

In this chapter, we presented a novel algorithm for finding the 3D pose of a depth
camera relative to a CAD model as well as an algorithm to track the pose of the
depth camera through time. The former algorithm can be used to estimate the initial
pose of the user once he puts on a head-mounted device (with integrated depth
camera), as well as to relocate the user in case of severe drift or tracking loss. The
second algorithm can be used to continuously provide the direction in which the
user is looking in order to augment his view with virtual objects.

The first algorithm is based on the idea of 4-points congruent sets [Aiger 08] and
improves over the standard solution by replacing its randomized generate-and-test
paradigm. The latter is achieved by exploiting the geometry of the available CAD
model to select co-planar bases instead of randomly looking for them.

The second algorithm is based on the registration of point clouds derived from
the depth camera. It integrates low-level shape features to provide weights to the
ICP-based alignment. Our algorithm also includes scan-to-model matching using
surface reconstruction and re-sampling. The latter allows to extract multi-resolution
representations from the ‘model’, being either the ‘current’ aggregated point cloud
or a point cloud derived from an existing CAD model. This multi-resolution
representation facilitates our fast coarse-to-fine ICP registration algorithm. Together
with the GPU-based point-to-plane implementation, it allows to track the (depth)
camera in real-time.

Regarding the accuracy we conclude that in absence of abrupt camera move-
ments and given a low angular velocity (lower than 10 deg/s), the translational
error of our system is situated between 1% and 4%. Regarding the robustness, our
system outperforms current state-of-the-art trackers, as many of them were leading
to tracking losses in cases where our system continued to work properly. Although
our camera tracker also has an upper limit in terms of (angular) velocity, it will
hardly lead to a tracking loss, but instead its accuracy will be gently reduced.





9
Conclusions

As mentioned in the introduction, our main contributions to the 3D mapping
problem are threefold: increasing the robustness and accuracy, improving the
scalability and accelerating the process. The combination of all our improvements
allows applications such as inspection, damage assessment or construction site
monitoring to be fully automated and accelerated using robots or drones. All these
applications share the need for highly accurate 3D models that have to be built in a
very quick manner. Below we summarize our contributions in more detail.

9.1 Summary of contributions

9.1.1 Increasing the robustness and accuracy

In order to increase the robustness and accuracy of 3D SLAM, we contributed in
four different ways. First, we devised a new cost function based on the underlying
surface model, which we denoted as surface-based GICP (S-GICP). This cost
function performs well in typical man-made environments with strong Manhattan-
world properties that yield a high degree of orthogonality.

Second, as outdoor environments are less structured, we additionally invented
techniques to sample the point clouds in a geometrical stable way. More specifically,
we ensured that the observability in all directions is proportioned in order to get
rid of directional biases. Thereby we mainly use points that are sampled in stable
regions that are characterized by a high degree of planarity. For those regions,
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surface normals can be more accurately estimated, leading to better transformation
estimates while used in the point-to-plane or plane-to-plane cost function.

Third, we proposed a more robust algorithm to estimate the surface normals,
taking into account the topology of the point cloud. To that end, we devised a
method based on point clustering and entropy-based radius selection to determine
the optimal neighbourhood for each point. The entropy-based radius selection is
further exploited to compute a low-level feature representation of the point cloud.
This representation is eventually used to deal with outlier correspondences. More
specifically, we integrate it in a feature-based weighting step amending both the
robustness and final accuracy of our SLAM system.

Fourth, we combined scan-to-scan matching with scan-to-model alignment.
To that end, we developed a surface reconstruction algorithm, which allows us
to re-sample the points in the aggregated point cloud or ‘3D map’. The surface
reconstruction is in fact an approximation defined by a local neighbourhood of
points, which is more robust to noise compared to interpolation methods or triangu-
lar meshing techniques. More specifically, for each point we compute a bivariate
polynomial height function defined on a robustly computed reference plane derived
from the surface normal. Our surface approximation reduces the noise and pre-
viously made errors in the aggregated point cloud, which is highly beneficial for
future pose estimates in terms of robustness and accuracy.

9.1.2 Improving the scalability

Regarding the scalability, we provided mechanisms to gently trade off accuracy
for speed. To that end, we developed an octree-based hierarchical data structure
facilitating dynamic adjustments of the level of detail. In fact, we combined the
octree data structure with our surface approximation, storing the parameters of the
polynomial function in the octree cells. The surface is thus stored in its parametric
form in contrast to implicit forms usually found in literature, which are wasteful in
terms of memory. Our surface representation on the other hand allows to strongly
compress the map. Furthermore, it is way more easy to update and modify it
compared to interpolation methods or triangular meshes, which makes incremental
scan-to-model alignment a lot more efficient. All this means that our solution is
ready to be used in a distributed mapping approach using multiple agents.

9.1.3 Accelerating registration and loop closure

The acceleration of the 3D mapping process is achieved by three major devel-
opments. First, the re-sampling of the point cloud map reduces the redundancy
and makes it possible to represent it using fewer points, which speeds up the
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scan-to-map registration.

Second, the octree data structure makes the data association more efficient as
spatial queries, e.g. nearest neighbour searches, can be conducted in logarithmic
time. The octree can also quickly be updated and hence we can avoid to rebuild it
from scratch every time a new scan has to be aligned. Finally, based on the octree
data structure, we developed a coarse-to-fine ICP-based registration algorithm
that converges faster than the ‘full-resolution’ variants while keeping the same
performance.

Third, we developed a GPU-based global point cloud descriptor that is highly
effective to detect loop candidates. The loop candidates are further refined by
checking the geometrical consistency between the two point clouds after registra-
tion. This registration differs from scan matching as the two point clouds may be
largely rotated if the same location was reached from two different directions. We
developed a ‘global’ registration technique based on the matching of 4-points con-
gruent sets to align those point clouds. The main novelty is the base selection part,
which makes it possible to omit the randomized base selection, yielding another
acceleration.

9.2 Future research

In this future work section, we will distinguish two main parts. The first one deals
with research related to the open challenges of SLAM itself. In the second part, we
will look beyond the problem of SLAM and enumerate which research is needed to
enable new applications.

9.2.1 SLAM

Concerning SLAM, a few future research directions were already given in chapter
2. The most important ones that we envision are related to the robustness and
scalability of SLAM solutions.

Regarding the robustness we explained that there are many sources of failures,
located at both the algorithmic and hardware level. However, more important
than how to prevent these failures is the way future SLAM systems will cope
with them in terms of re-localization and recovery. Today failures are almost
always leading to an entire shut-down and restart of the system which also requires
manual intervention. Future SLAM systems will be fully autonomous with regard
to recovery and re-localization. Related to this is the ‘curse of manual parameter
tuning’ from which all current SLAM systems suffer. An important role will be
played by advanced machine learning techniques to alleviate this parameter tuning.
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Regarding scalability, future SLAM systems will no longer operate alone, but
instead they will cooperate in distributed mapping. A lot of research is still necessary
to investigate how future systems will share information: whether it will be in a
centralized or decentralized way. Scalability also concerns the efficient processing
of the tremendous amount of sensor data, the representation of the map and the
aggregation of new data in this map. Our work has taken some major steps towards
efficiency, but more research is needed to learn which information is redundant or
should be forgotten.

Apart from the map, the representation of the SLAM pose graph is another
future research topic. It is clear that when we visit the same place over and over
again, new nodes will contribute less and less in improving the overall map. Future
SLAM systems will thus have to integrate pruning mechanisms to lower the number
of poses in the SLAM graph. In order to come to a truly scalable system, the use of
continuous-time trajectory estimation will be necessary. Instead of working with
discrete poses, temporal basis functions, such as B-splines, will be used to keep the
state size manageable.

Also, the number and variety of devices that will integrate SLAM will increase
tremendously in the future and will no longer be limited to well-equipped laptops
in research labs. Instead they will be incorporated in domestic robots, inspection
robots, surveillance robots or cleaning machines in public places and so on. They
will be integrated in drones in order for them to operate in indoor environments
or hard-to-reach areas where there is no GPS signal. All these platforms have in
common that they are small and resource-constrained, both in terms of computation
power and battery live. More research is therefore needed to make SLAM systems
even more efficient.

Finally, a major future research direction is the domain of semantic SLAM
which will provide rich object-level maps [Feng 19]. An important role in this will
be played by machine learning and more specifically by deep learning. The maps
of the future will no longer be purely metric, but will contain semantic information
of the scene which will be derived from classification using deep learning. The
supremacy of CNN-based descriptors for classification is by now a commonly-
known fact, but they will also be applied to perform other subtasks of SLAM such
as feature matching, automatic parameter tuning or place recognition.

9.2.2 Beyond SLAM

Besides the open challenges in SLAM, there is still research needed in view of
fully automated 3D mapping or modelling. One future research direction is the
simplification of 3D models generated by SLAM. The main output of our system is
a large aggregated point cloud. Even though there is an octree datastructure and
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surface reconstruction behind it, it was mainly developed in order to increase the
precision of the 3D map and to reduce the noise and the overall drift. The reduction
of noise facilitates the creation of a triangular mesh, but the triangular mesh is often
still too complex to be used for other purposes such as VR-rendering or 3D-printing.
More research on automated mesh decimation techniques or re-topology methods
is, therefore, needed. In order to obtain a 3D model suited for example in CAD
design or to be 3D-printed we still need an efficient conversion tool. In several
applications such as construction site monitoring, one is often also interested in
creating a building information model (BIM) from the scan data, a problem usually
referred to as scan2BIM. To come to fully automated scan2BIM, current techniques
to derive semantic information from the scene still need to be improved.
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