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Abstract

Hyperspectral imaging (HSI) is an imaging technique that captures more than just the
visible spectrum; each pixel in a hyperspectral image comprises a spectrum that contains a wide
and contiguous range of wavelengths with a fine spectral resolution. As opposed to classical
RGB images, which only bear information about the visible spectrum (i.e. wavelengths we
perceive as being red, green and blue), hyperspectral images are able to capture unique details
in the scene under consideration, such as chemical decomposition and physical properties.
Hyperspectral imaging is therefore a promising technique in the area of remote sensing, whose
goal is to acquire information about objects without making physical contact with it. In
this paper, the classification of different types of land cover and objects within hyperspectral
images is considered. Classification of HSI images poses many challenges, among which the
most prominent are the high dimensionality of the data and the scarcity of labeled training
samples. This work provides a structured overview of HSI classification techniques along with
the most common datasets and classification performance metrics. Typical challenges in HSI
classification are also outlined, along with some state-of-the-art techniques that try to solve
these. Ultimately, a comparison of the classification performance of some of these techniques is
given, along with a personal take on future developments in the area of HSI classification.

1 Introduction

Since the 1970s, images in which pixels contain more
information than just the visible spectrum, have been
acquired and analysed by scientists [1]. The first Earth-
observing satellite, launched in 1972 with the intent
to study and monitor our planet’s landmasses was
NASA’s Landsat 1 [2]. It was able to obtain informa-
tion on agriculture, forestry, geology, hydrology, geog-
raphy etc. by employing a multispectral scanner (MSS)
that recorded data in four spectral bands: a green, a
red and two infrared bands. Since then, capture and
imaging modalities, processing hardware and process-
ing techniques have made a huge leap forward and the
resulting amount of information that can be extracted
from these types of images has grown significantly.

Whereas multispectral imaging (or multiband imag-
ing) measures a limited amount of discrete and spaced
spectral bands, hyperspectral imaging measures
continuous spectral bands with a fine wavelength
resolution. Therefore, a pixel in a hyperspectral
image is often referred to as a hyperpixel and contains
information from twenty up to several hundreds of
bands [3]. An example of a hyperspectral image
(visualised as a 3D cube) is shown in Figure 1.
The goal of hyperspectral image classification is to
determine what type of ground cover or object is
captured for each pixel of the image. This task may
be more challenging than it seems at first glance:
what if, for instance, one pixel covers more than one

type of ground cover? What about distortions caused
by the capturing equipment and atmosphere? The
classification is further impeded by the limited amount
of labelled training samples (ground truth images) and
the scarcity of openly available hyperspectral image
datasets in general, giving rise to the so called Hughes
phenomenon which will be explained in section 3. To
address these and several other challenges, numerous
techniques have been developed, of which the most
promising are based on deep learning.

Figure 1: Example of a hyperspectral image [4]

This paper starts by giving an introduction to the
most widely used hyperspectral image datasets, fol-
lowed by an overview of the most prominent hyper-
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spectral image classification techniques and with some
commonly used metrics to evaluate their performance.
In Section 3, the largest challenges in hyperspectral
image classification are introduced and some state-of-
the-art solutions are discussed. In Section 4 a compar-
ison of the classification performance of some of these
techniques is given, along with a personal take on fu-
ture developments in the area of hyperspectral image
classification. Section 5 concludes this paper.

2 Overview

This section aims at summarising the most preva-
lent approaches for hyperspectral image classification.
First, an overview of the most prevalent datasets is
given. Next, insight is given into the historical devel-
opments within this research domain using a timeline.
Afterwards, classical learning approaches will be dis-
cussed, which form the baseline and inspiration for
more advanced deep learning-based methods, which
will be detailed after it. Finally, the most widely used
metrics to evaluate the performance of these methods
are presented.

2.1 Overview of HSI data

Hyperspectral images can be seen as three-dimensional
data cubes. Two dimensions of this cube convey spa-
tial information, the third dimension consists of
(hundreds of) spectral bands that range from the visi-
ble light (∼400nm) to shortwave infrared (∼1000nm).
The vast amount of information in a hyperspec-
tral image makes it appealing for land class target
detection (i.e. finding a specific type of soil) and
classification applications. The spatial information
can be used to extract properties such as size, shape
and texture while the spectral information captures
physical structure and chemical composition.
The most widely used datasets for HSI classification
are named Indian Pines, Salinas, University of Pavia,
Kennedy Space Center (KSC), Botswana and Data
Fusion Contest (DFC) 2018. The properties of the
datasets are presented in Table 1 and include the
total number of pixels in the image, the number of
spectral bands, the range of these bands, the ground
sample distance (GSD, i.e. the spatial resolution), the
number of labels (i.e. labeled pixels), the number of
ground cover classes and the capturing method. The
datasets are ranked by prevalence within the citations
of this paper: the Indian Pines and University of
Pavia appear in 90.5% of them, followed by Salinas
at 66.7% and Kennedy Space Center at 33.3%.
Figure 2 shows a false colour map of the Salinas
dataset along with the corresponding ground truth
map. The use of false colours is required, as hy-
perspectral images contain spectral information in
regions that are invisible to the human eye. The 16

different classes, which are manually labelled, are
represented using different colours. The figure also
illustrates another challenge for classification: the
imbalance between the classes. Minority classes (e.g.
Lettuce romaine 7wk) tend have lower classification
accuracies when compared to larger classes (e.g.
Grapes untrained) if this is not taken into account
during the training process. A stratified sampling
strategy during training (i.e. balancing the number of
training samples for every class) can counter this issue,
but has the drawback that not all labelled samples of
the majority classes are used.

2.2 Timeline

The historical evolution of popular HSI classification
techniques is visualised in Figure 3 using a timeline
that is based on Web of Science data. It shows the first
occurrence of a given classification technique that gave
rise to research in subsequent years. Hidden Markov
random fields, for example, were already introduced
around 2004, but only broke through about 10 years
later [6]. The techniques shown will be discussed in
the next two subsections and the timeline can there-
fore be used as a guidance. However, the broad trends
will already be discussed in the next paragraphs.
The oldest widely used classification technique, unmix-
ing, is purely based on linear algebra and was there-
fore already introduced mid 1990s. The technique was
superseded by classical machine learning techniques
such as K-means clustering, support vector machines
(SVM), decision trees and Bayesian models in the
early 2000s. These techniques classify each pixel in-
dependently, thereby discarding any spatial informa-
tion. Other spectral classifiers followed, such as man-
ifold learning techniques, random forests and multi-
nomial logistic regression (MLR). It was only around
2013 when spatial-spectral classifiers, which also take
into account the spatial information, became popular,
among which hidden Markov random fields (HMRF)
[7].
At the same time, deep learning approaches were be-
ing proposed to tackle the issue of the limited number
of training samples. Because of their better classifica-
tion performance, they became the de facto standard
for hyperspectral image classification. Most modern
techniques are mostly based on convolutional neural
networks (CNNs), which were introduced around 2015.
They form the basis for the current state of the art, in-
cluding techniques such as residual networks (ResNet),
capsule networks (CapsNet) and generative adversarial
networks (GAN), which are able to achieve near-perfect
classification scores.
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Table 1: Most widely used datasets in HSI classification, adapted from [5].

Dataset Pixels Bands Range GSD Labels Classes Mode

Pavia (U & C) 991,040 103 0.43-0.85 µm 1.3 m 50,232 9 Aerial
Indian Pines 21,025 224 0.4-2.5 µm 20 m 10,249 16 Aerial

Salinas 111,104 227 0.4-2.5 µm 3.7 m 54,129 16 Aerial
KSC 314,368 176 0.4-2.5 µm 18 m 5,211 13 Aerial

Botswana 377,856 145 0.4-2.5 µm 30 m 3,248 14 Satellite
DFC 2018 5,014,744 48 0.38-1.05 µm 1 m 547,807 20 Aerial

Figure 2: False colour map (a), ground truth map (b) and labels (c) from the Salinas dataset
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Figure 3: Timeline of various methods
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2.3 Classical learning approaches

In the literature, different kinds of supervised and un-
supervised approaches have been proposed to classify
HSI data. A tree-based overview of classical learning
approaches is given in Figure 4, and includes both spec-
tral and spatial-spectral classifiers. The former classi-
fication method does not take into account the spa-
tial relationship between hyperspectral pixels, making
them less robust and less efficient because they cannot
exploit the structural similarity between neighbouring
pixels. In this paper, techniques that are not based
on deep neural networks are considered as a ”classical”
approach.

2.3.1 Supervised methods

Supervised methods usually provide the most accu-
rate results by learning the data relations from a given
training set that contains ground-truth information. A
wide range of traditional, supervised machine learn-
ing patterns have been successfully applied for hyper-
spectral image classification, including support vec-
tor machines (SVM) [8], multinomial logistic regres-
sion (MLR) [9], decision trees and random forests [10],
Bayesian models [11] and manifold learning [12]. MLR
and SVMs are both able to handle big datasets with
a relatively low number of training samples and can
be used for both spectral and spatial-spectral classifi-
cation, for example by using specialised SVM kernels.
Manifold learning tries to simplify the representation
space by assuming that the original datasets lie on a
common manifold in order to tackle the high dimen-
sionality of the HSI data.

2.3.2 Unsupervised methods

Unsupervised methods, while usually being less ac-
curate, do not require a supervised training phase,
making them appealing for scenarios where poor prior
knowledge of the scene is available. In such cases, they
can provide insight into the complex HSI data by un-
covering hidden data interactions and correlations that
can be used for both segmentation and classification
purposes. Unmixing [13] is a classical unsupervised
technique that assumes that a hyperspectral pixel can
be seen as a simple linear combination of the spectra
of the pure materials that make up a scene. By feed-
ing the model with pure material spectra, it is usually
possible to apply linear algebra inversion techniques
and numerical methods to find the most likely com-
position of the hyperspectral pixel [14]. Other unsu-
pervised methods include clustering and segmentation
methods such as K-means clustering [15] and hidden
Markov random fields (HMRF) [16], and aim to im-
prove the classification accuracy of spectral classifiers
by incorporating spatial dependences. The latter is a
statistical segmentation approach that generalises the
idea of a hidden Markov model and assumes that if a

hyperspectral pixel has a certain label, that neighbour-
ing pixels also are very likely to have the same label.

2.4 Deep learning approaches

A drawback of these classical segmentation and clas-
sification approaches is that they require lots of fea-
ture engineering to improve their performance. Deep
learning techniques, on the other hand, are focused on
representational learning, i.e. is the automatic design
of a feature space that is tailored to the objective task
at hand. The joint optimisation of both representation
and classification allows to achieve better performing
models. An overview of the most prevalent deep learn-
ing classification methods is given in Figure 5.

2.4.1 Supervised methods

Supervised or discriminative deep networks work with
labelled information with the goal to categorise new
input data into these labels. Within the deep learning
methods, they are often most efficient and most flex-
ible to train and test. The supervised deep networks
can be seen as a non-linear mapping from the feature
space to the label space, which can allow higher lev-
els of expressibility by using a hierarchy of layers that
are connected through linear or non-linear activation
functions.

Deep fully-connected neural networks (DFCNN) are
a logical replacement of the standard shallow learn-
ing classifiers, because the principle remains the same.
However, DFCNNs can model the classification task
in a finer way and with a better discriminating power
[17][18]. Another type of artificial neural networks are
the recurrent neural networks (RNN), in which con-
nections between nodes form a directed graph along a
temporal sequence. Using a memory of the past infor-
mation, the model allows to exhibit temporal dynamic
behaviour that can be used to process time series. By
treating the spectral dimension of the HSI data as a
time series, i.e. a sequence of reflectances, RNNs can
be used to perform spectral classification [19][20]. It
is also possible to assemble basic function modules or
classifiers and stack them up to each other in order
to learn complex tasks. This is the idea behind deep
stacking networks, which have proven their validity for
hyperspectral image classification [21].

The most widely used supervised deep learning tech-
nique are the convolutional neural networks (CNN).
They take advantage of the hierarchical pattern in data
and assemble more complex patterns using smaller and
simpler patterns. On the scale of connectedness and
complexity of deep neural networks, CNNs are on the
lower extreme. Convolutional neural networks are com-
posed by a set of blocks that transform input volume
to an output volume of neuron activations, which will
serve as the input to the next block. In contrast to
multilayer perceptrons (MLP), the neurons of a block
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are not fully connected to all neurons of the previous
layer. CNNs can therefore be seen as regularised ver-
sions of multilayer perceptrons that are much less prone
to overfitting [22].

CNNs can be further decomposed in the context of
HSI classification, depending on whether they use spec-
tral, spatial or spatial-spectral features. Considering
only the spectral data gives rise to a 1D CNN archi-
tecture: the inputs to the network are N × 1 input
vectors, with N the number of spectral bands. Each
pixel is therefore assigned a single land cover (mate-
rial) type [23]. In contrast, models can also only take
into account the spatial information in the hyperspec-
tral image, resulting in a 2D CNN architecture: the
inputs to the network are K × K patches of neigh-
bouring pixels. To add spectral information to these
models, a pre-processing step can for example flatten
the spectral dimension of the hypercube [24] or force
it into a three-channel image such that traditional 2D
CNNs can be borrowed from traditional computer vi-
sion applications [25]. It is also possible to combine
spatial and spectral classifiers, resulting in a 1D + 2D
CNN architecture. In this case, 1D convolution kernels
are iteratively applied to the spectral dimension, while
2D kernels are being used for the spatial dimensions.
Eventually, a third classifier or a stack of fully con-
nected layers can perform the final classification step
[26]–[28]. Taking full advantage of the spatial-spectral
characteristics of the 3D remote sensing data can be
done by using a three-dimensional kernel that operates
on blocks of size K×K×N , which results in a 3D CNN
architecture. By processing the HSI hypercube as a
whole, higher classification accuracies can be achieved
than using lower-dimensional convolutional neural net-
works [29]. However, too deep or too shallow networks
may lead to poor classification performance. Ge et al.
[30] recently proposed a multibranch neural network
that combines 2D and 3D CNNs to extract image fea-
tures. It combines a 2D CNN that under-utilises the
inter-band correlation of HSIs with a 3D CNN that de-
pends on a more complex model, achieving even better
classification scores.

A drawback of higher dimensional CNNs is that they
require a lot of training data to capture the full rela-
tionship between the input and the labels. More recent
research has been been focusing towards reducing this
need of training data, which is very scarce in the con-
text of HSI.

Capsule networks (CapsNet) is such a technique that
requires less training data. The network is able to cap-
ture (parts of) objects in the scene, along with pa-
rameters that describe it (the associated instantiation
parameters). Also, it is able to capture spatial hierar-
chies within the image [31]. The functioning of capsule
networks is detailed in Section 3.1.3.

Another technique that is being adopted is the use
of residual networks (ResNet). Very deep neural net-
works are difficult to train because of problems related

to vanishing and exploding gradients: the accuracy of
a network first saturates and then degrades rapidly as
more layers are added. This is because of the nature
of gradient-based learning methods: in a network of N
hidden layers, N derivatives of the loss function will
be multiplied together. If the derivatives are large, the
gradient will increase exponentially while propagating
down the model until it eventually ”explodes”. Al-
ternatively, the gradient tends to ”vansish” when the
derivatives are small. ResNets try to tackle this is-
sue by introducing skip-connections to jump over some
layers. The activation from one layer is hence fed to an-
other layer, typically two or three layers deeper in the
neural network. Such a residual unit can be replicated
many times, which allows to train very deep networks
(often more than 100 layers) that can outperform stan-
dard deep CNNs in HSI analysis and classification [32].
ResNets have also been used in combination with fully
convolutional networks (FCN), resulting in a lot less
parameters to tune and a speedup in inference time as
FCNs are able to predict all hyperspectral pixels in an
input patch, rather than just the central pixel [33].

2.4.2 Unsupervised methods

Unsupervised deep networks (generative networks)
look for patterns between pixels through capturing
high-order correlation of data [22]. A possible approach
to unsupervised spatial-spectral classification is to use
one of the following unsupervised techniques to one-
dimensional standard descriptors. The descriptor vec-
tor typically consists of the full radiometric spectrum
of a pixel, to which the most prominent spatial features
(e.g. using PCA), calculated on a local neighbourhood,
are concatenated [5].

auto-encoders are neural networks in which the de-
sired output is equal to the input and passes through
a single layer of neurons (linear) or multiple layers
(non-linear). They effectively learn efficient data cod-
ings and turn out to be more efficient than standard
PCA. auto-encoders can for example be stacked to de-
noise images and play a crucial role in reducing the
dimensionality of hyperspectral data [34]. Other unsu-
pervised techniques include restricted Boltzmann ma-
chines (RBM) and deep Boltzmann machines (DBM),
which are variants of regular Boltzmann machines that
can learn a probability distribution over its set of in-
puts [35]. In RBMs, neurons must form a bipartite
graph, whereas in DBMs, there are multiple layers of
hidden random variables. Furthermore, simple unsu-
pervised networks such as auto-encoders and RBMs
can be used to compose a deep belief network (DBN),
where each hidden layer of a sub-network serves as the
visible layer for the next. The core of DBNs is a greedy
learning algorithm that optimizes the network weights
layer by layer. Li et al. [36], for example, apply this
technique on airborne HSI data for feature extraction
and classification. Finally, it should be noted that con-
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volutional neural networks can also be used for unsu-
pervised learning. Romero et al. [37] for example use
a single-layer CNN in an efficient algorithm for unsu-
pervised learning of sparse features.

2.4.3 Semi-supervised methods

A third and more recent deep learning approach is
making use of both labelled and unlabelled data for
training. The most promising HSI classification tech-
nique in this category is the use of generative adver-
sarial networks (GAN). A GAN uses labelled training
data to generate new samples that have the same prop-
erties (and hence look at least superficially authentic to
human observers) as the original data. Internally, they
consist of 2 networks, a discriminator and a generator
network. The generator tries to generate new samples
while the discriminator tries to distinguish real sam-
ples from the generated samples. Several methods have
been proposed in the literature that outperform state-
of-the-art HSI classification techniques by combining
GANs and CapsNets [38]–[40].

2.5 Performance metrics

In image classification applications, three metrics are
widely used: overall accuracy (AO), average accuracy
(AA) and Cohen’s kappa coefficient.
The overall accuracy is equal to the percentage of cor-
rectly classified pixels [30] as shown in the following
equation.

AO =
Nc

Nt
,

with Nc equal to the amount of correctly classified sam-
ples and Nt equal to the total number of samples.
Average accuracy denotes the mean value of the overall
accuracies measured over each class [30]. It is calcu-
lated as follows:

AA =

∑
c∈C Ac

|C|
,

where Ac denotes the overall accuracy calculated from
the samples in a specific class c and C is the set of all
classes.
Lastly, the Kappa coefficient states the degree of agree-
ment between the true values and the predicted values
and is calculated as follows [41]:

κ =
AO − pe
1− pe

,

where pe denotes the chance agreement and is defined
as

pe =

∑|C|
i=1N.iNi.

(Nt)2
,

with N.i and Ni. the sums of elements in the i-th col-
umn and the i-th row of the confusion matrix, respec-
tively. Nt is equal to the total number of samples as
mentioned earlier.

3 Challenges

Two major challenges in hyperspectral image classifi-
cation, the imbalance between the high dimensionality
of the data and the limited number of training samples
available, are embodied in what is called the Hughes
phenomenon [42]. It states that classification accuracy
increases gradually with a growing number of spectral
bands or dimensions, but decreases dramatically when
the band number reaches some value. This is because
the separability of classes increases with increasing di-
mensionality, but so does the number of statistical pa-
rameters defining the classes. Since there are only a
fixed number of training samples for deriving the sta-
tistical parameters, at some point the accuracy of the
estimation must begin to decrease [43]. This section
presents and discusses several solutions that tackle this
issue.

3.1 Limited training data

Supervised classifiers are often preferred over unsuper-
vised ones because of their capacity to provide high
accuracies, but these methods may be affected by the
limited availability of training samples [42]. The lack
of training data usually to overfitting if the model is
complex enough. Typical approaches used to reduce
overfitting for HSI classification include:

• Using a smaller kernel size in CNN methods [44].

• Introduce pooling layers in CNN methods to re-
duce the number of parameters in the network [30].

• The use of dithering can also mitigate the issue
of overfitting in CNNs [45]. In dithering, additive
Gaussian noise is added to the training samples to
suppress inherent nonlinear distortion and aliasing
introduced by the neural network, hence regular-
izing the CNN.

• For neural networks, using of a dropout mecha-
nism that sets output of some randomly selected
hidden neurons to 0 such that they are not used in
the backpropagation. This is especially beneficial
for fully connected layers. [42].

• Apply L2 regularisation, although existing meth-
ods do not seem to suffice [42].

Unfortunately, a recurring problem within HSI clas-
sification is the lack of good labelled data. The number
of training samples in the HSI field is rather limited
compared to the number of available spectral bands
[32]. The reason for this is that labelling HSI data is a
labour intensive process [40].

This fact typically results in an under-complete
training process which is prone to overfitting, i.e., the
Hughes phenomenon. Additionally, spectral redun-
dancy and noise are often present in HSI, since con-
tiguous bands tend to be highly correlated, and the
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physical limitations of the acquisition technology al-
ways introduces some sort of signal perturbations [32].
The robustness of a model can thus be improved by ei-
ther augmenting the training set or using a model that
requires less data.

3.1.1 General approaches

Yushi Chen Et Al. [46] uses radiation-based and
mixture-based sampling as a form of image augmen-
tation.
Radiation-based sampling changes the radiation within
an image (light intensity), simulating the capturing
procedure, since often times light conditions are dif-
ferent resulting in different images.
Mixture-based augmentation mixes two samples from
the same class. Using ratios it is able to create a new
sample. Mixture-based augmentation is often used in
remote sensing because of the long distance between
object and sensor.

Using their 3D CNN, they achieve state-of-the-art
results. Combining both 3D CNN and the aforemen-
tioned techniques they show improvement over using
3D CNN alone. These augmentations are straightfor-
ward and effective, giving them a strong advantage.

Mercedes E. Paoletti [42] addresses limited availabil-
ity of training samples by using semi-supervised and
active learning methods. Such combinations have been
done with morphological component analysis (MCA),
which decomposes images into texture and cartoon
parts or into a smoothness and texture component
in case of multiple morphological component analysis
(MMCA).

More recent methods use generative models to sim-
ulate realistic hyperspectral scenes, such as Gaussian
mixture models (GMM) and generative adversarial
networks (GANs) [47]. They are able to synthesise
hyperspectral pixels or patches of pixels from scratch.
While the benefit of adding new training data gener-
ated by such a model is not really substantial at this
point, these models will likely be used to estimate spe-
cific domain specific image transformations such as at-
mospheric corrections and transfer function estimation
between sensors and image denoising.

Finally a new type of network called a capsule net-
work (CapsNet) [48] promises an improvement over
traditional CNN architectures even while dealing with
limited training samples and providing better accura-
cies. The next two sections will cover GANs and Cap-
sNets in more detail.

3.1.2 Generative adversarial networks

Ian Goodfellow et al. [47] introduced the Generative
adversarial network or GAN for short. A GAN uses
training data to generate new samples that have the
same properties as the original data.

A GAN conists of 2 networks, a discriminator and a

generator. The generator tries to generate new samples
while the discriminator tries to distinguish real samples
from generated samples. In this way the two networks
contest with each other, thereby improving each other
during training.

Odena et al. [49] used a method where the discrim-
inator could also classify samples given labelled data.
In this way a GAN offers two functions, generating
samples and classifying samples.

Chongxuan Li et al. [29] extended GAN to triple
GAN, by adding a third network called a classifier.
Given labels, the classifier will classify either generated
or true samples and classify them. This alleviates some
of the pressure on the discriminator, allowing better re-
sults.

GAN and its variations have recently become popu-
lar for image augmentation. Making it an ideal candi-
date for HSI classification were a lack of data poses a
problem.

Lin Zhu. et al. [38] introduced a GAN for the first
time to do HSI classification. Both a 1D-GAN and 3D-
GAN was introduced, the former being a spectral clas-
sifier and the latter a spectral-spacial classifier. The
1D-GAN uses one single spectral pixel to feed the net-
work, leaving any spatial information behind, where
the 3D-GAN uses a region of pixels to feed to the net-
work. Both use a similar design based on the work
of Ian Goodfellows [47] and Odena [49], as shown in
Figure 6. Internally the discriminator and generator
are both a type of CNN’s. Hyperspectral images have
high dimensionality since they consist of several spec-
tral bands (ranging from twenty up to several hundreds
of bands [3]). Therefore it is difficult to train the gen-
erator. Adjustments where made to deal with the high
amount of redundancy. Notably principal component
analyses (PCA) was done. For the 1D-GAN it has
been found that extracting 10 principle components
was the best. For 3D-GAN, 3 principle components
proved sufficient because of the additional presence of
spatial information.

Two networks need to be trained, therefore one
drawback of using a GAN is training time. Neverthe-
less Lin Zhu et al. [38] were able to get competitive re-
sults using a GAN under the presence of limited train-
ing samples, highlighting the promise of using a GAN
for HSI classification.

Finally, Xue Wang et al. [50] applied a Triple GAN
in conjunction with a capsule network.

The input to the network is a concatenated 1D spec-
tral vector and a 1D spatial vector. The 1D spectral
vector are the spectral bands of 1 pixel. The spatial
vector is obtained by applying PCA to the image, re-
taining three components. Afterwards using a patch of
pixels as the 1D spatial vector. This approach proved
to be unsuitable. The authors noted that an end-to-end
approach is better, i.e. avoiding handcrafted features
and using spectral-spatial features simultaneously.

Their approach showed that the combination of both
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Figure 6: Architecture of a GAN for HSI classification, proposed by Lin Zhu. et al. [38]

networks resulted in better results when only 10% la-
belled samples were present compared to using only a
Triple GAN, again achieving competitive results.

3.1.3 Capsule Networks

Geoffrey Hinton et al. [48] put forward Capsule Net-
works for the first time. A capsule network works a bit
like inverse rendering [48]. It is able to recognise ob-
jects within an image and its associated instantiation
parameters. It is meant to overcome the drawbacks
of CNNs. Such network is able to capture spatial hi-
erarchies (relationships between simpler features that
make up a larger feature [51]) and needs less training
data.

The architecture of a capsule network is typically
split up in an encoder and a decoder network. The en-
coder encodes the image into its classes. The decoder
tries to reconstruct the original image and is used as
regulariser. It forces the capsule layers to capture fea-
tures that are useful to reconstruct the image [51]. The
decoder consists of: a convolutional layer, primary cap-
sule layer and a digitCaps layer (capsule layer). The
encoder consists of a three fully connected layers. A
capsule layer consists of capsules.

A capsule captures an object. The output of each
capsule is an activity vector. The length of the activ-
ity vector tells us the likelihood of finding that object.
For example the probability of finding a circle in the
image. The orientation of the activity vector tells us
the instantiation parameters of that object, for exam-
ple the color of the circle.

The ReLu activation function typically used in CNNs
is replaced by a squashing function, along with max
pooling that is replaced with routing by agreement [31].
It will take a weighted sum of the activation outputs of
the previous layer and create a vector that is scaled be-
tween zero and one, while retaining direction [40]. The
goal of the squashing function is to scale short vec-
tors to almost zero and long ones to almost one [48].
Routing by agreement ensures that when activity vec-

tors from a higher-level capsule have a big scalar prod-
uct with predictions from lower-level capsules, that the
output of these lower-level capsules are preferred to be
send to these [48]. Interestingly, the digitCaps layer
has the same amount of capsules as classes present.

The fact that they capture spatial hierarchies, recog-
nise classes and are able to deal with less training data
makes them suitable for HSI classification.

Luo et al. [52] used capsule networks for the first
time in HSI classification, but could not find the ben-
efits [53]. Later, Fei Deng et al. [53] and Mercedes E.
Paoletti et al. [31] both released a paper around the
same time applying a capsule network to the task of
HSI classification. Both followed a similar architecture
as described above. A patch of a HSI image is identi-
fied and used as input to the network. Just like a 3D
CNN it is therefore able to capture spatial features.

Fei Deng et al. [54] did not use the decoder network
and used the final capsule layer as the class identi-
fier, where each capsule represented a unique class pre-
sented in the data. The highest output was the iden-
tified class. Notably, they also introduced a dropout
layer in between the convolutional layer and the first
capsule layer, in order to fight overfitting. They also
found that their capsule network showed significantly
higher confidence in predictions.

Mercedes E. Paoletti et al. [31] used an architec-
ture and decoder similar to the one found by Geoffrey
Hinton et al. [48]. They also highlighted that cap-
sule networks had better border delineation (based on
visual identification) within the classified HSI images
compared to other methods.

Finally, both papers were able to achieve state-of-
the-art results while dealing with limited training sam-
ples. Nonetheless, it is worth pointing out that capsule
networks are still in their early days. Nevertheless,
the results point out that capsule networks hold great
promise within the field of HSI classification and deep
learning in general.
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3.2 Dimensionality

As with all learning applications, ”The Curse of Di-
mensionality” also applies for HSI classification. As
discussed in the previous section, good labelled data
is scarce. Combined with the high dimensionality of
the samples this can be detrimental for the accuracy
of the classification [16]. In recent years, spatial infor-
mation is used in conjunction with spectral informa-
tion. These spatial-spectral methods suffer especially
hard from high dimensionality [55]. Several methods
have been developed for learning discriminative, uncor-
related features from this high-dimensional data.

3.2.1 General approaches

Most of the methods mentiones in the literature em-
ploy band selection, which is removing spectral bands
that are do not contain discriminative power or con-
tain outliers. Prime candidates to be cut are bands
with low Signal to Noise Ratio (SNR), saturated bands
and bands related to water absorption [5]. Methods
to remove these outliers include PCA, mutual infor-
mation maximization [56] or an entropy-based metric
[57]. Paoletti et al. [42] propose a novel CNN-based
deep network architecture based on ResNet specifically
crafted to deal with large data cubes. The potential of
available information on each residual block is better
exploited than the traditional ResNet architecture by
using a pyramidal structure: the proposed approach
gradually increases the feature map dimension at all
convolutional layers that make up the –now pyrami-
dal– residual block. This gradually increases the di-
versity of high level spatial-spectral attributes across
layers, enhancing the classification performance of the
network when compared to state-of-the-art HSI classi-
fication methods.

More involved methods are the use of evolutionary-
based optimisation of feature selection.

3.2.2 Auto-encoders

Another way to address the abundance of data in the
hyperspectral images is making use of auto-encoders.
Zhou et al. [55], Zhang et al. [59] and Tao et al. [58]
use different implementations of s to reduce the dimen-
sionality of the hyperspectral data and learn features
in an unsupervised manner.

Tao et al. [58] propose a spectral-spatial feature
learning framework and experimentally show improved
accuracy over previously handcrafted features. They
also demonstrate that their feature learning model can
be shared among multiple related images. Many re-
lated images can thus be efficiently classified since the
feature learning step only needs to be performed once.
Tao et al. use a stacked sparse auto-encoder, a neural
network consisting of multiple layers of basic shallow
sparse auto-encoders (SSAE). In shallow sparse auto-
encoder, the shallow means that only one hidden layer

is present and sparse means that there is a sparsity
constraint on the hidden layer. this encourages the
network to activate a limited part of the network for
a given input and deactivating the rest. The stack of
auto-encoders can be constructed by wiring the out-
put of the hidden layer from one sparse auto-encoder
h1 into the input of the hidden layer of another h2.
This is illustrated in Figure 7. The input x is used to
learn the primary feature h1 = f1(x) (Figure 7 a). This
primary feature is then used as input for a second shal-
low sparse auto-encoder to learn the secondary feature
h2 = f2(h1) (Figure 7 b). Finally, the auto-encoders
are stacked together to form an SSAE (Figure 7 c). The
resulting function transforms an input x to a deep fea-
ture representation h2 = f2(f1(x)). In practice, they
used two SSAE’s, with two hidden layers, in parallel,
one for learning from the spectral data, where every
pixel is represented by a d-dimensional spectral vector.
In the second, each pixel is represented as multiple im-
age patches with different sizes. When both types of
features are learned, they are combined in one feature
vector and fed into a linear SVM for classification.

Zhang et al. [59] propose the use of recursive auto-
encoders (RAE). A binary tree is built where every
node represents an auto-encoder. the leaves of the tree
have the HSI data of one pixel and other nodes take
the combined output of one leaf node and one non-leaf
node as input, except for one, which takes the output
of two leaf nodes as input. To test their features they
use SVM on features learned from the Indian Pines and
Pavia datasets.

Zhou et al. [55] try to reduce the complexity of HSI
classification without a drop in performance. They
propose a compact and discriminative stacked auto-
encoder (CDSAE) with as small a number of hidden
neurons as possible. The proposed framework consists
of two stages, first, one for low-dimensional feature
mapping learning (feature extractor training) and the
latter for the joint training of HSI classifier and fea-
ture extractor. Both spectral and spatial information
is used for feature learning and they use PCA for di-
mensionality reduction. To increase the compactness
and discriminative power of the classifier, each hidden
layer of the CDSAE is fine-tuned with a local Fisher
discriminant regularisation and a diversity regularisa-
tion.

3.2.3 Evolutionary-based optimisation of fea-
ture selection

Exhaustive feature (or band) selection approaches re-
quire huge amounts of computational power and mem-
ory. A new trend to select features is the use
of (gradient-free) evolutionary-based optimisation ap-
proaches, such as genetic algorithms (GA) and particle
swarm optimisation (PSO).

Genetic algorithms (GA) [45] are based on the idea of
biology and evolution. First, the algorithm generates
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Figure 7: Structure of the stacked auto-encoder model [58]

many possible solutions that form a population. The
solutions are scored using a fitness function (objective
function) to decide which solutions are better than oth-
ers. These candidate-solutions are then recombined so
that the best solutions reproduce to form a new gener-
ation of solutions, with the best traits of the previous
solution. This continues until improvement stops or
until some maximum number of generations is reached.
Ghamisi et al. use GA to tune hyperplane parameters
of an SVM by selecting efficient features to be fed to
the classifier.

PSO is similar to GA in that it creates a population
of solutions (or swarm) for each iteration. Each solu-
tion (or particle) in the swarm has a direction and a
velocity. At each iteration, the movement of the par-
ticle is determined by a mixture of the current direc-
tion, the direction of the best point it has found in
the past, and the direction of the best point that the
whole swarm has discovered. The idea is that more
and more particles will eventually move to areas where
better solutions are found, and that the swarm will
eventually converge to the optimal value. Darwinian
PSO (DPSO) also incorporates a natural selection pro-
cess, or survival of the fittest, to enhance the ability
to escape from local optima. To further improve on
premature convergence of the swarm to a non-optimal
point, the concept of fractional calculus is used to con-
trol the convergence rate of the DPSO, leading to a
fractional-order Darwinian PSO (FODSPO). Ghamisi
et al. propose a self-improving CNN (SICNN) that
addresses the lack of available training samples by au-
tomatically selecting the best set of bands suitable for
the defined network. They use FODPSO to select an
optimal set of features and use the overall classification
accuracy on validation samples as fitness value. Their
results indicate that the method can significantly im-
prove the classification accuracies of the CNN when
there are only a limited number of training samples
available.

4 Discussion

4.1 Evaluation

Paoletti et al. [42] showed that MLP is usually faster
than CNN as shown in Table 2. However, CNN results
in much better accuracies than MLP.
Differences between 1D CNN, 2D CNN and 3D CNN
are also demonstrated. As 1D CNN only explores the
spectral features and 2D CNN only the spatial features,
it is self-evident that 3D CNN, which handles both spa-
tial and spectral features, performs better accuracy-
wise. The difference in overall accuracy between 1D
CNN and 2D CNN is visibly smaller than the difference
between 2D CNN and 3D CNN. However, the differ-
ence between the average accuracy between 1D CNN
and 2D CNN is greater than the difference between 2D
CNN and 3D CNN. These observations are also valid
for the University of Pavia dataset as can be seen in
Table 3.

In Figures 8, 9 and 10, the accuracy measurements
of different methods on the Indian Pines, Salinas and
University of Pavia datasets are shown. The graphs
were compiled with data from [3], [7], [16], [22], [30]–
[32], [38], [40], [44]–[46], [53]–[55], [59]–[63]. It is impor-
tant to note here that these measurements can be taken
from a very different environment e.g. the amount of
classes can be cropped, the amount of test samples per
class can vary, etc.
It is remarkable that the average accuracy does not
always scale compared to the Kappa coefficient and
average accuracy. This is the case for the method with
recursive auto-encoders for the Indian Pines data set.
In [59] it is however not mentioned what the cause of
this behaviour is.
It can also be seen that all the accuracy measures of the
most recent methods have values close to 100. There-
fore, we can ask ourselves whether much improvement
is still possible today.
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Table 2: Accuracies and runtime obtained by different neural networks tested using the Indian Pines dataset

Overall Accuracy Average Accuracy Runtime (sec.)

MLP 84.60 91.66 0.18
1D CNN 87.81 93.12 457.80
2D CNN 89.99 97.19 357.00
3D CNN 97.56 99.23 1675.20

Table 3: Accuracies and runtime obtained by different neural networks tested using the University of Pavia
dataset

Overall Accuracy Average Accuracy Runtime (sec.)

MLP 88.20 90.39 0.15
1D CNN 92.28 92.55 994.80
2D CNN 94.04 97.52 607.19
3D CNN 99.54 99.66 2769.00
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Figure 8: Accuracies of the Indian Pines dataset
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Figure 10: Accuracies of the University of Pavia dataset

13



4.2 A personal take

We are able to recognise 3 major items that have a big
impact on the future of HSI classification these are:

• New datasets. Methods from past years are
in general able to obtain an accuracy of 95% or
more. This makes it difficult to distinguish differ-
ent models. Furthermore, it illustrates that there
is not much room to grow. New, more challeng-
ing datasets could differentiate promising methods
better.

• Train models on more general data than one
specific set. This way it can classify more diverse
problems. Variability between datasets, spatial
and spectral resolutions will pose a challenge.

• Identify unknown classes. Future work could
focus on identifying unknown classes especially
when they are scarce, to further improve HSI clas-
sification by rejecting unknown classes[7].

4.3 Trend

We can see that 3D CNN’s are a true and tested clas-
sification method. A lot of research has been done on
the subject and in recent years the accuracy is very
high. A relative newcomer is the capsule network but
it shows a lot of promise and will probably achieve a
near perfect accuracy in the coming years. The ad-
dition of unknown classes will probably be explored
further as well.

5 Conclusion

This overview paper first introduced hyperspectral
imaging and classification of these images. With the
understanding of HSI classification we established a
structured overview of the different deep learning tech-
niques available. These were structured by way of a
tree representation, making the current landscape in-
terpretable. Each technique was shortly covered and
a timeline was able to further visualise the evolution.
Additionally the most commonly used datasets and
their characteristics were covered.

Subsequently two of the major challenges within hy-
perspectral imaging were covered. Namely, limited
training samples and dimensionality reduction Both
stemming from Hughes Phenomenon: the imbalance
between the high dimensionality of the data and the
limited number of training samples available [42]. The
first challenge covered GANs and Capsule networks
more in depth, highlighting the influence of augmen-
tation and using a model that uses less training data.
The second challenge covered auto-encoders in detail
as an answer for dimensionality reduction.

Finally a discussion surrounding the current state of
the art was made. An evaluation of the accuracy of dif-
ferent deep learning approaches was given. Next, our
personal take was expressed. Lastly, a general trend
within the field was recognised, confirming that 3D
CNNs generally offer the highest accuracy. We could
recognise that techniques such as Capsule Networks
that mitigate the shortcomings of CNNs further im-
prove accuracies, pushing the field in that direction.
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