
ARTIFICIAL INTELLIGENCE (E016350)
Prof. Aleksandra Pizurica

AY 2024/2025

Solutions: Inference in Bayesian networks

1. Consider the Bayes’ net given below. Remember that X ⊥⊥ Y reads as “X is independent of
Y given nothing”, and X ⊥⊥ Y | {Z,W} reads as “X is independent of Y given Z and W”.
For each expression, indicate whether it is guaranteed to be true or not.

1) V ⊥⊥ Z

2) V ⊥⊥ Z | T
3) U ⊥⊥ V

4) U ⊥⊥ V | W
5) U ⊥⊥ V | X
6) U ⊥⊥ V | Y

7) U ⊥⊥ V | Z
8) W ⊥⊥ X

9) X ⊥⊥ T | V
10) X ⊥⊥ W | U
11) Y ⊥⊥ Z

12) Y ⊥⊥ Z | T

13) Y ⊥⊥ Z | X

14) Y ⊥⊥ Z | V

15) W ⊥⊥ Z | V

16) U ⊥⊥ Z

17) U ⊥⊥ Z | Y
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Solution: We solve this exercise by using the d-separation algorithm
(see the corresponding theory slides):

1) Not guaranteed
2) Guaranteed
3) Guaranteed
4) Not guaranteed
5) Guaranteed
6) Not guaranteed

7) Guaranteed
8) Not guaranteed
9) Guaranteed

10) Not guaranteed
11) Not guaranteed
12) Guaranteed

13) Not guaranteed
14) Guaranteed
15) Guaranteed
16) Guaranteed
17) Not guaranteed

2. Consider Bayesian networks from Figure below, where S = Smoking, L = LungCancer,
C = Cough, B = BiopsyTest (BiopsyTest is positive only if the result of the test is positive
for cancer). All variables are Boolean and the test population consists of 60-years old people
who are not smokers or who have smoked for the last 40 years.

Figure 1: Examples of Bayesian networks.

(a) Which networks are correct, based on the common knowledge about this disease?

(b) Which network has the least amount of parameters? Why?

(c) Write reasonable values for conditional probabilities for the node C in the network (ii).

(d) Using the network (ii), derive a symbolic expression for P(B | S) in terms of conditional
probabilities that should be available in the CPT tables (do not use any concrete values
for the entries in the CPT tables).

(e) Make a similar derivation for P(L | B), also for the network (ii).

Solution:

(a) (ii) is correct based on the common knowledge. (Network (i) is fully connected, so
this answer would also be accepted as an additional one because this network can
represent any particular joint probability of the four involved random variables).

(b) (ii). The number of free parameters for this network is 4+2+2+1=9, while for all
other networks this number is at least 11 (networks (iii) and (iv) ) or larger (15 for
network (i)).
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(c) P(C = true | L, S) = 〈0.1, 0.7, 0.6, 0.8〉 for L, S taking the values FF , FT , TF , TT ,
respectively. FF should be the smallest and TT should be larger than FT and TF .

(d) P(B | S) =
∑
l

P(B | l)P(l | S)

(e) P(L | B) = αP(B | L)P(L) = αP(B | L)
∑
s

P(L | s)P (s)

3. Suppose that a patient can have a symptom (S) that can be caused by two different diseases
(A and B). It is known that the variation of gene G plays a big role in the manifestation of
disease A. The Bayes’ Net and corresponding conditional probability tables for this situation
are shown below. For each part, you may leave your answer as an arithmetic expression.

P(G)
g 0.1
¬g 0.9

P(A | G)
a g 1.0
a ¬g 0.1
¬a g 0.0
¬a ¬g 0.9

A 

G 

S 

B 

P(B)
b 0.4
¬b 0.6

P(S | A,B)
s a b 1.0
s a ¬b 0.9
s ¬a b 0.8
s ¬a ¬b 0.1
¬s a b 0.0
¬s a ¬b 0.1
¬s ¬a b 0.2
¬s ¬a ¬b 0.9

(a) Compute the following entry from the joint distribution:
P (g, a, b, s) =

(b) What is the probability that a patient has disease A?
P (a) =

(c) What is the probability that a patient has disease A given that they have disease B?
P (a | b) =

(d) What is the probability that a patient has disease A given that they have symptom S
and disease B?
P (a | s, b) =

(e) What is the probability that a patient has the disease carrying gene variation G given
that they have disease A?
P (g | a) =

(f) What is the probability that a patient has the disease carrying gene variation G given
that they have disease B?
P (g | b) =

3



Solution:

(a) P (g, a, b, s) = P (g)P (a | g)P (b)P (s | b, a) = (0.1)(1.0)(0.4)(1.0) = 0.04.

(b) P (a) = P (a | g)P (g) + P (a | ¬g)P (¬g) = (1.0)(0.1) + (0.1)(0.9) = 0.19.

(c) We can easily infer from the graph of the Bayes’ net that A ⊥ B so:

P (a | b) = P (a) = 0.19.

(d) By using similar reasoning as in the previous exercise, we obtain:

P (a | s, b) =
P (a, b, s)

P (a, b, s) + P (¬a, b, s)
=

P (a)P (b)P (s | a, b)
P (a)P (b)P (s|a, b) + P (¬a)P (b)P (s|¬a, b)

=
(0.19)(0.4)(1.0)

(0.19)(0.4)(1.0) + (0.81)(0.4)(0.8)
=

0.076

0.076 + 0.2592
≈ 0.2267.

(e)

P (g | a) =
P (g)P (a | g)

P (g)P (a | g) + P (¬g)P (a | ¬g)

=
(0.1)(1.0)

(0.1)(1.0) + (0.9)(0.1)
=

0.1

0.1 + 0.09
= 0.5263

(f) It can be infered from the graph of Bayes’ net that B ⊥ G, so we get:

P (g | b) = P (g) = 0.1.
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