
ARTIFICIAL INTELLIGENCE (E016350)
GHENT UNIVERSITY

AY 2024/2025

Prof. Aleksandra Pizurica
Asst. Prof. Nicolas Nadisic

E-mail: ai@lists.ugent.be

Solutions: Solving problems by searching

1. [R&N, 3.17] Which of the following are true and which are false? Explain your answers.

(a) Depth-first search always expands at least as many nodes as A∗ search with an admissible
heuristic.

(b) h(n) = 0 is an admissible heuristic for the 8-puzzle.

(c) A∗ search is of no use in robotics because percepts, states and actions are continuous.

(d) Breadth-first search is complete even if zero step costs are allowed.

(e) Assume that a rook can move on a chessboard any number of squares in a straight line,
vertically or horizontally, but cannot jump over other pieces. Manhattan distance is an
admissible heuristic for the problem of moving the rook from square A to square B in
the smallest number of moves.

Solution:

(a) False: Depth-first search (DFS) is neither optimal nor complete, so it may come
with a sub-optimal solution at an earlier stage than A∗ (expanding less nodes). For
instance, DFS could expand 1 node, with a higher cost than A∗, while A∗ would
expand more nodes than DFS to find an optimal path to the goal (with a lower
cost but a “longer” path). A∗ largely dominates any graph-search algorithm that is
guaranteed to find optimal solutions.

(b) True: For a heuristic function h(n) to be admissible, we require that it never overesti-
mates the real cost to reach the goal. If we consider the path costs to be non-negative
(as it is usually done), then h(n) = 0 satisfy mentioned requirement. Note, however,
that using this heuristic is the same as using Uniform-cost search, an uninformed
search strategy, so we are not using any advantage of an informed search.

(c) False: It is a fact that the world is continuous, but it is also true that usually we use
discretization at some extent to solve problems that otherwise would be infeasible
or harder to manage. Also, A∗ search is often used in robotics; the space can be
discretized or skeletonized and A∗ is often used for navigation. As a reference, in
the DARPA Challenge 2007, A∗ was one of the options used for planning routes to
achieve all checkpoints in the real-world road.

1

mailto:ai@lists.ugent.be

(d) True: if the other conditions for completeness are met. In breadth-first search (BFS),
we care about the number of steps the path has rather than the path cost. So, for
this search to be complete, the conditions are that the goal is at a finite depth and
also that the branching factor is finite.

(e) False: A rook can move across the board in move one, although the Manhattan
distance from start to finish is 8.
Extra: What would be an admissible heuristic for this problem?

2. [R&N, 3.33] n vehicles occupy squares (1, 1) through (n, 1) (i.e., the top row) of an n×n grid.
The vehicles must be moved to the bottom row but in reverse order; so the vehicle i that starts
in (i, 1) must end up in (n− i+ 1, n). On each time step, every one of the n vehicles can move
one square up, down, left or right, or stay put; if a vehicle stays put, one other adjacent vehicle
(but not more than one) can hop over it. Two vehicles cannot occupy the same square.

(a) Calculate the size of the state space as a function of n.

(b) Calculate the branching factor as a function of n.

(c) Suppose that vehicle i is at (xi, yi); write a nontrivial admissible heuristic hi for the
number of moves it will require to get to its goal location (n− i+1, n), assuming no other
vehicles are on the grid.

(d) Which of the following are admissible heuristics for the original problem and why?
(Note: hi is the heuristic you came up with in the previous part.)

A. h = min{h1, . . . , hn} B. h = max{h1, . . . , hn} C. h =
n∑

i=1

hi

Solution:

(a) n2n. There are n vehicles in n2 locations, so roughly (ignoring the one-per-square
constraint) we obtain (n2)n = n2n states. (If we don’t ignore the one-per square

constraint, we obtain (n2)!
(n2−n)! . Think why this was not given as the solution here.

Compare the corresponding outcomes for large n, say n = 80 or n = 100)

(b) 5n

(c) Manhattan distance, i.e., hi(xi, yi) = |(n − i + 1) − xi| + |n − yi|. This in fact gives
the exact cost of moving the car to the goal, so it is also admissible. If there were
other cars on the grid, this would no longer necessarily be an admissible heuristic
because car i could potentially jump over other cars, allowing it to get to the goal in
less steps than just using Manhattan distance.

(d) Only A. The explanation is non-trivial as it requires two observations.

– First, let the work Wtot in a given solution be the total distance moved by all
vehicles over their joint trajectories; that is, for each vehicle, add the lengths of
all the steps taken. We have Wtot ≥

∑
i hi ≥ nmin{h1, . . . , hn}.

2

– Second, the total work we can get done per step is ≤ n. Indeed, note that for
every car that jumps 2, another car has to stay put (move 0), so the total work
per step is bounded by n. Thus we can conclude that Wstep ≤ n.

Hence, completing all the work requires at least

Numsteps =
Wtot

Wstep

≥ n ·min{h1, . . . , hn}
n

= min{h1, . . . , hn}

steps, so h = min{h1, . . . , hn} is admissible.

3. If f(s), g(s) and h(s) are all admissible heuristics then which of the following are also guaran-
teed to be admissible heuristics:

(a) f(s) + g(s) + h(s)

(b) f(s)/6 + g(s)/3 + h(s)/2

(c) min(f(s), g(s), h(s))

(d) max(f(s), g(s), h(s))

Solution: In order to guarantee that a function of admissible heuristics is still admissible,
the expression must be less than or equal to the max of the heuristics. Sums and products
do not satisfy these, so (a) immediately fails. (c) and (d) work because the max of ad-
missible heuristics is still admissible, as is the min of an admissible heuristic and anything
else. Lastly, (b) is a weighted average, and is thus also less than the max, and is thus
admissible.

4. (Old exam question) Consider the unbounded version of the regular 2D grid. The start
state is at the origin (0, 0), and the goal state is at (x, y).

(a) What is the branching factor b in this state space?

3

(b) How many distinct states are there at depth k (for k > 0)?

A. 4k B. 4k C. 4k2

(c) Breadth-first search without repeated-state checking expands at most

A. (4m+n+1 − 1) /3− 1 B. 4(m + n)− 1 C. 2(m + n)(m + n + 1)− 1

nodes before terminating, where m = |x|, n = |y|.
(d) Breadth-first search with repeated-state checking expands at most

A. (4m+n+1 − 1) /3− 1 B. 4(m + n)− 1 C. 2(m + n)(m + n + 1)− 1

nodes before terminating, where m = |x|, n = |y|.
(e) Define the heuristic h as a Manhattan distance for a state at (u, v) and write the corre-

sponding expression. Explain!

(f) True/False: A∗ search with repeated state checking using h expands O(|x| + |y|) nodes
before terminating.

(g) Does h remain admissible if some links are removed? If not, give a nontrivial admissible
heuristic for this search problem.

(h) Does h remain admissible if some links are added between nonadjacent states? If not,
give a nontrivial admissible heuristic for this search problem.

Solution:

(a) The branching factor is 4 (number of neighbors of each location).

(b) B. The states at depth k form a square rotated at 45◦ to the grid. Obviously there
is a linear number of states along the boundary of the square, so the answer is 4k.

(c) A. Without repeated state checking, BFS expands exponentially many nodes:
counting precisely, we get (4|x|+|y|+1 − 1)/3.

(d) C. There are quadratically many states within the square for depth |x| + |y|, so
the answer is 2(|x| + |y|)(|x| + |y| + 1) + 1. Note that we are having repeated-state
checking, so we won’t visit any one of the states more than once.

(e) For the state (u, v) we define the Manhattan distance by h(u, v) = |u− x| + |v − y|
and obviously this is an admissible heuristic for the given problem.

(f) True. For a start state (0, 0) and a goal state (x, y), A∗ graph search chooses exactly
|x| + |y| nodes for the optimal path. Note that all nodes in the rectangle defined
by (0, 0) and (x, y) are candidates for the optimal path, and there are quadratically
many of them, all of which may be expanded in the worst case, which gives O(|x|·|y|).
But A∗ is optimal, so it expands only O(|x|+ |y|).

(g) Removing links may induce detours, which require more steps, so h is an underesti-
mate and it will remain admissible.

(h) Nonlocal links can reduce the actual path length below the Manhattan distance, so
h won’t be an admissible heuristic in this case. An admissible heuristic in this case
would be h(u, v) =

√
(u− x)2 + (y − v)2.

4

5. For each of the following graph search strate-
gies, work out the order in which states are ex-
panded, as well as the path returned by graph
search. In all cases, assume ties resolve in such
a way that states with earlier alphabetical or-
der are expanded first. The start and goal
state are S and G, respectively. Remember
that in graph search, a state is expanded only
once.

(a) Depth-first search.
(b) Breadth-first search.
(c) Uniform cost search.
(d) Greedy search with the heuristic h shown

on the graph.
(e) A∗ search with the same heuristic h.

Solution:

(a) Depth-first search.
States Expanded: Start, A, C, D, B, Goal
Path Returned: Start-A-C-D-Goal

(b) Breadth-first search.
States Expanded: Start, A, B, D, C, Goal
Path Returned: Start-D-Goal

(c) Uniform cost search.
States Expanded: Start, A, B, D, C, Goal
Path Returned: Start-A-C-Goal

(d) Greedy search with the heuristic h shown on the graph.
States Expanded: Start, D, Goal
Path Returned: Start-D-Goal

(e) A∗ search with the same heuristic h.
States Expanded: Start, A, D, C, Goal
Path Returned: Start-A-C-Goal

When using the A∗ search algorithm, we know that if two paths have the same
estimated value, then states with earlier alphabetical order are expanded first. Let
us consider the following steps:

Step 1: S − A → 2 + 2 = 4

S −B → 3 + 5 = 8

S −D → 5 + 1 = 6

5

Since the path S − A has the smallest value we expand it further.

Step 2: S − A− C → 6 + 2 = 8

Now we get the cost of 8, but the path S − D has smaller value, so let us consider
that one.

Step 3: S −D −G → 10

Now we reached the goal with the cost of 10. But let us check what happens with the
other two options with the lower cost: S −A−C (cost 8) and S −B (cost 8). Since
S − A − C alphabetically comes before S − B we need to expand S − A − C first.
From here we immediately reach the goal. So the path S − B won’t be expanded.
We always have to consider the entire path and not only one node that we take.

6

6. Consider the state space graph shown below.

A G

F

E

C

D

B1

5 3 3

1

2

9

8 5

4

Node h1 h2

A 9.5 10
B 9 12
C 8 10
D 7 8
E 1.5 1
F 4 4.5
G 0 0

A is the start state and G is the goal state. The costs for each edge are shown on the graph.
Each edge can be traversed in both directions. Note that the heuristic h1 is consistent but the
heuristic h2 is not consistent.

(a) For each of the following graph search strategies (do not answer for tree search), mark
which, if any, of the listed paths it could return. Note that for some search strategies the
specific path returned might depend on tie-breaking behavior. In any such cases, make
sure to mark all paths that could be returned under some tie-breaking scheme.

Search Algorithm A-B-D-G A-C-D-G A-B-C-D-F -G
Depth first search
Breadth first search
Uniform cost search
A∗ search with heuristic h1

A∗ search with heuristic h2

(b) Suppose you are completing the new heuristic function h3 shown below. All the values
are fixed except h3(B).

Node A B C D E F G
h3 10 ? 9 7 1.5 4.5 0

For each of the following conditions, write the set of values that are possible for h3(B).
For example, to denote all non-negative numbers, write [0,+∞], to denote the empty set,
write ∅, and so on.

1. What values of h3(B) make h3 admissible?

2. What values of h3(B) make h3 consistent?

3. What values of h3(B) will cause A∗ graph search to expand node A, then node C,
then node B, then node D in order?

7

Solution:

(a) The return paths depend on tie-breaking behaviors so any possible path has to be
marked. DFS can return any path. BFS will return all the shallowest paths, i.e.
A− B −D −G and A− C −D −G. A− B − C −D − F −G is the optimal path
for this problem, so that UCS and A∗ using consistent heuristic h1 will return that
path. Although, h2 is not consistent, it will also return this path.

Search Algorithm A-B-D-G A-C-D-G A-B-C-D-F -G
Depth first search X X X

Breadth first search X X

Uniform cost search X

A∗ search with heuristic h1 X

A∗ search with heuristic h2 X

(b) 1. To make h3 admissible, h3(B) has to be less than or equal to the actual optimal
cost from B to goal G, which is the cost of path B − C −D − F − G, i.e. 12.
The answer is 0 ≤ h3(B) ≤ 12.

2. All the other nodes except node B satisfy the consistency conditions. The
consistency conditions that do involve the state B are:

h(A) ≤ c(A,B) + h(B) h(B) ≤ c(B,A) + h(A)

h(C) ≤ c(C,B) + h(B) h(B) ≤ c(B,C) + h(C)

h(D) ≤ c(D,B) + h(B) h(B) ≤ c(B,D) + h(D)

Filling in the numbers shows this results in the condition: 9 ≤ h3(B) ≤ 10.

3. The A∗ search tree using heuristic h3 is represented below. In order to make A∗

graph search expand node A, then node C, then node B, suppose h3(B) = x,
we need

1 + x > 13

5 + x < 14 (expand B′) or 1 + x < 14 (expand B)

so we can get 12 < h3(B) < 13.

8

Remark
As mentioned in the theory lesson not all admissible heuristics are consistent. In practice it
is usually assumed that admissible heuristics are consistent, implying that consistency is a
desirable attribute. In the AI textbook “Artificial Intelligence: A Modern Approach”, Russell
and Norvig write that “although consistency is a stricter requirement than admissibility, one
has to work quite hard to concoct heuristics that are admissible but not consistent”. In the
following exercise we will present an example of an admissible heuristic that is not consistent.
Apart from that we will show that if a heuristic is consistent, then it also has to be admissible.

7. (State space size) For the Pacman world
shown in the image on the right, assume

• Agent positions: 120

• Food count: 30

• Ghost positions: 12

• Agent facing: NSEW

How many world states are there? How many
states for route finding? How many states for
“eat-all-dots”?

Solution:

Total states: 120× 230 × 122 × 4

States for route finding: 120

States for “eat-all-dots”: 120× 230

8. (Old exam question) For the 8-queens problem, hill climbing succeeds to find a solution in
14% of cases (and thus it fails in 86% of the cases). When it succeeds, it takes 4 steps on
average and when it fails it takes 3 steps on average. How many steps will take on average to
solve the problem with a random-restart hill climbing algorithm?

Solution: Hint: To start with, think of the following: if an experiment succeeds with a
probability p, how many times you need to repeat it (on average) to reach a solution? Out
of those attempts, all but one will be “fail”. Hence, we have:

(7− 1)× 3 + 1× 4 = 22

Observe that this is pretty remarkable for a state space with approx. 17 million states!

9

9. (Optional theoretical exercise) [Adapted from R&N, 3.37]

(a) Prove that if a heuristic is consistent, it must be admissible.

(b) Construct an admissible heuristic that is not consistent.

(c) We know that A∗ tree search is optimal if the heuristic h is admissible, while the A∗

graph search is optimal if the heuristic h is consistent. Give a simple example that shows
that A∗ graph search with inconsistent but admissible heuristic h is not necessarily the
optimal search strategy.

Solution:

(a) A heuristic function h(n) is said to be consistent if, for every node n and every
successor n′ of n generated by any action a, the estimated cost of reaching the goal
from n is no greater than the step cost of getting to n′ plus the estimated cost of
reaching the goal from n′, i.e.

h(n) ≤ c(n, a, n′) + h(n′)

where c(n, a, n′) is the step cost of getting to n′ by taking action a at n.
Let k(n) be the cost of the cheapest path from n to the goal node. We will prove by
induction on the number of steps to the goal that h(n) ≤ k(n).

• Base case: If there are 0 steps to the goal from node n, then n is a goal and
therefore h(n) = 0 ≤ k(n).

• Induction step: If n is i steps away from the goal, there must exist some
successor n′ of n generated by some action a s.t. n′ is on the optimal path from
n to the goal (via action a) and n′ is i− 1 steps away from the goal. Therefore,

h(n) ≤ c(n, a, n′) + h(n′).

But by the induction hypothesis, h(n′) ≤ k(n′). Therefore,

h(n) ≤ c(n, a, n′) + k(n′) = k(n)

since n′ is on the optimal path from n to the goal via action a.

(b) One simple example can be found in (c). Here let us consider another example of
an admissible but not consistent heuristic. Thus, consider a search problem where
the states are nodes along a path P = n0, n1, . . . , nm where n0 is the start state, nm

is the goal state and there is one action from each state ni which gives ni+1 as a
successor with cost 1. The cheapest cost from any node ni to the goal state nm is
then k(ni) = m− i. Let us define a heuristic function as follows:

h(ni) = m− 2

⌈
i

2

⌉
.

10

For all states ni, holds that h(ni) ≤ k(ni), and so h is admissible. However, h is
not consistent. If i is odd, then h(ni) = k(ni) + 1. Also i + 1 is then even and
h(ni+1) = k(ni+1). From here, since the true cost is 1, we can easily conclude that

h(ni) = k(ni) + 1 = k(ni+1) + 2 = h(ni+1) + 2 > h(ni+1) + 1.

Thus h is not consistent.

(c) In this example (where the heuristic is also admissible but not consistent), when
searching for a path from S to G, the states are expanded in the following order
(parentheses show f -values):

S (0 + 4 = 4)

B (2 + 1 = 3)

C (3 + 0 = 3)

A (1 + 3 = 4)

G (5 + 0 = 5)

Note that expanding A finds a shorter path from S to C, but this is not reflected
in the solution since C was expanded before A and we are not allowed to expand a
state more than once in the case of the A∗ graph search strategy.

11

