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Solutions: Nonparametric ML models

1. Select all that apply about k Nearest Neighbors (kNN) in the following options:
Assume a point can be its own neighbor.

� k-NN works great with a small amount of data, but struggles when the amount of data
becomes large.

� k-NN is sensitive to outliers; therefore, in general we decrease k to avoid overfitting.

� k-NN can only be applied to classification problems, but it cannot be used to solve
regression problems.

� We can always achieve zero training error (perfect classification) with k-NN, but it may
not generalize well in testing.

Solution:

� k-NN works great with a small amount of data, but struggles when the amount
of data becomes large. (True because k-NN is slow and imposes high memory
requirements.)

� k-NN is sensitive to outliers; therefore, in general we decrease k to avoid overfitting.
(It’s the opposite: we increase k to avoid overfitting)

� k-NN can only be applied to classification problems, but it cannot be used to solve
regression problems.
(Can yield regression by averaging the data in the same neighbourhood)

� We can always achieve zero training error (perfect classification) with k-NN, but
it may not generalize well in testing. (By setting k = 1)
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2. Suppose a 7-nearest-neighbors regression search returns {7, 6, 8, 4, 7, 11, 100} as the 7 nearest
y values for a given x value. What is the value of ŷ that minimizes the L1 loss function on
this data? There is a common name in statistics for this value as a function of the y values;
what is it? Answer the same two questions for the L2 loss function.

Solution:

� The L1 loss is minimized by the median, in this case 7.

Detail: Suppose we have an odd number 2n+1 of elements y−n < . . . < y0 < . . . <
yn. For n = 0, ŷ = y0 is the median and it minimizes the loss. Then, observe that
the L1 loss for n + 1 is

1

2n + 3

n+1∑
i=−(n+1)

|ŷ − yi| =
1

2n + 3

(
|ŷ − yn+1|+

∣∣ŷ − y−(n+1)

∣∣)+
1

2n + 3

n∑
i=−n

|ŷ − yi|

The first term equals |yn+1− y−(n+1)| whenever yn+1 ≤ ŷ ≤ y−(n+1), e.g. for ŷ = y0,
and is strictly larger otherwise. By inductive hypothesis the second term is also
minimized by ŷ = y0, the median.

� The L2 loss is minimized by the mean, in this case 143
7
≈ 20.4.

Detail: Note that the L2 loss of ŷ given data y1, . . . , yn is

1

n

∑
i

(ŷ − yi)
2.

This loss is differentiable so we can find critical points:

0 =
2

n

∑
i

(ŷ − yi),

or ŷ = (1/n)
∑

i yi. Taking the second derivative we see this is the unique local
minimum, and thus the global minimum as the loss tends to infinite when ŷ tends
to either infinity.
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3. Figure 1 shows how a circle at the origin can be linearly separated by mapping from the
features (x1, x2) to the two dimensions (x2

1, x
2
2). But what if the circle is not located at the

origin? What if it is an ellipse, not a circle? The general equation for a circle (and hence the
decision boundary) is (x1 − a)2 + (x2 − b)2 − r2 = 0, and the general equation for an ellipse is
c(x1 − a)2 + d(x2 − b)2 − 1 = 0.

1. Expand out the equation for the circle and show what the weights wi would be for the
decision boundary in the four-dimensional feature space (x1, x2, x

2
1, x

2
2). Explain why this

means that any circle is linearly separable in this space.

2. Do the same for ellipses in the five-dimensional feature space (x1, x2, x
2
1, x

2
2, x1x2).

Figure 1: (a) A two-dimensional training set with positive examples as green filled circles and
negative examples as orange open circles. The true decision boundary, x2

1 + x2
2 ≤ 1, is also shown.

(b) The same data after mapping into a three-dimensional input space (x2
1, x

2
2,
√

2x1x2). The
circular decision boundary in (a) becomes a linear decision boundary in three dimensions. Figure
from Artificial Intelligence: A Modern Approach, 4th US ed., Russel and Norvig.

Solution:

1. The circle equation expands into five terms

0 = x2
1 + x2

2 − 2ax1 − 2bx2 + (a2 + b2 − r2)

corresponding to the weights w = [−2a,−2b, 1, 1]> and and the bias term a2+b2−
r2. This shows that a circular boundary is linear in this feature space, allowing
linear separability. In fact, the three features x1, x2, x

2
1 + x2

2 suffice.
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2. The (axis-aligned) ellipse equation expands into six terms

0 = cx2
1 + dx2

2 − 2acx1 − 2bdx2 + (a2c + b2d− 1)

corresponding to the weights w = [−2ac,−2bd, c, d, 0]> and the bias term a2c +
b2d − 1. This shows that an elliptical boundary is linear in this feature space,
allowing linear separability. In fact, the four features x1, x2, x

2
1, x

2
2 suffice for any

axis-aligned ellipse.

4. Construct a support vector machine that computes the XOR function. Use values of +1 and
–1 (instead of 1 and 0) for both inputs and outputs, so that an example looks like ([−1, 1], 1)
or ([−1,−1],−1). Map the input [x1, x2] into a space consisting of x1 and x1x2. Draw the
four input points in this space, and the maximal margin separator. What is the margin? Now
draw the separating line back in the original Euclidean input space.

Solution:
The examples map from [x1, x2] to [x1, x1x2] coordinates as follows
[−1,−1] (negative) maps to [−1,+1],
[−1,+1] (positive) maps to [−1,−1],
[+1,−1] (positive) maps to [+1,−1],
[+1,+1] (negative) maps to [+1,+1].
Thus the positive examples have x1x2 = −1 and the negative examples have x1x2 = +1.
The maximum margin separator is the line x1x2 = 0, with a margin of 1. The separator
corresponds to the x1 = 0 and x2 = 0 axes in the original spaces; this can be thought of
as the limit of a hyperbolic separator with two branches.
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