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Disclaimer: These lecture notes were written by Prof. Aleksandra Pizurica to accompany the
slides of the course E016350: Artificial Intelligence, facilitating their understanding. The lecture
notes are not meant to be self-contained, and do not cover all the study material in the course.
They are by no means meant to replace the recommended textbook and do not necessarily cover all
the relevant aspects that are presented in the slides and explained in the lectures. Some sections
are adapted from the book of S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach.
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Figure 1: An example of a simple decision tree.

1 Decision trees

Decision trees underlay many of today’s most successful learning approaches. They are able
to learn complex, nonlinear relationships between variables, using a series of simple, intuitive
decision rules: start with one test, and depending on its outcome decide what the next test will
be. This process continues until a decision is reached.

1.1 Interpretation and basic types of decision trees

Fig. 1 shows a simple example of a decision tree, which is often given in the introductory
materials on this topic. Here, the decision on “Should I play tennis today?” is based on the values
of three attributes: outlook from the window (with three possible outcomes sunny, overcast or
rainy), humidity (which can be high or normal) and wind (which can be strong or weak). The
training will be done based on some training set that contains examples with different combinations
of the attribute values and “play” (“yes”) or “not play” (“no”) decisions for each of them.

Formally, like in any supervised ML approach, a decision tree is learned from examples (x, y) ∈
Dtrain, where x are the values of some features (or attributes) X and y is the output label. The
structure and the elements of a decision tree have the following interpretation:

• Root and internal nodes test a feature Xi. In our tree: X1 = Outlook, X2 = Humidity,
X3 = Wind

• Branching is determined by the feature value E.g. x3 = wind ∈ {strong, weak}

• Leaf nodes are outputs (decisions, predictions)

We will interpret the decision as a prediction – we use the decision tree as a predictive model.
When a nominal (categorical) variable is predicted, the tree is called a classification tree (like
the tree in Fig. 1). We can also use decision trees to predict a numerical variable, this is then a
regression tree. In principle, the tree can also predict multiple variables at once (or, equivalently,
a tuple-valued variable); such trees are sometimes called multi-target trees. Classification trees
that do not merely predict a class, but define a conditional probability for each class given the
input, are called probability estimation trees. In summary, the output of a decision tree can be of
different types, including:

• numerical (our model is then a regression tree)

• categorical (we call it then a classification tree)

• tuple-valued (in the so-called multi-target trees)
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• P (y|x) (we call these models probability estimation trees)

The decision trees can be used in many settings and we can define other sub-categories of
these models next to those that are listed above. Notably, as it repeatedly divides a data set into
subsets, a tree implicitly defines a hierarchical clustering. Trees learned for this purpose are called
clustering trees. The difference between a hierarchical clustering defined by a clustering tree,
and one defined by other clustering algorithms, is that each cluster in a clustering tree is defined
precisely by a set of test outcomes. Density estimation trees partition the dataset into regions
of high and low density, and as such can be used to describe the joint probability distribution of
the data.

The decision trees are widely used because they are easy to understand and interpret
and because they require little or no data preparation. Moreover, they provide basis to
some of the best performing ML models today: Random forests or random decision forests
is an ensemble learning method for classification, regression and other tasks that operates by
constructing a multitude of decision trees at training time. In classification tasks, the output of
the random forest is the class selected by most trees. For regression tasks, the mean or average
prediction of the individual trees is returned [4].

1.2 Case study: Restaurant domain

We will study decision trees on a use case Restaurant domain from [6]: the problem of deciding
whether to wait for a table at a restaurant based on the following attributes:

1. Alternate (Alt): Is there a suitable alternative restaurant nearby?

2. Bar (Bar): Is there a comfortable bar area in the restaurant, where I can wait?

3. Fri/Sat (Fri): True on Fridays/Saturdays

4. Hungry (Hun): Are we hungry?

5. Patrons (Pat): How many people are in the restaurant (None, Some or Full)

6. Price (Price): the restaurant’s price range ($, $$, $$$)

7. Raining (Rain): Is it raining outside?

8. Reservation (Res): Did we make a reservation?

9. Type (Type): the kind of restaurant (French, Italian, Thai or burger)

10. WaitEstimate (Est): the wait time estimated by the host (0-10, 10-30, 30-60, or>60 min)
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The training set consists of 12 examples that are given in the following table [6]:

Example
Input Attributes Output

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

1 T F F T Some $$$ F T French 0–10 T
2 T F F T Full $ F F Thai 30–60 F
3 F T F F Some $ F F Burger 0–10 T
4 T F T T Full $ F F Thai 10–30 T
5 T F T F Full $$$ F T French >60 F
6 F T F T Some $$ T T Italian 0–10 T
7 F T F F None $ T F Burger 0–10 F
8 F F F T Some $$ T T Thai 0–10 T
9 F T T F Full $ T F Burger >60 F
10 T T T T Full $$$ F T Italian 10–30 F
11 F F F F None $ F F Thai 0–10 F
12 T T T T Full $ F F Burger 30–60 T

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?
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Bar? Raining?
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WaitEstimate?F T

F T

T

T

F T

TFT

TF

Figure 2: Ground truth tree for the restaurant problem.

Each raw in this table is an example (x(i), y(i)), where x(i) contains values of the 10 attributes
and the output y(i) is true (T) or false (F). One possible tree that correctly represents these
examples is shown in Fig. 2. This is also the ‘ground truth’ tree, which represents exactly the
actual decision function that was used by the person (Stuart Russel) who gave these examples [6].

We suppose our AI system doesn’t have access to this ‘true’ tree but needs to learn a good
decision tree from the supplied examples. We will then compare the learned tree to this true one
to see how well our system learned a good decision model.

Note that there are 26×32×42 = 9216 combinations for the attributes in this problem while we
are given only 12. This is the essence of induction: make the best guess for many missing output
values given only the evidence of few examples.

1.3 Expressiveness of decision trees

Decision trees can express any function of the input attributes. For Boolean functions, each
row in the truth table is one path to the leaf (see an illustration in Fig. 3). For many problems,
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Figure 3: Truth table for the logical operation ‘XOR’ and the corresponding decision tree.

the decision tree format yields a nice, concise, understandable result. But some functions cannot
be represented concisely. For example, the majority function, which returns true if and only if
more than half of the inputs are true, requires an exponentially large decision tree [6].

In general, we will increase the expressiveness of the tree by using more attributes. With
more attributes, the decision tree has more potential splitting points to choose from. This allows
to model more complex relationships in the data. However, the number of possible trees grows
combinatorially. For example, for a Boolean function with n attributes the truth table has 2n

rows, which means there are 22n distinct truth tables. With only 10 Boolean attributes there are
10308 possible trees. Finding the best hypothesis in a such a huge hypothesis space becomes very
difficult. Moreover, the risk of overfitting increases.

In summary, more attributes generally increase the tree’s expressiveness but at the cost of
higher risks of overfitting and computational complexity. Conversely, fewer attributes lead to
simpler, potentially less expressive models but with reduced risks of overfitting and improved
interpretability. Effective feature selection and regularization techniques are essential to balance
the expressiveness and generalization of decision trees.

2 Decision tree learning

In general, the goal of decision tree learning is to find a tree that is consistent with the provided
examples and is as small as possible. Unfortunately, it is intractable to find a guaranteed smallest
consistent tree [6]. Therefore we resort to a greedy approach and it turns out that with some
simple heuristics, we can efficiently find a tree that is close to the smallest consistent tree.

2.1 Decision tree learning algorithm

Here we describe a greedy algorithm known as the decision tree learning algorithm. Its idea is
to choose the “most significant” attribute as the root and repeat this recursively for each subtree.
We start with the whole training set and an empty decision tree. Then pick the feature that gives
the best split. We split on that feature and repeat the process on the sub-partitions.

Fig. 4 gives a pseudo-code for the decision tree learning algorithm. The function Importance
measures the importance of attributes (as explained next). The Plurality-Value function
selects the most common output value among a set of examples, breaking ties randomly.
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Figure 4: Pseudo-code of the decision tree learning algorithm [6].

2.2 Choosing important attributes based on the information gain

The key question is how to choose the most important attribute in each phase of the decision
tree learning. The general idea is that a good (i.e., important) attribute is one that makes the most
difference to the classification of an example. With Boolean attributes, this means an attribute
that splits well the examples into subsets that are (ideally)“all positive” or “all negative”.

Common techniques and criteria used to identify important attributes include information
gain (which is equivalent to entropy reduction) and the Gini index (a measure for the “impu-
rity” of a dataset). We will focus our attention to the first criterion.

Figure 5: Entropy of a binary information source H(〈p, 1− p〉).

Information answers questions – the more clueless we are about the answer initially, the more
information is contained in the answer. In information theory, entropy is a measure of the uncer-
tainty of a random variable, the “expected surprisal”. The more information, the less entropy.

Let us denote the entropy of an information source with n outcomes occurring with
probabilities P1, . . . Pn as

H(〈P1, . . . , Pn〉) =
n∑

i=1

−Pi log2 Pi

This is information in an answer when the prior is 〈P1, . . . , Pn〉. For the binary source we have:

H(〈p, 1− p〉) = −p log2(p)− (1− p) log2(1− p)
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Figure 6: Splitting the examples from the Restaurant domain by testing on two different attributes.
Note that splitting on Type brings us no nearer to distinguishing between positive and negative
examples while splitting on Patrons does a good job of separating positive and negative examples.
Example from [6].

The corresponding plot is shown in Fig. 5. Note that H(〈1, 1〉) = 1, i.e., 1 bit is the information
entropy of a random binary variable that takes values 0 and 1 with equal probability. Or, put in
other words, 1 bit is an answer to Boolean question with prior 〈0.5, 0.5〉.

Suppose we have p positive and n negative examples at the root. Then

B(
p

p + n
) = H(〈 p

p + n
,

n

p + n
〉)

bits are needed to classify a new example. For the restaurant use case, out of the 12 training
examples we had six positive and six negative ones, so p = n = 6, and thus we need exactly 1 bit
of information to classify a new example. The result of a test on an attribute A will give us some
information, thus reducing the overall entropy by some amount. We can measure this reduction
by looking at the entropy remaining after the attribute test.

An attribute A with d distinct values divides the training set E into subsets E1, . . . , Ed each
of which (we hope) needs less information to complete the classification. Let Ei have pi positive
and ni negative examples. This means that if we go along that branch, we will need

H(〈 pi
pi + ni

,
ni

pi + ni

〉)

bits of information to answer the question. A randomly chosen example from the training set has
the kth value for the attribute (i.e., is in Ek with probability (pk +nk)/(p+n)). Thus, the expected
number of bits (EBS) needed if A is at the root is

EBS(A) =
∑
i

pi + ni

p + n
H
(〈 pi

pi + ni

,
ni

pi + ni

〉)
This is also the expected entropy remaining after testing attribute A. The information gain
from the attribute test on A is the expected reduction in entropy:

Gain(A) = B(
p

p + n
)− EBS(A)

Take for example the attribute Patrons from the Restaurant domain. It has three possible
outcomes and the splitting of the training examples based on this attribute (as can be read from
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Figure 7: Left: a small tree fits the training data almost perfectly. It can be grown to fit perfectly
(right), but a relatively large area to the right will then be predicted positive, while the data
contains very little evidence for this. Example from [1].

the Table in Section 1.2) is shown in Fig. 6. For the value None (set E1) we have p1 = 0; n1 = 2;
for Some (set E2): p2 = 4; n2 = 0 and for Full (set E3): p3 = 4; n3 = 0. Thus,

EBS(Patrons) =
∑
i

pi + ni

p + n
H
(〈 pi

pi + ni

,
ni

pi + ni

〉)
=

2

12
H
(〈0

2
,
2

2

〉)
︸ ︷︷ ︸

0

+
4

12
H
(〈4

4
,
0

4

〉)
︸ ︷︷ ︸

0

+
6

12
H
(〈4

6
,
2

6

〉)

=
1

2
H
(〈2

3
,
1

3

〉)
= 0.4591 bits

the information gain of this attribute is

Gain(Patrons) = B(
p

p + n
)− EBS(Patrons) = 1− 0.4591 ≈ 0.541 bits

It is easy to verify that for the attribute Type (for which the splitting is also shown in Fig. 6) the
expected number of bits is still 1 and thus Gain(Type) = 0 bits. This confirms our intuition that
Patrons is a better attribute to split on first. In fact, Patrons has the maximum information gain
of any of the attributes and thus would be chosen by the decision tree learning algorithm as the
root [6].

2.3 Some considerations

Another important question when dealing with decision trees is when is it no longer useful
to split a subset into smaller subsets? For classification trees, it is clear that when a subset has
zero class-entropy (that is, all cases in the subset have the same class), further splitting is no
longer useful. For regression trees, the equivalent would be zero variance, but that is almost never
achievable. Some learners stop splitting when the best test does not lead to a significant reduction
of entropy or variance. When the subset to be split is very small, further reductions are almost
certainly not significant; for that reason, many learners only split subsets whose size is above some
threshold value.

It is known that too large trees tend to overfit the data: they fit the training data well, but
tend to perform worse on other data. Fig. 7 illustrates this problem. Ideally, a tree learner stops
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Figure 8: An example from [6] showing how ensemble learning can increase expressive power of
simple (in this case, linear) models. By combining three linear models a triangular decision region
can be achieved, which is beyond the possibility of any of the three base models alone.

splitting just before such overfitting occurs. However, it turns out it is very hard to determine the
right moment. Statistical significance tests do not work well in this context, and it is perfectly
possible that even if no single test leads to a substantial improvement, a combination of tests
will. For this reason, many learners grow the tree beyond its optimal size, and prune away useless
branches afterwards. This pruning process typically makes use of a so-called validation set: a set of
data not used for learning the tree, but used to estimate the quality of the full tree and its pruned
variants during the pruning process. Since the validation set was not used while growing the tree,
it provides an unbiased view of the actual predictive accuracy of the tree. The pruning process
then consists of pruning away branches that did not lead to a higher accuracy on the validation
set (i.e., the improvement they gave on the training set was most likely due to overfitting) [1].

3 Ensemble learning

Traditional learning methods use a single hypothesis to make predictions. Ensemble learning
aims to improve performance by combining multiple hypotheses (called base models), denoted
h1, h2, . . . , hn, into a single ensemble model [6]. The models are typically aggregated using
techniques such as averaging, majority voting, or by meta-learning [5].

The motivation behind this approach is twofold:

1. Reducing bias – A single model may be too simplistic, resulting in high bias (e.g., a linear
classifier’s limitations). An ensemble can represent more complex decision boundaries. Take
an example from Fig. 8 where three linear classifiers together define a triangular region,
which a single linear model cannot capture. Using n base models adds only n times more
computation, which is often more efficient than training a more general, highly flexible model
that may require exponential resources.

2. Reducing variance – Ensembles can also reduce variance of the prediction. Consider an
example from [6]:
Let an ensemble consist of K = 5 binary classifiers that we combine by majority voting. For
a misclassification to occur, at least 3 out of 5 must be wrong, which is less likely than a
single classifier making an error.
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Figure 9: An illustration of sampling with replacement in the bagging procedure.

Suppose each individual classifier is 80% accurate. If we train 5 classifiers on different data
subsets to promote independence (though it may slightly reduce individual performance to,
say, 75%), the ensemble can still achieve 89% accuracy. With 17 classifiers, accuracy can
reach 99%, assuming independence. Verify this yourself!

Note: In practice, full independence is rare—models often share data or assumptions and
thus may make correlated errors. However, if base models are sufficiently diverse, ensembles
can still reduce misclassifications.

Widely used ensemble models include bagging, random forests, stacking and boosting.

3.1 Bagging

The term bagging stems from “bootstrap aggregating”. Bootstrapping is a statistical method
that involves resampling data with replacement (it is allowed to draw the same data point multiple
times) to estimate the sampling distribution of a statistic or the uncertainty of a model.

The bagging procedure can be conceptually explained as consisting of the two steps:

1. Generate K training sets by sampling with replacement and train K models. We
randomly pick N examples from the training set D, allowing to pick the same examples
multiple times. We then run a machine learning algorithm an these N examples and repeat
the process K times. This way we obtain K distinct training sets and K corresponding
models. In the example from Fig. 9, the training set consists of the data points xi from two
classes (circles and triangles), K = 3 and N = 7.

2. Aggregate the predictions of the K models: For a new input x, each of the K trained
models gives its own prediction hi(x), i = 1, . . . , K. In classification problems, the different
hi’s are aggregated by a voting procedure and in regression problems the average is taken as
the final hypothesis:

h(x) =
1

K

K∑
i=1

hi(x)

Fig. 10 illustrates this aggregation for the regression task with K = 3 models, continuing on
the example from Fig. 9.
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Figure 10: An illustration of sampling with replacement in the bagging procedure.

Bagging lowers variance and is useful when there is limited data or when a model is prone to
overfitting. While it can be applied to any model, it is most often used with decision trees due to
their sensitivity to small changes in data. Bagging mitigates this instability, and is particularly
efficient when computations are done in parallel across multiple machines [6].

3.2 Random forests

Random forests are an enhanced version of decision tree bagging designed to reduce variance
and prevent overfitting. Unlike regular bagging, which often leads to correlated trees due to
the dominance of certain attributes, random forests introduce additional randomness to create a
more diverse ensemble. At each split, a random subset of attributes is considered, and for some
variations, like extremely randomized trees (ExtraTrees), the values at each split are also
randomly sampled. This added randomness helps ensure that the trees are diverse and reduces
the chance of overfitting. Random forests are also computationally efficient, as they can be built
in parallel across multiple processors. Furthermore, they do not require pruning, as the ensemble
approach naturally mitigates overfitting. Key hyperparameters, such as the number of trees and
the number of attributes per split, can be tuned using cross-validation or by measuring out-of-bag
error [6].

Despite their complexity, random forests are surprisingly resistant to overfitting, with error
rates typically improving as more trees are added to the model. This is because the random
selection of attributes leads to trees that cover different areas of the input space, making the
model more robust and less likely to be overly sensitive to individual data points. However, while
random forests are not immune to overfitting, the model’s performance generally stabilizes as more
trees are added, and the error does not grow indefinitely. Random forests have found widespread
use across a variety of domains, from Kaggle data science competitions to practical applications in
finance (credit card default prediction, income prediction) and bioinformatics (diabetic retinopathy,
gene expression analysis). Although deep learning is becoming a dominant approach in AI, random
forests remain a powerful and versatile machine learning tool offering strong performance across a
wide range of tasks. For more in-depth coverage, see [2–4,6].

3.3 Boosting

Boosting is a powerful ensemble method that improves the performance of “weak learners” by
focusing on the training examples that are hardest to classify. It works by assigning weights to
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each training example, initially treating all examples equally. After training the first model, the
algorithm increases the weights of misclassified examples and decreases the weights of correctly
classified ones, encouraging subsequent models to focus on the hard cases. This process continues
for a predefined number of iterations, building a sequence of models (hypotheses), each trained on
a different distribution of weights. Unlike bagging, boosting is a sequential and greedy algorithm,
meaning it cannot parallelize model training. In the final ensemble, each model contributes to the
prediction with a weight based on its accuracy:

h(x) =
1

K

K∑
i=1

zihi(x)

A widely used variant of boosting is AdaBoost, which is especially effective when using simple
models as the base models. It is usually applied with decision trees as the component hypotheses.
A key theoretical result of AdaBoost is that if the base model performs just slightly better than
random guessing (a weak learner), then the boosting process can combine them into a strong
learner that achieves perfect accuracy on the training set, for large enough K, regardless of the
base model’s simplicity or the complexity of the function to be learned [6] Thus the algorithm
guarantees to overcome bias in the base model, as long as the base model is better than random
guessing.

Boosting demonstrates a counter-intuitive but powerful behavior: even after the ensemble per-
fectly fits the training data, adding more weak learners can continue to improve test performance.
This challenges traditional intuitions like Ockham’s razor, which cautions against increasing model
complexity unnecessarily. The insight here is that boosting doesn’t just fit the data—it refines con-
fidence in predictions, particularly around difficult examples. Theoretical interpretations suggest
this may stem from boosting’s resemblance to Bayesian learning [6], gradually improving approx-
imation to an optimal classifier. As a result, boosting can generalize better even as the ensemble
grows more complex, although the improvements may become smaller or stabilize after a certain
number of weak learners.
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