
Lecture Notes

E016350: Artificial Intelligence

Learning probabilistic models

Aleksandra Pizurica

Spring 2024

Contents

1 Bayesian and statistical machine learning 3
1.1 Bayesian learning . 3

1.1.1 “Surprise Candy” use case . 4
1.1.2 Bayesian learning example . 4

1.2 Maximum a Posteriori and Maximum-Likelihood learning 5

2 Learning with complete data 6
2.1 Maximum-likelihood parameter learning: Discrete models 6

2.1.1 Example 1 . 7
2.1.2 Example 2 . 8
2.1.3 Naive Bayes model . 8
2.1.4 Generative and discriminative models . 10

2.2 Maximum-likelihood learning: Continuous models 11
2.3 Bayesian parameter learning . 12

3 Learning with hidden variables 14
3.1 Clustering by learning Gaussian mixture models . 14
3.2 EM algorithm for the mixtures of Gaussians . 15

Disclaimer: These lecture notes were written by Prof. Aleksandra Pizurica to accompany the
slides of the course E016350: Artificial Intelligence, facilitating their understanding. The lecture
notes are not meant to be self-contained, and do not cover all the study material in the course.
They are by no means meant to replace the recommended textbook and do not necessarily cover all
the relevant aspects that are presented in the slides and explained in the lectures. Some sections
are adapted from the book of S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach.

2

1 Bayesian and statistical machine learning

We studied so far machine learning and probabilistic reasoning as two important domains of
AI, each with their own motivations, tasks and sets of techniques. Now we bring them together.
On the one hand, we put machine learning into probabilistic reasoning in order to learn our
probabilistic theories and models from experience (i.e., from data). On the other hand, we also
bring probabilistic reasoning into machine learning to make the learning process more powerful,
less susceptible to various imperfections in the data, less prone to overfit the data or base the
results and decisions on a wrong, pre-selected model.

Bayesian machine learning views learning as a form of uncertain reasoning from observations.
We can also say that it devises models to represent the uncertain world [3]. A key benefit that
it brings to machine learning is a sound framework where we do not necessarily choose one single
hypothesis (one single model) from a given hypothesis space (or model class) but take each into
account with its own probability. Even if we resort to taking one hypothesis, we will do that by
making use of statistical distributions over the various hypotheses and data, which will give us a
more robust approach than with deterministic optimization techniques alone. Such a framework
provides general solutions to dealing with noise, overfitting and ambiguities regarding what is an
optimal prediction. It also copes well with the fact that an AI agent can rarely be certain about
which model of the world is correct, yet it must make decisions and actions, and often in real time.

The term Bayesian machine learning strictly speaking refers to the class of techniques where
we use priors over the models and make the prediction based on all of them. We will use the term
statistical machine learning to refer to a wider class of approaches where we use probability
distributions or statistical distributions of the data, but not necessarily making predictions based
on all possible models from a given class and not necessarily using priors for these models. We
adopt this terminology from [3].

As in the theory of learning, we deal with data and hypotheses but now they will be treated as
random variables (r.v.s) or their realizations. The data are evidence – instantiations of some (or
all) domain r.v.s, and hypotheses are probabilistic models (of how the domain “works”).

1.1 Bayesian learning

Bayesian learning calculates the probability of each hypothesis, given the data. Predictions are
made using all the hypotheses weighted by their probabilities rather than using a single “best”
hypothesis. Learning becomes probabilistic inference!

Let the random variable D represent all the data, with observed value d. The (posterior)
probability of the hypothesis hj given data is:

P (hj | d)︸ ︷︷ ︸
posterior prob.
of hypotheis

= αP (d | hj)︸ ︷︷ ︸
likelihood

P (hj)︸ ︷︷ ︸
hypothesis

prior

(1)

The two key components are the likelihood of the data under each hypothesis P (d | hj) and the
hypothesis prior P (hi). Prediction about some unknown quantity X are now made as:

P(X|d) =
∑
j

P(X|hj)P (hj|d) (2)

3

which is a weighted average of the predictions of the individual hypotheses P(X|hj), with weighting
factors P (hj|d).

If the data are independent identically distributed (i.i.d), we have that

P (d|hj) =
∏
i

P (d(i)|hj) (3)

Remember that observations are i.i.d. if each example has the same prior probability distribution
and is independent of other examples. In our notation, this means:

P(D(i)) = P(D(i+1)) = P(D(i+2)) = . . . and

P(D(1), . . . , D(N)) =
N∏
i=1

P(D(i))

If we have a (temporal) sequence of random variables, where we are observing one sample after the
other, the independence assumption can also be stated as P(D(i)|D(i−1), D(i−2), . . .) = P(D(i)).

1.1.1 “Surprise Candy” use case

We illustrate the concepts of statistical learning on the following example from [3]:
Our favorite surprise candy comes in two flavors: cherry (yum) and lime (ugh). The manu-

facturer has a peculiar sense of humor and wraps each piece of candy in the same opaque wrapper,
regardless of flavor. The candy is sold in very large bags, of which there are known to be five
kinds—again, indistinguishable from the outside:

h1: 100% cherry
h2: 75% cherry + 25% lime
h3: 50% cherry + 50% lime
h4: 25% cherry + 75% lime
h5: 100% lime

Given a new bag of candy, the random variable H (hypothesis) denotes the type of the bag, with
possible values h ∈ {h1, . . . h5}. As the pieces of candy are opened an inspected, data are revealed
D(1), D(2), . . . D(N), where each D(i) is a random variable with possible values cherry and lime. The
basic task faced by the AI agent is to predict the flavor of the next piece of candy.

1.1.2 Bayesian learning example

We will now employ Bayesian learning to predict the flavor of the (N+1)-th candy given the N
opened ones. Hence, we apply (2), where the random variable to be predicted is now X = D(N+1):

P(D(N+1)|d) =
∑
j

P(D(N+1)|hj)P (hj|d) (4)

Since the candy is sold in very large bags, it is reasonable to assume that the data are i.i.d.
(even if we don’t re-wrap and return the opened candy back into the bag). Thus the likelihood
is the product of the likelihoods for each separate candy as was given in (3). We still need the
prior probabilities of hj’s. Suppose this prior distribution is known (e.g., was made pubic in the
advertisements of the manufacturer) to be P(h1, . . . , h5) = 〈0.1, 0.2, 0.4, 0.2, 0.1〉.

4

Figure 1: Bayesian learning example on the Surprise Candy case Left: Posterior probabilities
P (hj|d(1), . . . d(N)). The number of observations N ranges from 1 to 10 and each observation is a
lime candy. Right: Bayesian prediction P (D(N+1) = lime|d(1), . . . , d(N)). Figure from [3].

With this, we have all what is needed to calculate the posterior probability of each hi given
the observed data d and, using that, also to predict the taste of the next candy. In Fig. 1, the
posterior probabilities of the hypotheses and the probability of a given flavor (lime) of the next
candy are shown for the different numbers of observations N = 1, . . . , 10, and assuming that each
observation was lime.

The posterior probability plots on the left of Fig. 1 were obtained using Eq (1), where the
hypothesis prior was as given above P(h1, . . . , h5) = 〈0.1, 0.2, 0.4, 0.2, 0.1〉, and where we used the
i.i.d. assumption to express the likelihood as in Eq (3). For example, with N = 10 and all ten
being lime observations, the data likelihood under the hypothesis h3 is

P (d|h3) =
10∏
i=1

P (D(i) = lime|h3) = (0.5)10 (5)

Observe that the initial values of the probabilities of the hypotheses (for N = 0) are their prior
probabilities, so the probability for h3 is initially the largest one. Already after the first candy
is opened, the posterior probability of h1 (“all cherry’s”) drops to zero, and h3 is still the most
probable hypothesis. After two candy’s are open and both are lime, h4 becomes the most probable,
but h5 is now only a little behind, its probability is increasing quickly. After ten all-lime candy’s,
h5 is overwhelmingly the most probable hypothesis.

The probabilities of the prediction shown on the right Fig. 1 are calculated using Eq (2), (or
concretely Eq (4), where X = D(N+1)). There we use the already calculated posterior proba-
bilities of the hypotheses P (hj|d), and P(D(N+1)|hj) is given by the problem description (e.g.,
P(D(N+1)|h1) = 〈1, 0〉 and P(D(N+1)|h2) = 〈0.75, 0.25〉). The probability plot agrees with what we
would expect – the predicted probability that the next candy is lime is increasing monotonically
toward 1.

1.2 Maximum a Posteriori and Maximum-Likelihood learning

The previous example illustrated a very important characteristic of the Bayesian learning:
the Bayesian prediction eventually (after sufficient number of observations) agrees with the true
hypothesis. What’s nice is that this behavior does not depend on specifying a very accurate prior

5

as long as it is reasonable enough – for any fixed prior that does not rule out the true hypothesis,
the posterior probability of any false hypothesis will, under certain technical conditions, eventually
vanish [3]. This is because it is not likely to generate repeatedly data that are “uncharacteristic”
(they will be in negligible amounts in large datasets). Moreover, Bayesian prediction is optimal
regardless of whether the dataset is small or large. Under a given prior, any other prediction will
on the average be less correct.

While this optimality holds in theory, we might not always be able to use full Bayesian learning
in practice. When the hypothesis space is very large this approach may be intractable. We then
need to resort to approximate or simplified methods, and two common approaches are

• Maximum a Posteriori (MAP) learning:

hMAP = arg max
h∈H

P (h|d) = arg max
h∈H

P (d|h)P (h)

• Maximum-Likelihood learning:

hML = arg max
h∈H

P (d|h)

MAP learning (or MAP estimation) makes predictions based on a single most probable hypoth-
esis. It is a commonly adopted approach in science. Maximum-likelihood approach can be seen as a
simplification of the MAP learning by imposing a uniform prior on h. It is very common in statistics
because many researchers distrust the subjective nature of hypothesis priors. Maximum-likelihood
learning (also called maximum-likelihood estimation) is a good approximation for Bayesian and
MAP learning with large data sets. This is because when the data set is large the prior is less
important (evidence from data is strong enough to “swamp” the prior distribution) [3].

2 Learning with complete data

We address now the task of learning a probabilistic model from the data. This task is called
density estimation1 and is a form of unsupervised learning. In general, this problem refers
to learning the entire probabilistic model (e.g., also the structure of a Bayesian network). We
will focus only on parameter learning, i.e., learning the values of the parameters of a given
probability model whose structure is already known or fixed. In particular, we will address learning
of the conditional probability tables in Bayesian networks (particularly focusing on the naive
Bayesian model) and also learning the parameters of continuous probability distributions from
the data. More detailed coverage, including learning Bayesian network structures and density
estimation with non-parameteric models can be found compactly described in [3]. We assume
that we have complete data, i.e., that each data point contains values for every variable in
the probability model being learned. Learning with incomplete data (with hidden variables) is
postponed to Section 3.

2.1 Maximum-likelihood parameter learning: Discrete models

We will explain the main concepts of the maximum-likelihood parameter learning for discrete
models starting from two simple examples that build on the Surprise Candy use case from Section
1.1.1.

1The term applied originally to probability density functions for continuous variables, but it is used now for
discrete distributions too.

6

Figure 2: Bayesian network model for (a) Example 1: the case of candies with an unknown
proportion of cherry and lime. (b) Example 2: the case where the wrapper color depends (prob-
abilistically) on the candy flavor. Figure from [3].

2.1.1 Example 1

Consider first a small generalization of the Surprise Candy use case as follows. We don’t
have any more the earlier five upfront defined hypotheses but instead the fraction of cherry is a
parameter θ ∈ [0, 1], and the hypotheses are now hθ. We assume that all proportions of the
two candy flavors are equally likely a priori and we want to model this situation with a Bayesian
network.

There is only one relevant random variable for this model: Flavor. The corresponding “Bayesian
network” (an extreme case with one r.v.) is shown in Fig. 2 (a) along with the involved parameters,
which is here only one parameter characterizing the prior probability P (Flavor = cherry) = θ.

Let us now learn the parameter θ from data. Suppose we unwrap N candies of which c are
cherry and l = N − c are lime. The data likelihood given hθ is

P (d|hθ) =
N∏
i=1

P (d(i)|hθ) = θc(1− θ)l (6)

The corresponding log-likelihood is

`(θ) = logP (d|hθ) =
N∑
i=1

logP (d(i)|hθ) = c log θ + l log(1− θ) (7)

By setting d`(θ)/dθ = 0 we obtain

θ =
c

c+ l
=

c

N
(8)

i.e., hML = hc/N . Thus, as we would expect, the maximum-likelihood learning asserts that the
actual proportion of cherry is the same as the observed proportion.

7

2.1.2 Example 2

Now we build further on the previous example. Suppose there are two different wrapper colors:
red and green. The wrapper color is selected for each candy depending on its flavor according to
some unknown probability distribution. We want to model this new situation with a Bayesian
network and to learn its parameters from the data.

First we observe that there are now two relevant r.v.s: Flavor and Wrapper, where Wrapper
depends on Flavor, Thus we can represent this model with the Bayesian network shown in
Fig. 2(b). Since all the r.v.s are Boolean, we have three parameters: θ, θ1 and θ2, where θ
characterizes as before the prior probability of Flavor, while θ1 and θ2 characterize the conditional
probability table (CPT) P(Wrapper|Flavor).

For compactness, we denote the two r.v.s with their first letters, so we the CPT is given by
P (W = red|F = cherry) = θ1 and P (W = red|F = lime) = θ2. (Note that the probability of
green given cherry is simply 1− θ1 and the probability of green given lime is 1− θ2).

We express the joint probability of this Bayesian network conditioned on the parameter values
θ, θ1 and θ2. For example:

P (F = cherry,W = green|hθ,θ1,θ2)
= P (F = cherry|hθ,θ1,θ2)P (W = green|F = cherry, hθ,θ1,θ2) = θ(1− θ1)

To learn the parameter values, we unwrap N candy’s; c of these are cherry and l are lime. rc
of the cherry candy’s have red wrappers and gc green. Similarly, rl of the lime candy’s have red
wrappers and gl green wrappers.

The likelihood of the data is

P (d|hθ,θ1,θ2) = θc(1− θ)l · θrc1 (1− θ1)gc · θrl2 (1− θ2)gl

Setting the partial derivatives of the log-likelihood `(θ, θ1, θ2) = logP (d|hθ,θ1,θ2) to zero yields

θ =
c

c+ l
, θ1 =

rc
rc + gc

, θ2 =
rl

rl + gl

This example shows us that with complete data, the maximum-likelihood parameter learn-
ing problem for a Bayesian network decomposes into separate learning problems, one for each
parameter!

2.1.3 Naive Bayes model

We could extend the previous example by adding another attribute, say Shape of the candy
(e.g., being round or square), again depending on the candy’s flavor. If this new attribute is
conditionally independent of the wrapper color, given the flavor, we would represent the new
situation with the second Bayesian network in Fig. 3. We can continue adding more and more
attributes and as long as they are conditionally independent given Flavor, all the resulting models
are instances of the naive Bayes model.

In general, in a naive Bayesian model, the class variable C is the root (to be predicted), and
Xi are the attributes (features). We call it also naive Bayes classifier. Recall that we already
introduced before the naive Bayesian model, when we dealt with basics of probabilistic reasoning,
and at that time we referred to the root as the cause and the leaves as effects (or symptoms).

8

Figure 3: From left to right: two instances of a naive Bayes model and its general structure with
a random variable C denoting some class, and n attributes.

We call this model naive because of its assumption that the attributes are conditionally in-
dependent given the class (or put in the words of the other terminology, it’s naive because of its
assumption that the effects are conditionally independent given the cause).

The joint probability of a naive Bayesian model is given by

P(C|x1, . . . , xn) = αP(C)
∏
j

P(xj|C) (9)

In the case where all r.v.s are Boolean we need one parameter for the class and two per attribute:

θ = P (C = 1), θj1 = P (Xj = 1|C = 1), θj2 = P (Xj = 1|C = 0) (10)

The maximum-likelihood estimation of these parameters is exactly the same procedure as was
explained in Example 2. Let (x(i), c(i)) be teh ith data point. We have that

θjk =

∑
i 1[x

(i)
j = 1 ∧ c(i) = k]∑
i 1[c(i) = k]

(11)

where 1[a] = 1 if a = true and 0 otherwise. In Example 2, we had only one attribute (j = 1), so
the parameter θ1 from that example is in this general notation now θ11 and Eq (11) gives us:

θ11 =
#[W = red ∧ F = cherry]

#[F = cherry]
=

rc
rc + gc

in this particular example, as we obtained before.

Example: text classification

Let’s consider now as an example a use case which is closer to real applications than the candy
flavor prediction: text classification2:

The task is to classify each sentence into a category that corresponds to one of the major sections
of the newspaper: news, sports, business, weather or entertainment.

The class variable Category takes values c ∈ {news, sports, business, weather, entertainment}
and there are n Boolean attributes HasWordi, i = 1, . . . , n, where a predefined table of n words

2Example from [3], chapter 12.

9

is given. The model is characterized by the prior probabilities P(Category) and the conditional
probabilities P(HasWordi|Category).

The prior probability of each category is estimated as the fraction of all previously seen doc-
uments that belong to this category (for example, if 15% of articles are about sports, we set
P (Category = sports) = 0.15. Similarly, P (HasWordi|Category = sports) is estimated as the
fraction of the documents in the sports category that contain word i (e.g., if 18% of the seen arti-
cles about sports contain word 5, “fans” we set P (HasWord5 = true|Category = sports) = 0.18).
Actually, we are estimating the parameters of the CPT’s using Eq (11).

To categorize a new document, we check which key words appear in the document and then
apply Eq (9) to obtain the posterior probability distribution over categories. If we have to predict
just one category, we take the one with the highest posterior probability.

Properties

Naive Bayes is a commonly used model in machine learning due to its nice properties:

• scales well to very large problems (e.g., with n Boolean attributes, only =2n+1 parameters);

• deals well with noisy or missing data;

• gives both probabilistic and deterministic prediction (by choosing the most likely class);

• it is intuitive, simple to implement and performs well in a wide range of applications;

• its boosted version is one the most effective general-purpose learning algorithms.

Next to all these advantages, there are also some downsides. The main drawback is that the
conditional independence assumption is seldom accurate, although in practice it is often a good
approximation. When this approximation is not well justified, the model can lead to wrong pre-
dictions with overconfident probabilities (close to 0 or 1), especially when the number of attributes
is large.

2.1.4 Generative and discriminative models

Two kinds of machine learning models are used for classifiers

• Generative models – model the probability distribution of each class. From these distribu-
tions we can compute the joint probability and (by sampling from this joint distribution)
we can generate new examples that are representative of each class. A representative is
the naive Bayes model.

• Discriminative models – learn the decision boundary between classes. A discriminative
model can learn to classify a new input to the correct class, but cannot generate new examples
from that class. Representatives are logistic regression, decision trees, and support
vector machines.

To understand well the distinction between the two types of models and why the first one can
generate the new examples and the other not, consider the task of text categorization described
in Section 2.1.3. The naive Bayes classifier creates a separate model for each possible category

10

Figure 4: An illustration of the maximum-likelihood parameter estimation. Circles on the hor-
izontal axis are the measurements and four Gaussian distributions, with different parameters
θ = (µ, σ2), are shown as candidates to fit the true distribution. (The data were actually generated
from the distribution with µ = 14 and σ = 2, which corresponds to the curve shown in red, so the
maximum-likelihood estimation should identify this distribution as the best fit.)

of text, given by the prior probability, e.g. P (Category = weather) and the conditional proba-
bilities P(Inputs|Category = weather). From these, we can compute the joint probability, e.g.,
P(Inputs, Category = weather) and we can generate a random selection of words that is repre-
sentative of texts in the weather category [3]. This makes the model generative. In the same text
categorization task, a discriminative model would learn directly the posterior probability of the
class given the inputs, that is, P(Category|Inputs), which serves directly the classification task
but from which we cannot generate new example inputs.

Discriminative models tend to perform better in the classification tasks on very large data sets
but on very small data sets generative models often do better.

2.2 Maximum-likelihood learning: Continuous models

Now we address the task of learning the parameters θ of some continuous probability distribu-
tion P (x|θ) from the observed data x(1), . . . ,x(N). Consider first the simplest case, illustrated in
Fig. 4, where data are one-dimensional and the probability distribution is Gaussian:

P (x|θ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

To learn the parameters θ = {µ, σ2}, we express the log-likelihood:

`(µ, σ) = −N
2

log(2π)− N

2
log(σ2)− 1

2σ2

N∑
i=1

(x
(i)
i − µ)2

From ∂`/∂µ = 0 and ∂`/∂σ = 0 we obtain:

µ̂ =
1

N

N∑
i=1

x(i) and σ̂2 =
1

N

N∑
i=1

(x(i) − µ̂)2

which are exactly the sample mean and the sample variance.

11

Figure 5: A Bayesian network that corresponds to a Bayesian learning process. Posterior distribu-
tions for the parameter variables Θ, Θ1 and Θ2 can be inferred from their prior distributions and
the evidence in Flavor(i) and Wrapper(i). Figure from [3] with adapted notation.

We can generalize this procedure to the case where our observations are vectors x(i) (i.e., each

measurement is not a single number but consists of d components x(i) = [x
(i)
1 , . . . x

(i)
d]) modelled

by a multivariate normal distribution x ∼ N (x;µ,Σ), with mean µ and the covariance matrix
Σ. Applying the same procedure as above, we obtain the maximum-likelihood estimates of the
parameters as

µ̂ =
1

N

N∑
i=1

x(i), and Σ̂ =
1

N

N∑
i=1

(x(i) − µ̂)(x(i) − µ̂)> (12)

These simple examples with the normal distribution are easy to interpret, but we can apply the
same procedure to estimate the parameters of other, arbitrary statistical models.

2.3 Bayesian parameter learning

Maximum-likelihood learning is not reliable with small data sets. The Bayesian approach to
parameter learning starts with a prior distribution for the hypotheses and updates this distri-
bution as data arrive.

In the candy case, the parameter θ was representing the probability that a randomly selected
piece of candy is of cherry flavor. In the Bayesian view, θ is a realization of a random variable Θ
that defines the hypothesis space. The hypothesis prior is the prior distribution over P (Θ). Thus,
P (Θ = θ) is the prior probability that the bag has a fraction θ of cherry candies.

In Example 1 and Example 2 in Section 2.1, we simply used a uniform prior for θ, i.e.,
P (θ) = Uniform(θ; 0, 1). This is because we reasoned that we don’t know anything about the
possible values of θ, so we let them all be equally likely. Now we rather assume some more general,
parametrized distribution that is flexible enough and whose parameters can be updated based on
the new data. This will allow us to continuously adjust the prior distribution with new data.
Similarly, we will do for all the involved parameters that define the hypotheses. This process is
illustrated in Fig. 5.

12

Figure 6: Examples of the Beta(a, b) distribution for different values of (a, b). Figure from [3].

A very convenient distribution for this purpose is the Beta distribution:

Beta(θ; a, b) = α θ(a−1)(1− θ)(b−1)

for θ in the range [0, 1]. Its mean value is a/(a+ b), so larger values of a suggest a belief that Θ is
closer to 1 than to 0. Larger values of a+ b make the distribution more peaked, suggesting greater
certainty about the value of Θ. Fig. 6 illustrates the shape of this distribution with different
parameters. Note that Beta(1, 1) is a uniform distribution on the interval [0, 1].

The beta family has a very useful property for the learning process: it is closed under update,
meaning that the distribution updated with the new data remains the Beta distribution, just with
the updated parameters.

To see how this updating of the hypothesis prior works, suppose we start from the distribution
P (θ) = Beta(θ; a, b) with some chosen values of a and b, and we unwrap the first candy. If this
first candy is cherry, the update will be as follows:

P (θ | D(1) = cherry) = αP (D(1) = cherry | θ)P (θ)

= α θ ·Beta(θ; a, b) = α′θ · θ(a−1)(1− θ)(b−1)

= α′θa(1− θ)(b−1) = α′Beta(θ; a+ 1, b)

Thus, seeing a cherry candy leads to incrementing the a parameter of the distribution. Effectively,
this increases the belief that θ, which represents the portion of cherry, is closer to one than to zero.
Conversely, observing a lime candy will lead to incrementing the b parameter and this way shifting
our belief towards smaller values of θ. Let’s show this by repeating the calculation above for the
case where our first unwrapped candy was lime:

P (θ | D(1) = lime) = αP (D(1) = lime | θ)P (θ)

= α (1− θ) ·Beta(θ; a, b) = α′(1− θ) · θ(a−1)(1− θ)(b−1)

= α′θa−1(1− θ)b = α′Beta(θ; a, b+ 1)

We learn this way the distribution parameters from the observed data. The process also has a
nice interpretation. We can view the hyperparameters a and b as “virtual counts”: Beta(a, b),
with some particular values for a and b, would be obtained if we had started from a uniform prior
Beta(1, 1) and gradually updated it after observing a− 1 cherry candies and b− 1 lime candies.

13

3 Learning with hidden variables

In practice, data entries are often missing resulting in incomplete information to specify a
likelihood. This complicates the learning of the model parameters. We make a differentiation
between the data that are observable but just not available in some data points (e.g., due to a
particular sampling pattern or sensor errors etc.) and data that are never directly observable –
these correspond to the so called hidden or latent variables.

Latent variables are random variables that are essential for the model description but never
directly observed. The following definition can be found on Wikipedia:
In statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables
that can only be inferred indirectly through a mathematical model from other observable variables
that can be directly observed or measured [1].

For example, the underlying physics of a model may contain latent processes which are essential
to describe the model, but cannot be directly measured. Remember also that we sometimes
introduce hidden variables to sparsify the structure of a Bayesian network. This way we can
dramatically reduce the number of parameters required to specify a Bayesian network. We will
focus on a particular type of latent variable models: mixture models that we address next.

3.1 Clustering by learning Gaussian mixture models

In general, statistical models that represent distributions of observable variables using latent
(or hidden) variables are called latent variable models. An important class of these models are
the so-called mixture models, where the probability distribution is a mixture of k components:

P (x) =
k∑
i=1

P (C = i)︸ ︷︷ ︸
πi

P (x|C = i) (13)

Here, C is a random variable that denotes the component, with values 1, . . . , k and πi = P (C = i)
is the weight given to the ith component in the mixture. A mixture model naturally represents
(soft) clustering of data. We thus also say that mixture models make use of latent variables to
model different parameters for different groups (or clusters) of data points

When all the components in the mixture model are Gaussian, we have a mixture of Gaussians,
also called the Gaussian mixture model (GMM):

P (x) =
k∑
i=1

πi N (x;µi,Σi) (14)

Fig. 7 illustrates data generated from a GMM model, and also fitting the model to data with
an algorithm that will be explained in Section 3.2.

Mixture models are very useful in practice. Consider this example from [2]:

We need to build a probabilistic language model of news articles, which assigns probabilities
to sequences of words x1, . . . ,xn. Each article typically focuses on a specific topic e.g., finance,
sports, politics. Using this prior knowledge, we may build a more accurate model P (x|c)P (c), in
which we have introduced an additional, unobserved random variable C. This model can be more
accurate, because we can now learn a separate P (x|c) for each topic, rather than trying to model
everything with one (very complex) P (x).

14

Figure 7: A Gaussian mixture model with three components; the weights (left-to right) are 0.2,
0.3, and 0.5. (b) 500 data points sampled from the model in (a). (c) The model reconstructed by
EM from the data in (b). Figure from [3].

Note certain similarities with the description of the naive Bayes use case for text classification
in Section 2.1.3. However, since c is now unobserved, we cannot directly use the learning methods
that we have studied in Section 2 but we will introduce a new learning algorithm that we will
explain particularly for learning the mixtures of Gaussians.

3.2 EM algorithm for the mixtures of Gaussians

Fitting a GMM model to data like in Fig. 7 is in essence a clustering problem. Each cluster
will be modelled by a distribution (in this particular case, a Gaussian of given mean and covariance)
and we will obtain the probabilities describing how likely it is that the data point belongs to a given
cluster. This is a form of soft clustering but we can obtain easily from it also hard clustering
(e.g., simply by assigning the data point to the component (cluster) for which the probability is
the largest.

The parameters of this model are effectively learned by the so-called expectation-maximization
(EM) algorithm. The basic idea of EM is to start from some initial parameters of the model and
to iterate two steps: (1) infer the probability that each data point belongs to each component. (2)
refit the components to the data, where each component is fitted to the entire data set with each
point weighted by the probability that it belongs to that component.

Concretely, the EM algorithm for GMMs iterates the following two steps [3]:

• E-step: Compute probabilities pij = P (C = i|x(j))

– By Bayes’ rule:
pij = αP (x(j)|C = i)P (C = i)

– Define ni as the effective number of data points assigned to component i:
ni =

∑
j

pij

• M-step: Compute the new mean, covariance and weights

– Means:
µi ←

∑
j

pijx
(j)/ni

15

– Covariance matrices:
Σi ←

∑
j

pij(x
(j) − µi)(x(j) − µi)>/ni

– Weights:
πi ← ni/N

GMM-based clustering can be seen as a probabilistic version of the deterministic clustering
method known as K-means.

K-means algorithm initializes (randomly) the centroids µ1, . . . , µk and iterates two steps:

1. Assign each point to the nearest (in terms of L2 distance) centroid:

∀j, c(j) = arg max
i=1,...,k

‖x(j) − µi‖2

2. Recompute the centroids based on the assigned points: i = 1, . . . , k:

µi ←
1

|{j : c(j) = i}|
∑

j:c(j)=i

x(j)

K-means is sometimes employed to initialize GMM-based clustering.

References

[1] Y. Dodge. The Oxford Dictionary of Statistical Terms. 2003.

[2] S. Ermon. Probabilistic Graphical Models. (CS228). Stanford University, 2024.

[3] S Russel and Norvig. P. Artificial Intelligence: A Modern Approach, 4th Edition. Pearson, 2021.

16

	Bayesian and statistical machine learning
	Bayesian learning
	``Surprise Candy'' use case
	Bayesian learning example

	Maximum a Posteriori and Maximum-Likelihood learning

	Learning with complete data
	Maximum-likelihood parameter learning: Discrete models
	Example 1
	Example 2
	Naive Bayes model
	Generative and discriminative models

	Maximum-likelihood learning: Continuous models
	Bayesian parameter learning

	Learning with hidden variables
	Clustering by learning Gaussian mixture models
	EM algorithm for the mixtures of Gaussians

