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Overview

What is probabilistic inference?

Exact inference by enumeration

Exact inference by variable elimination

Belief propagation

Approximate inference by stochastic simulation

[R&N], Chapter 13 (Sec 13.3; 13.4)

This presentation is partly based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern

Approach, Fourth Ed.), denoted as [R&N] and the resource page http://aima.cs.berkeley.edu/
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Inference tasks

Denote
X = {X1, ..., Xn} – the complete set of variables
X – the query variable
E = {E1, ..., En} – the set of evidence variables
e = {e1, ..., en} – an observed event (assignment to evidence variables)
Y = {Y1, ..., Yn} – the non-evidence, non-query variables, called hidden variables,

so that X = {X} ∪E ∪Y

A typical query asks for the posterior probability distribution P(X|e)

This is an example of a simple inference task. P(X|e) is called posterior marginal
(because it is posterior distribution of a subset of variables, in this particular case this
subset is only one variable X).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Inference in Bayesian networks 3 / 50



Inference tasks, contd.

Simple queries: compute posterior marginal P(Xi|E= e)
e.g., P (NoGas|Gauge= empty, Lights= on, Starts= false)

Conjunctive queries: P(Xi, Xj |E= e) = P(Xi|E= e)P(Xj |Xi,E= e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?
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Inference by enumeration: Reminder ’Dentist’ example

Consider the query: P(Cavity|toothache)

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) +P(Cavity, toothache,¬catch)]
= α [〈0.108, 0.016〉+ 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉
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Inference by enumeration

Conditional probabilities can be computed by summing terms from the joint
distribution: P(X|e) = αP(X, e) = α

∑
y P(X, e,y)

Example: simple query on the burglary network

P(B|j,m) = P(B, j,m)/P (j,m)

= αP(B, j,m)

= α
∑
e

∑
a

P(B, e, a, j,m)

Rewrite using the actual network structure and its CPT entries:

P(B|j,m)
= α

∑
e

∑
a P(B)P (e)P(a|B, e)P (j|a)P (m|a)

= αP(B)
∑

e P (e)
∑

a P(a|B, e)P (j|a)P (m|a)

Recursive depth-first enumeration: O(n) space, O(dn) time
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Inference by enumeration
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Inference by enumeration

Inefficient: repeated computations, e.g., computes P (j|a)P (m|a) for each value of e.
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Inference by variable elimination

Idea: eliminate repeated calculations carry out summations right-to-left (bottom-up)
storing intermediate results for later use

P(B|j,m)
= αP(B)︸ ︷︷ ︸

f1(B)

∑
e
P (e)︸︷︷︸
f2(E)

∑
a
P(a|B, e)︸ ︷︷ ︸
f3(A,B,E)

P (j|a)︸ ︷︷ ︸
f4(A)

P (m|a)︸ ︷︷ ︸
f5(A)

Here the factors are vectors like

f1(B) =

[
P (b)
P (¬b)

]
; f4(A) =

[
P (j|a)
P (j|¬a)

]
etc.

so, we have

P(B|j,m) = αf1(B)
∑
e
f2(E)

∑
a
f3(A,B,E)× f4(A)× f5(A)

where × is pointwise product
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Inference by variable elimination, contd.

Now, compute from right to left

P(B|j,m) = αf1(B)
∑
e
f2(E)

∑
a

f3(A,B,E)× f4(A)× f5(A)︸ ︷︷ ︸
f6(B,E)

f6(B,E) =
∑
a
f3(A,B,E)× f4(A)× f5(A) =

= (f3(a,B,E)× f4(a)× f5(a)) + (f3(¬a,B,E)× f4(¬a)× f5(¬a))

P(B|j,m) = αf1(B)
∑
e
f2(E)× f6(B,E)

P(B|j,m) = αf1(B)f7(B)
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Variable elimination: Basic operations

Pointwise product of factors f1 and f2:
f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk, z1, . . . , zl)

= f(x1, . . . , xj , y1, . . . , yk, z1, . . . , zl)

E.g., f1(a, b)× f2(b, c) = f(a, b, c)

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors:

∑
x f1× · · · × fk = f1× · · · × fi

∑
x

fi+1× · · · × fk︸ ︷︷ ︸
fX̄

= f1× · · · × fi× fX̄

assuming f1, . . . , fi do not depend on X.
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Example: pointwise product of factors

The pointwise product of two factors f1 and f2 yields a new factor whose variables are
the union of the variables in f1 and f2 and whose elements are given by the product of
the corresponding elements in the two factors.
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Example: summing out a variable from a product of factors

f(B,C) =
∑
a

f3(A,B,C) = f3(a,B,C) + f3(¬a,B,C)

=

[
0.06 0.24
0.42 0.28

]
+

[
0.18 0.72
0.06 0.04

]
=

[
0.24 0.96
0.48 0.32

]
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Variable elimination algorithm

Think of variable ordering.

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Inference in Bayesian networks 16 / 50



Variable relevance - Example

P(J |b) = α
∑
e

∑
a

∑
m

P (J, b, e, a,m)

= α
∑
e

∑
a

∑
m

P (b)P (e)P (a|b, e)P (J |a)P (m|a)

= αP (b)
∑
e

P (e)
∑
a

P (a|b, e)P (J |a)
∑
m

P (m|a)︸ ︷︷ ︸
1

So, there was no need to include m!
Every variable that is not an ancestor of a query variable or evidence variable
is irrelevant to the query!
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Belief propagation
Belief propagation algorithm was introduced by Judea Pearl, 1982

Exact inference in networks without loops; time complexity linear in the number
of nodes

Became very popular after it was shown that the same computations are in turbo
codes and the same principles in the Viterbi algorithm

Main idea: inference by local message passing among neighboring nodes;
The message can loosely be interpreted as “I (node i) think that you (node j)
are that much likely to be in a given state”.
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Message passing revisited

Distributed soldier counting:

Distributed soldier counting with leader in line:

Do we need the leader for this process? Think of leaderless soldier counting.
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Belief propagation

Problem: express the probability of X given the set of old evidences en = {e1 . . . en}
and a new piece of evidence en+1

P (x|en, en+1) =
P (x, en, en+1)

P (en, en+1)
=
P (en+1|x, en)P (x, en)

P (en, en+1)

=
P (en+1|x, en)P (x|en)����P (en)

P (en+1|en)����P (en)

= P (en+1|en)−1︸ ︷︷ ︸
α

P (en+1|x, en)P (x|en)

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Inference in Bayesian networks 20 / 50



Belief propagation

Problem: express the probability of X given the set of old evidences en = {e1 . . . en}
and a new piece of evidence en+1

P (x|en, en+1) =
P (x, en, en+1)

P (en, en+1)
=
P (en+1|x, en)P (x, en)

P (en, en+1)

=
P (en+1|x, en)P (x|en)����P (en)

P (en+1|en)����P (en)

= P (en+1|en)−1︸ ︷︷ ︸
α

P (en+1|x, en)P (x|en)

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Inference in Bayesian networks 20 / 50



Belief propagation in chains

P (x|e+, e−) =
P (x, e+, e−)

P (e+, e−)
=

P (e−|x)︷ ︸︸ ︷
P (e−|x, e+)P (x, e+)

P (e+, e−)
=
P (e−|x)P (x|e+)P (e+)

P (e+, e−)

=
P (e−|x)P (x|e+)����P (e+)

P (e−|e+)����P (e+)
= P (e−|e+)−1︸ ︷︷ ︸

α

P (e−|x)︸ ︷︷ ︸
λ(x)

P (x|e+)︸ ︷︷ ︸
π(x)

Note: we assumed here that all available evidence E is split into E+ and E− , i.e.,
E = E+ ∪E−, and e+ and e− are assignments to E+ and E−, respectively.
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Belief propagation in chains, contd.

P (x|e+, e−) = αλ(x)π(x)

λ(x) = P (e−|x), π(x) = P (x|e+)

Notice how π(x) propagates down the chain:

π(x) = P (x|e+) =
∑
u

P (x|u, e+)︸ ︷︷ ︸
P (x|u)

P (u|e+)︸ ︷︷ ︸
π(u)

=
∑
u

P (x|u)π(u)
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Belief propagation in chains, contd.

P (x|e+, e−) = αλ(x)π(x)

λ(x) = P (e−|x), π(x) = P (x|e+)

Similarly, λ(x) propagates in the other direction:

λ(x) = P (e−|x) =
∑
y

P (e−|y, x)︸ ︷︷ ︸
P (e−|y)=λ(y)

P (y|x) =
∑
y

λ(y)P (y|x)
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Belief propagation in chains, contd.

BEL(x) = P (x|e) = P (x|e+, e−) = αλ(x)π(x)

λ(x) = P (e−|x), π(x) = P (x|e+)

BEL(x) – belief accorded to proposition X = x by all evidence e so far received.
π(x) – causal or predictive support attributed to the assertion X = x by all

non-descendants of X, mediated by X’s parent.
λ(x) – diagnostic or retrospective support that X = x receives from X’s descendents.
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Belief propagation in trees
Let the query be BEL(x) = P (x|e)
Divide e into e−X and e+

X . Suppose e−X
is in the network rooted at X
and e+

X is in the rest of the network.

Like with the chain, we can show
BEL(x) = P (x|e) = αλ(x)π(x), with
λ(x) = P (e−X |x), π(x) = P (x|e+

X);
α = P (e−X |e

+
X)
−1

λ(x) = P (e−X |x) = P (e−Y , e
−
Z |x) = P (e−Y |x)P (e

−
Z |x) = λY (x)λZ(x)︸ ︷︷ ︸

messages from children

π(x) = P (x|e+
X) =

∑
u
P (x|��e

+
X , u)P (u|e

+
X) =

∑
u

P (x|u)πX(u)︸ ︷︷ ︸
message from the parent
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Belief propagation in trees, contd.
Belief updating
BEL(x) = P (x|e) = αλ(x)π(x)
λ(x) =

∏
j
λYj (x)

π(x) =
∑
u
P (x|u)πX(u)

α is const. such that
∑
x
BEL(x) = 1

Bottom-up propagation
λX(u) =

∑
x
λ(x)P (x|u)

Top-down propagation
πYj (x) = απ(x)

∏
k 6=j

λYk(x)

For more details, see (optional):
Judea Pearl, Probabilistic reasoning in intelligence Systems: Networks of Plausible
Inference, (2nd Edition, Section 4.2)
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Belief propagation in trees, contd.
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Inference by stochastic simulation

Basic idea
I Draw samples from a sampling distribution
I Compute an approximate posterior probability
I Show this converges to the true probability

Different methods from this class:
I Sampling from an empty network
I Rejection sampling: reject samples disagreeing with evidence
I Likelihood weighting: use evidence to weight samples
I Markov chain Monte Carlo (MCMC): sample from a stochastic process whose

stationary distribution is the true posterior

Applicable to arbitrary network topologies and arbitrary combinations of discrete
and continuous r.v.s

Convergence can be very slow
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Network separation

A simple path through a graph (or a simple chain) is a sequence of vertices and
edges where no vertices (and hence no edges) are repeated.

In other words, a simple chain contains no loops.
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Network separation, contd.

We investigate (conditional) independence in three simple networks featuring these
types of nodes. Let a ⊥⊥ b | c denote “a and b are conditionally independent given c”
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Using network separation

Using these properties of the three types of internal nodes in a chain, we can see
which parts of the network can be “separated” from the rest.

We also say that the chain is blocked by the corresponding node.
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Using network separation

Let’s see the cases where nodes are connected with multiple chains
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Using network separation

We use the same principle in larger networks
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Collider

Here is an easy way to remember the (conditional) independence structure.
A collider contains two or more incoming arrows along a chosen path.
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Summary

Probabilistic inference computes the posterior probability distribution for a set of
query variables, given some observed event (i.e., some assignment of values to a
set of evidence variables)

Exact inference
I Inference by enumeration is conceptually simple, but inefficient
I Variable elimination – smarter approach - avoids recalculations
I Belief propagation (exact on networks without loops)

Approximate inference
I Stochastic simulation
I Can handle arbitrary combinations of discrete and continuous r.v.s
I Convergence can be very slow
I We will learn about this later in the context of general graphical models

Use the network separation where possible!
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