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Overview

Bayesian machine learning

MAP learning

Maximum-likelihood parameter learning

Naive Bayes classifier

Bayesian parameter learning

Clustering by Learning mixtures of Gaussians

[R&N], Chapter 20

This presentation is partly based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern

Approach, Fourth Ed.), denoted as [R&N] and the resource page http://aima.cs.berkeley.edu/
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Bayesian view on machine learning

View learning as a form of uncertain reasoning from observations
I Learning task as probabilistic inference

Devise models to represent uncertain world

Bayesian view of learning is very powerful
I General solutions to noise, overfitting and optimal prediction
I Don’t necessarily choose one single hypothesis but take each with its probability

Meets real-life challenges: AI agents are not omniscient
I Not certain about which model is correct, yet must decide/act
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Statistical learning

The same key concepts from the theory of learning: data and hypotheses
but we deal with random variables (r.v.s)

Now data are evidence
instantiations of some (or all) domain r.v.s

Hypotheses are now probabilistic theories
of how the domain “works”
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Surprise Candy case
Our favorite surprise candy comes in two flavors: cherry and lime. It’s wrapped in the
same opaque wrapper, regardless of flavor, and sold in very large bags, of which there
are known to be five kinds – again, indistinguishable from the outside:

h1: 100% cherry

h2: 75% cherry + 25% lime

h3: 50% cherry + 50% lime

h4: 25% cherry + 75% lime

h5: 100% lime

Random variables:
I H: type of the bag; possible values h ∈ {h1, . . . h5}
I D(i): data revealed when i-th candy opened; d(i) ∈ {cherry, lime}

Task faced by the AI agent: predict the flavor of the next piece of candy
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Bayesian learning - basic concepts

Calculate the probability of each hypothesis, given the data

Make predictions using all the hypotheses weighted by their probabilities

Learning becomes probabilistic inference!

Let D be all the data, with observed value d

P (hj | d)︸ ︷︷ ︸
posterior prob.

of hypotheis

= αP (d | hj)︸ ︷︷ ︸
likelihood

P (hj)︸ ︷︷ ︸
hypothesis

prior

Prediction about unknown X:

P(X|d) =
∑
j

P(X|hj)P (hj |d)
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Bayesian learning on the Surprise Candy case

We want to predict the flavor of the (N + 1)-th candy given the N opened ones:

P(D(N+1)|d) =
∑
j

P(D(N+1)|hj)P (hj |d)

Assume the data d = {d(1), . . . , d(N)} are i.i.d. Then it holds

P (d|hj) =
∏
i

P (d(i)|hj)

We still need the prior probabilities of hj ’s. Suppose the prior distribution is given
(e.g., as advertised by manufacturer): P(h1, . . . , h5) = 〈0.1, 0.2, 0.4, 0.2, 0.1〉
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Bayesian learning on the Surprise Candy case

Left: Posterior probabilities P (hj |d(1), . . . d(N)).
Right: Bayesian prediction P (D(N+1) = lime|d(1), . . . , d(N)).

Calculated for the case where N ranges from 1 to 10, and each observation is lime.
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Maximum a Posteriori and Maximum Likelihood Estimates

The hypothesis space is usually very large
→ Bayesian learning may be intractable.

Solution: resort to approximate or simplified methods
I Make prediction based on a single most probable hypothesis

F Maximum a Posteriori (MAP) hypothesis:

hMAP = argmax
h∈H

P (h|d)

Predictions made by MAP approximate Bayesian ML to the extent that

P (X|d) ≈ P (X|hMAP )

I If we assume uniform prior over the hypothesis space
F Maximum-Likelihood hypothesis

hML = argmax
h∈H

P (d|h)
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Learning with complete data

Density estimation – learning a probability model, given data
that are assumed to be generated by that model

It is a form of unsupervised learning

We focus on parameter learning
– finding the parameter values of a probability model whose structure is fixed

We start from the simplest case: learning with complete data
(each data point contains values for every variable in the model being learned)
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Maximum-likelihood learning: Discrete data (Example 1)

Let the fraction of cherry be a parameter θ ∈ [0, 1]

Hypotheses are now hθ

Assume all proportions are equally likely a priori

Model the situation with a Bayesian network

We need only one r.v.: Flavor with P (Flavor = cherry) = θ

Suppose we unwrap N candies of which c are cherry and l = N − c are lime

P (d|hθ) =

N∏
i=1

P (d(i)|hθ) = θc(1− θ)l

To get hML, let `(θ) = logP (d|hθ) =
∑N

i=1 logP (d(i)|hθ) = c log θ + l log(1− θ)
From d`(θ)

dθ = 0 =⇒ θ = c
c+l = c

N . Hence, hML = hc/N , i.e., θ̂ML = c
N

ML asserts that the actual proportion of cherry is the same as the observed proportion
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Maximum-likelihood learning: Discrete data

In general, maximum-likelihood learning with θ = {θ1, . . . , θM},
1 Write down an expression for `(θ) = logP (d|hθ)

2 Write down the derivatives ∂`(θ)
∂θk

, k = 1, . . . ,M

3 Find θk such that ∂`(θ)
∂θk

= 0, k = 1, . . . ,M

The last step often requires iterative optimization

Key problem: when the data set is small such that some events have not yet been
observed (e.g., no cherry candy’s yet), hML assigns zero probabilities to those events

Tricks to avoid this include different initializations
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Maximum-likelihood learning: Discrete data (Example 2)

Let the fraction of cherry be a parameter θ ∈ [0, 1]

New: two wrapper colors red, green

Wrapper for each candy selected according to some
unknown distribution P(Wrapper|Flavor)
Model the situation with a Bayesian network

We have 2 r.v.s and 3 parameters: θ, θ1 and θ2

E.g., P (F = cherry,W = green|hθ,θ1,θ2)
= P (F = cherry|hθ,θ1,θ2)P (W = green|F = cherry, hθ,θ1,θ2) = θ(1− θ1)
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Maximum-likelihood learning: Discrete data (Example 2, contd.)

We unwrap N candy’s, c are cherry and l are lime

rc of the cherry candy’s have red wrappers and gc green

rl of the lime candy’s have red wrappers and gl green

The likelihood of the data is

P (d|hθ,θ1,θ2) = θc(1− θ)l · θrc1 (1− θ1)gc · θrl2 (1− θ2)gl

Setting the partial derivatives of the log-likelihood
`(θ, θ1, θ2) = logP (d|hθ,θ1,θ2) to zero yields

θ = c
c+l , θ1 = rc

rc+gc
, θ2 = rl

rl+gl

Note: With complete data, the maximum-likelihood parameter learning problem for a
Bayesian network decomposes into separate learning problems, one for each parameter
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Naive Bayes models

The class variable C is the root (to be predicted), and Xi are the attributes (features)

P(C|x1, . . . , xn) = αP(C)
∏
j

P(xj |C)

In the case where all r.v.s are Boolean:

θ = P (C = 1), θj1 = P (Xj = 1|C = 1), θj2 = P (Xj = 1|C = 0)

Let (x(i), c(i)) be ith data point. θjk =
∑
i 1[x

(i)
j =1 ∧ c(i)=k]∑
i 1[c

(i)=k]
e.g., #[W=red ∧ F=cherry]

#[F=cherry]
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Naive Bayes models

Naive Bayes is a commonly used model in machine learning

A deterministic prediction can be obtained by choosing the most likely class

Performs well in a wide range of applications

The boosted version is one the most effective general-purpose learning algorithms

Naive Bayes learning scales well to very large problems
– with n Boolean attributes there are only 2n+ 1 parameters

Deals well with noisy or missing data

Can give probabilistic predictions when approapriate

Drawback: the conditional independence assumption is seldom accurate
– can lead to overconfident probabilities that are often close to 0 or 1

especially with large numbers of attributes
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Application in Hyperspectral Image (HSI) classification

Left: Houston University HSI (144 bands); Left: Pavia University HSI (115 bands)
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Naive Bayes robustness: Example from HSI analysis with noisy labels

An illustration of label noise; (a) part of an original HSI; (b) one of the image bands;
(c) ground truth for class 1 overlayed; (d) an example of training data for class 1 when
all the labels are correct; (e) erroneous labels (noisy labels) are present. Some samples
from other classes (denoted by dots in colors other than blue) are wrongly declared as
examples for class 1.
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Naive Bayes robustness: Example from HSI analysis with noisy labels

Comparison of classification accuracies at different levels of label noise.
NBC: Naive Bayes Classifier; SRC, SJSRC: Sparse Representation Classification models
SSUN, SSRN, A2S2K: deep learning models.
Observe how the overall accuracy (OA) of NBC gracefully decreases with label noise
M. Li, S. Huang, J. De Bock, G. De Cooman, and A. Pizurica. A robust dynamic classifier selection approach for hyperspectral images with imprecise
label information. SENSORS, 20(18), 2020. https://doi.org/10.3390/s20185262
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Naive Bayes robustness: Example from HSI analysis with noisy labels

Why is NBC so robust to label noise?

Features are the first N PCs
I fi = PCi

I ĉ = arg max
c
P (c)

N∏
i=1

P (fi|c)

Conditional densities shown

P (fi|c), c ∈ {1, . . . , 6}

for i = 1, ρ ∈ {0, 0.1, 0.4, 0.5}
Similar behaviour for all i

P (fi|c) for different c retain ≈ their
relative proportions until they get
flattened at very large ρ

ρ is the fraction of erroneous labels

M. Li, S. Huang, J. De Bock, G. De Cooman, and A. Pizurica. SENSORS, 20(18), 2020. https://doi.org/10.3390/s20185262
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Generative and discriminative models

Two kinds of ML models are used for classifiers

Generative – models the probability distribution of each class
I E.g. the naive Bayes classifier

Discriminative – learns the decision boundary between classes
I E.g. logistic regression, decision trees, support vector machines
I Gives the output class, but cannot generate new representatives from that class

Discriminative models tend to perform better in the classification tasks on very large
data sets but on very small data sets generative models often do better

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Learning probabilistic models 21 / 33



Maximum-likelihood learning: Continuous models

Assume P (x|θ) = 1
σ
√
2π
e−

(x−µ)2

2σ2 . Our task is: learn θ = {µ, σ}

Log-likelihood: `(µ, σ) = −N
2 log(2π)− N

2 log(σ2)− 1
2σ2

N∑
i=1

(x
(i)
i − µ)2

From ∂`
∂µ = 0 and ∂`

∂σ = 0 we get:

µ̂ = 1
N

N∑
i=1

x(i) and σ̂2 = 1
N

N∑
i=1

(x(i) − µ̂)2
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Bayesian parameter learning: Beta distribution

Examples of beta distributions for different values of (a,b)

Beta(θ; a, b) = α θ(a−1)(1− θ)(b−1)
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Bayesian learning process

E.g., P (θ | D(1) = cherry) = αP (D(1) = cherry | θ)P (θ)

= α′θ ·Beta(θ; a, b) = α′θ · θ(a−1)(1− θ)(b−1)

= α′θa(1− θ)(b−1) = α′Beta(θ; a+ 1, b)
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Hidden Variables and Missing Data

Missing data: In practice data entries are often missing resulting in incomplete
information to specify a likelihood

Observational variables may be split into
I Visible – those for which we actually know the state and
I Missing – those whose states would nominally be known but are missing for a

particular datapoint

Latent Variables: Another scenario in which not all variables in the model are
observed, but there are so-called hidden or latent variables. Latent variables are
essential for the model description but never observed.

I E.g., the underlying physics of a model may contain latent processes which are
essential to describe the model, but cannot be directly measured
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Gaussian Mixture Model (GMM)

A mixture distribution with k components: P (x) =

k∑
i=1

P (C = i)︸ ︷︷ ︸
πi

P (x|C = i)

A Gaussian mixture model: P (x) =

k∑
i=1

πi N (x;µi,Σi)
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Expectation Maximization (EM) algorithm

Credit: A. Zisserman: Clustering & Mixture Models
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EM algorithm for the mixtures of Gaussians

Input: x(1), . . . ,x(N). Initialize the parameters arbitrarily and iterate the 2 steps:

E-step: Compute probabilities pij = P (C = i|x(j))
I By Bayes’ rule:

pij = αP (x(j)|C = i)P (C = i)
I Define ni as the effective number of data points assigned to component i:

ni =
∑
j

pij

M-step: Compute the new mean, covariance and weights
I Means:

µi ←
∑
j

pijx
(j)/ni

I Covariance matrices:
Σi ←

∑
j

pij(x
(j) − µi)(x

(j) − µi)
>/ni

I Weights:
πi ← ni/N
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Digression: K-means clustering

C. Bishop: Pattern Recognition and Machine Learning
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Clustering by learning mixtures of Gaussians

C. Bishop: Pattern Recognition and Machine Learning

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Learning probabilistic models 30 / 33



Hard clustering versus probabilistic clustering
K-Means

Initialize µ = µ1, . . . µk randomly
Iterate:

Step 1: Set assignments c given µ
(x(j) → nearest centroid):

∀j, c(j) = arg min
i=1,...,k

‖x(j) − µi‖2

Step 2: Set centroids µ given c
i = 1, . . . , k:

µi ←
1

|{j : c(j) = i}|
∑

j:c(j)=i

x(j)

.

GMM

Initialize µi,Σi, i = 1, . . . k
Iterate:

E-step: Find probabilities that
data points were generated by
different components

∀i, j pij = P (C = i|x(j))

M-step: Find new parameters
that maximize the log-likelihood:

Using pij , update µi,Σi, πi

.
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GMM clustering example

Left: Simulated data from a mixture of Gaussian distributions; Middle: fitted
2-component GMM; Right: estimated class memberships and posterior probabilities

https://fr.mathworks.com/help/stats/cluster-data-from-mixture-of-gaussian-distributions.html
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Summary

Bayesian learning = learning as a form of probabilistic inference
I Prior distribution over h updated based on observations

MAP learning selects a single most likely hypothesis given the data
I Still usess a prior on h; More tractable than full Bayesian learning

Maximum-likelihood learning: simply maximize the data likelihood
I Equivalent to MAP learning with a uniform prior
I Naive Bayes learning is a particularly effective technique that scales well

When some variables are hidden, parameters can be learned by the EM algorithm
I Applications include clustering using Gaussian Mixture Models (GMM)
I GMM-based clustering can be seen as a probabilistic version of K-means
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