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Overview

Time and uncertainty
Inference: filtering, prediction, smoothing

Kalman filters (a brief mention)

°

°

@ Hidden Markov models

°

@ Dynamic Bayesian networks
°

Particle filtering

[R&N], Chapter 14

This presentation is based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern
Approach, (Fourth Ed.), denoted as [R&N] and corresp. resources http://aima.cs.berkeley.edu/
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Time and uncertainty

The world changes; we need to track and predict it
E.g., diabetes management (dynamic) vs vehicle diagnosis (static)
Basic idea: keep track of state and evidence variables at each time step

X; = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E,; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodFaten,

This assumes discrete time; step size depends on problem

Notation: X, = Xg, Xgg1, ..., Xp1, Xp
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: X; depends on bounded subset of X,

First-order Markov process: P (XX, 1) = P(X;|X; 1)
Second-order Markov process: P(X;|Xg;—1) = P(X[X; 9, X 1)

o —E D~ ED—~CO—~E D~
— o
Second-order @'VQ'VQ" v@

Sensor Markov assumption: P(E;|Xg.;, Eg.;—1) = P(EX})

Stationary process: transition model P(X;|X;_;) and
sensor model P (E,;|X;) fixed for all ¢
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Example: umbrella

ye "Hmmm, she has
_ umbrella today again... )

L

s it raining outside?

>
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Example: umbrella

R;1| PRy
t 0.7
f 0.3
R, | P(U)
t 0.9
Y YL/ 02 Y

Umbrella; 4 Umbrella, Umbrella, 4

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process

2. Augment state, e.g., add T'emp;, Pressure;

Another example: robot motion. Augment position and velocity with Battery;
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Inference tasks

Filtering: P(X,|e1.;)
belief state — input to the decision process of a rational agent

Prediction: P (X, x|ei.) for k >0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P (X} |e,) for 0 <k <t
better estimate of past states, essential for learning

Most likely explanation: arg maxy,., P(x1.|e1.)
speech recognition, decoding with a noisy channel
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Filtering

Aim: devise a recursive state estimation algorithm:

P(Xii1leri+1) = flem1, P(Xiler))

P(Xii1lerq1) = P(Xyq1lers, e1)
= aP(er1]|Xit1,e14)P(Xit1ler)
= aP(ep1|Xer1)P(Xit1ler)
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Filtering

Aim: devise a recursive state estimation algorithm:

P(Xii1leri+1) = flem1, P(Xiler))

P(X¢t1lerit1) = P(Xiyilers, en)
= aP(er1|Xq1, e1:)P(Xisiler)
= aP(er1|Xi1)P(Xyyiler)

l.e., prediction + estimation. Prediction by summing out X;:

P(Xipalerii1) = aP (e[ Xe1) > P(Xepa|xi, ere) P(xilers)

Xt

= aP(err1|Xes1) D P(Xis|xi) P(xler)

Xt

fl:t+1 = O[FORWARD(fl;t, et+1) where fl:t = P(Xt‘el;t)
Time and space constant (independent of ¢)
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Filtering example
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True 0.500

0.500 0.627
0.500 0.373
0.318 0.483
0.500 0.182 0.117
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Smoothing
O~ (D

GD ) <
Divide evidence e into eq.i, €p11:4:
P(Xylenr) = P(Xgler,ert1) = aP(Xyler)P(ept1:4[ Xy, e1)
= oP(Xglerx)P(err1:¢|Xk)
= af . brris
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Smoothing
O~ (D

GD ) &
Divide evidence e into eq.i, €p11:4:
P(Xylenr) = P(Xgler,ert1) = aP(Xyler)P(ept1:4[ Xy, e1)
= oP(Xglerx)P(err1:¢|Xk)
= af . brris

Backward message computed by a backwards recursion:

P(ep14|Xk) = Zxk+lP(ek+1:t|Xk:7Xk+1>P(Xk+1|Xk)
= Y Plersralxir)Pxpia|Xs)
Xk+1

= Zkarl P(ek—‘rl‘Xk-‘rl)P(ek_A,_Q;t|Xk+1)P(Xk+1‘Xk)
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Smoothing example

True 0.500
False  0.500
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0.500 0.627
0.500 0.373

0.818 0.883 orward
0.182 0.117 orwar
0.883 0.883

0.117 0.117 smoothed
0.690 1.000 backward

0.410 1.000

(Rainy——=Reine)
& T
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Smoothing example

0.500 0.627
0.500 0.373
True 0.500 ;18 0.!33 ¢ d
False  0.500 0. 182 0.117 onwar
0. 883 0.883
0.117 0.117 smoothed
0.690 1.000 backward

0.410 1.000

(Raing e Chainy y——e(Rein)
COmbrtia et

Forward—backward algorithm: cache forward messages along the way
Time linear in ¢ (polytree inference), space O(t|f])

A. Pizurica, E016350 Artificial Intelligence (UGent) Temporal probability models 11 /27



Most likely explanation

Most likely sequence # sequence of most likely states!!!!

Most likely path to each x;
= most likely path to some x; plus one more step

max P(xy,...,x¢, X¢p1lerni1)

X1...X¢

= P(et+1|Xt+1)H§2X <P(Xt+1|xt) max P(Xl,-'-7Xt1,Xt|61:t)>

X1...-X¢t—1

Identical to filtering, except fi.; replaced by

mi; = max P(X17' "7Xt—17Xt’e1:t)7
X1...X¢t—1

l.e., my (i) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

mi.t41 = P(et+1\Xt+1) chattx (P(Xt-s-l\xt)ml:t)
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Viterbi example

state
space
paths

umbrella

most
likely
paths

<

<

Rain, Rain, Rain, Rain, Raing
true true true true true
false false false false false
true true false true true
8182 5155 0361 0334 0210
1818 0491 1237 0173 0024
my mi, mi; miy m;;
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Hidden Markov models

X, is a single, discrete variable (usually E; is too)
Domain of X, is {1,...,S5}
Transition matrix T;; = P(X; = j| X1 =1),

0.7 0.3
e.g., for the umbrella world T = ( 0.3 0.7 )

Sensor matrix O, for each time step, diagonal elements P(e;| X, =1)

e.g., for the umbrella world with U} = true, O = ( 0(-)9 002 )

Forward and backward messages as column vectors:
f = a0 T'f
1it+1 aU¢41 1:¢
bii1: = TOpi1bitoy

Forward-backward algorithm needs time O(5”t) and space O(St)
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Example: robot localization

nnnnn Enn n Transition model:
1
- e - e

P(Xp41 = jIXe = i) = Tij = 533
if j € NEIGHBORS(), else 0

Sensor model:
P(Et = et‘Xt = Z) = Oti,i
_ (1 _ 6)4_dit€dit

d;; is the discrepancy (the number
N of bits that are different between the

== nn= n : true values for square 7 and the ac-

tual reading e;); € — sensor error rate

(b) Posterior distribution over robot location after E1 = NSW,E>= NS

Posterior distribution P(X; = i|e;) over robot location: (a) one observation
E, = NSW; (b) after a second observation E; = N'S. The size of each disk
corresponds to the probability that the robot is at that location. ¢ = 0.2
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Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—X, = XY, Z XY Z.
Airplanes, robots, ecosystems, economies, chemical plants, planets, ...

T~

- |
a

Gaussian prior, linear Gaussian transition model and sensor model
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Updating Gaussian distributions
1) If the current distribution P(X;|e;.;) is Gaussian, and the transition model
P (X, 1]x¢) is linear Gaussian, then prediction

P(Xit1ler:) :/ P (Xii1|xt) P(xt|e1.t) dxi
Xt

is also Gaussian.

2) If the prediction P (X, 1|e1.) is Gaussian, and the sensor model P(e;1|X;) is
linear Gaussian, then the updated distribution after conditioning on new evidence

P(Xt—i-l’el:t—i-l) = OéP(et-H\Xt+1)P(Xt+1|91:t)
is also a Gaussian distribution
Hence P(X;|ei;) is multivariate Gaussian N (p,, ;) for all ¢

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as ¢t — oo
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Simple 1-D example
Gaussian random walk on X-axis, s.d. 0., sensor s.d. o.

(02 + 0221 + 2 2 (0} 4+ 03)0?
02 + 02 + 02 Utﬂiaf%-afc—kog

I

0.45 ——
0.4 1
035 | F
03 |
0.25
0.2
0.15
0.1
0.05

0

| P(xl | 21=2.5) |

P(X)

X position
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General Kalman update

Transition and sensor models:

P(xialxe) = N(Fxy, Xg)(Xe41)
P(zx:) = N(Hx¢, X,)(2¢)

F is the matrix for the transition; >, the transition noise covariance
H is the matrix for the sensors; >, the sensor noise covariance

Filter computes the following update:

pior = Foyg+ K (ze — HFpy)
S = I-Ky)(FS,FT+3,)

where Ky = (FX,FT + 2, ) H (HFZ,F' +Z,)H' +%,)7!
is the Kalman gain matrix

3 and K, are independent of observation sequence, so compute offline
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2-D tracking example: filtering

2D filtering
12
—8— true
* observed
" x filtered
101
ol Ovals indicate variance in the
position estimate
o
7k
8 10 12 14 16 18 20 22 24 26
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2-D tracking example: smoothing

2D smoothing

12r
—s—  true

* observed

ol smoothed
1Mr
10+

- o Ovals indicate variance in the
position estimate
ok
*

.l
68 1‘0 1‘2 1‘4 1‘6 1‘8 2‘0 2‘2 2‘4 2‘6
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Where it breaks

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around x; = p,
Fails if system is is locally unsmooth
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Dynamic Bayesian networks

Xy, E; contain arbitrarily many variables in a replicated Bayes net

A. Pizurica, E016350 Artificial Intelligence (UGent) Temporal probability models 23 /27



DBNs vs. HMMs

Xy, E; contain arbitrarily many variables in a replicated Bayes net
Every HMM is a single-variable DBN; every discrete DBN is an HMM

Y
\ % 7

Lo

Sparse dependencies = exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20 x 2% =160 parameters, HMM has 2% x 220 ~ 10!?
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DBNs vs. Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors

BO P(Bl) E(—Batteryr 1...5555005555...)
¢ | 1.000 e

*-x"*‘*—x..,‘
~y
F | 0001 E(Battery, \...5555000000...)

N W AW

E(Battery,)

P(BMBroken, ...5555000000...)
1 4 #8808-6800680

0 l-—ll»—ll»l-E-»IE»—I!-I-I"'. KKK He e K
P(BMBroken, |...5555005555...)

15 20 25 30
Time step
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Particle filtering

Basic idea: ensure that the population of samples ( “particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for e;

Rain, Rain, ., Rain, Rain,
000 00 eoo o)
true 0000 00 eoo (6]
o (616) Q0 000
false ° o0 o0 e000@

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
10°-dimensional state space
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
— transition modelP (X;|X;_1)
— sensor model P(E;|X;)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow 7 state variables, linear Gaussian, O(n*) update
Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs
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