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Overview
Time and uncertainty

Inference: filtering, prediction, smoothing

Hidden Markov models

Kalman filters (a brief mention)

Dynamic Bayesian networks

Particle filtering

[R&N], Chapter 14

This presentation is based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern

Approach, (Fourth Ed.), denoted as [R&N] and corresp. resources http://aima.cs.berkeley.edu/
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Time and uncertainty

The world changes; we need to track and predict it

E.g., diabetes management (dynamic) vs vehicle diagnosis (static)

Basic idea: keep track of state and evidence variables at each time step

Xt = set of unobservable state variables at time t
e.g., BloodSugart, StomachContentst, etc.

Et = set of observable evidence variables at time t
e.g., MeasuredBloodSugart, PulseRatet, FoodEatent

This assumes discrete time; step size depends on problem

Notation: Xa:b = Xa,Xa+1, . . . ,Xb−1,Xb
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Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: Xt depends on bounded subset of X0:t−1

First-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−1)
Second-order Markov process: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

Sensor Markov assumption: P(Et|X0:t,E0:t−1) = P(Et|Xt)

Stationary process: transition model P(Xt|Xt−1) and
sensor model P(Et|Xt) fixed for all t
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Example: umbrella

First-order Markov assumption not exactly true in real world!
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Example: umbrella

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressuret

Another example: robot motion. Augment position and velocity with Batteryt
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Inference tasks

Filtering: P(Xt|e1:t)
belief state – input to the decision process of a rational agent

Prediction: P(Xt+k|e1:t) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(Xk|e1:t) for 0 ≤ k < t
better estimate of past states, essential for learning

Most likely explanation: argmaxx1:t P (x1:t|e1:t)
speech recognition, decoding with a noisy channel
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Filtering
Aim: devise a recursive state estimation algorithm:

P(Xt+1|e1:t+1) = f(et+1,P(Xt|e1:t))

P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)

= αP(et+1|Xt+1, e1:t)P(Xt+1|e1:t)
= αP(et+1|Xt+1)P(Xt+1|e1:t)

I.e., prediction + estimation. Prediction by summing out Xt:

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)
∑
xt

P(Xt+1|xt, e1:t)P (xt|e1:t)

= αP(et+1|Xt+1)
∑
xt

P(Xt+1|xt)P (xt|e1:t)

f1:t+1 = αForward(f1:t, et+1) where f1:t=P(Xt|e1:t)
Time and space constant (independent of t)
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Filtering example
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Smoothing

Divide evidence e1:t into e1:k, ek+1:t:

P(Xk|e1:t) = P(Xk|e1:k, ek+1:t) = αP(Xk|e1:k)P(ek+1:t|Xk, e1:k)

= αP(Xk|e1:k)P(ek+1:t|Xk)

= αf1:kbk+1:t

Backward message computed by a backwards recursion:

P(ek+1:t|Xk) =
∑

xk+1

P(ek+1:t|Xk,xk+1)P(xk+1|Xk)

=
∑

xk+1

P (ek+1:t|xk+1)P(xk+1|Xk)

=
∑

xk+1

P (ek+1|xk+1)P (ek+2:t|xk+1)P(xk+1|Xk)
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Smoothing example

Forward–backward algorithm: cache forward messages along the way
Time linear in t (polytree inference), space O(t|f |)
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Most likely explanation

Most likely sequence 6= sequence of most likely states!!!!

Most likely path to each xt+1

= most likely path to some xt plus one more step

max
x1...xt

P(x1, . . . ,xt,Xt+1|e1:t+1)

= P(et+1|Xt+1)max
xt

(
P(Xt+1|xt) max

x1...xt−1

P (x1, . . . ,xt−1,xt|e1:t)
)

Identical to filtering, except f1:t replaced by

m1:t = max
x1...xt−1

P(x1, . . . ,xt−1,Xt|e1:t),

I.e., m1:t(i) gives the probability of the most likely path to state i.
Update has sum replaced by max, giving the Viterbi algorithm:

m1:t+1 = P(et+1|Xt+1)max
xt

(P(Xt+1|xt)m1:t)
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Viterbi example
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Hidden Markov models
Xt is a single, discrete variable (usually Et is too)
Domain of Xt is {1, . . . , S}

Transition matrix Tij = P (Xt= j|Xt−1= i),

e.g., for the umbrella world T =

(
0.7 0.3
0.3 0.7

)
Sensor matrix Ot for each time step, diagonal elements P (et|Xt= i)

e.g., for the umbrella world with U1= true, O1 =

(
0.9 0
0 0.2

)
Forward and backward messages as column vectors:

f1:t+1 = αOt+1T
>f1:t

bk+1:t = TOk+1bk+2:t

Forward-backward algorithm needs time O(S2t) and space O(St)
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Example: robot localization

Transition model:
P (Xt+1 = j|Xt = i) = Ti,j =

1
N(i)

if j ∈ Neighbors(i), else 0

Sensor model:
P (Et = et|Xt = i) = Oti,i

= (1− ε)4−ditεdit

dit is the discrepancy (the number
of bits that are different between the
true values for square i and the ac-
tual reading et); ε – sensor error rate

Posterior distribution P (Xt = i|et) over robot location: (a) one observation
E1 = NSW ; (b) after a second observation E2 = NS. The size of each disk
corresponds to the probability that the robot is at that location. ε = 0.2
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Kalman filters

Modelling systems described by a set of continuous variables,
e.g., tracking a bird flying—Xt=X,Y, Z, Ẋ, Ẏ , Ż.
Airplanes, robots, ecosystems, economies, chemical plants, planets, . . .

Gaussian prior, linear Gaussian transition model and sensor model
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Updating Gaussian distributions
1) If the current distribution P(Xt|e1:t) is Gaussian, and the transition model
P(Xt+1|xt) is linear Gaussian, then prediction

P(Xt+1|e1:t) =
∫
xt

P(Xt+1|xt)P (xt|e1:t) dxt

is also Gaussian.

2) If the prediction P(Xt+1|e1:t) is Gaussian, and the sensor model P(et+1|Xt) is
linear Gaussian, then the updated distribution after conditioning on new evidence

P(Xt+1|e1:t+1) = αP(et+1|Xt+1)P(Xt+1|e1:t)

is also a Gaussian distribution

Hence P(Xt|e1:t) is multivariate Gaussian N(µt,Σt) for all t

General (nonlinear, non-Gaussian) process: description of posterior grows
unboundedly as t→∞
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Simple 1-D example
Gaussian random walk on X–axis, s.d. σx, sensor s.d. σz

µt+1 =
(σ2t + σ2x)zt+1 + σ2zµt

σ2t + σ2x + σ2z
σ2t+1 =

(σ2t + σ2x)σ
2
z

σ2t + σ2x + σ2z
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General Kalman update
Transition and sensor models:

P (xt+1|xt) = N(Fxt,Σx)(xt+1)
P (zt|xt) = N(Hxt,Σz)(zt)

F is the matrix for the transition; Σx the transition noise covariance
H is the matrix for the sensors; Σz the sensor noise covariance

Filter computes the following update:

µt+1 = Fµt + Kt+1(zt+1 −HFµt)
Σt+1 = (I−Kt+1)(FΣtF

> + Σx)

where Kt+1=(FΣtF
> + Σx)H

>(H(FΣtF
> + Σx)H

> + Σz)
−1

is the Kalman gain matrix

Σt and Kt are independent of observation sequence, so compute offline
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2-D tracking example: filtering

Ovals indicate variance in the
position estimate

A. Pizurica, E016350 Artificial Intelligence (UGent) Temporal probability models 20 / 27



2-D tracking example: smoothing

Ovals indicate variance in the
position estimate
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Where it breaks

Cannot be applied if the transition model is nonlinear
Extended Kalman Filter models transition as locally linear around xt=µt

Fails if system is is locally unsmooth
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Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net
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DBNs vs. HMMs

Xt, Et contain arbitrarily many variables in a replicated Bayes net
Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23=160 parameters, HMM has 220× 220 ≈ 1012
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DBNs vs. Kalman filters

Every Kalman filter model is a DBN, but few DBNs are KFs;
real world requires non-Gaussian posteriors
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Particle filtering

Basic idea: ensure that the population of samples (“particles”)
tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for et

Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots
105-dimensional state space
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Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need
– transition modelP(Xt|Xt−1)
– sensor model P(Et|Xt)

Tasks are filtering, prediction, smoothing, most likely sequence;
all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used
for speech recognition

Kalman filters allow n state variables, linear Gaussian, O(n3) update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs
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