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[R&N], Chapter 19

These slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/ and the

Stanford course of M. Charikar and Koyejo (CS221): Artificial Intelligence: Principles and Techniques.
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Supervised learning
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Regression: Examples

Slightly adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Classification: Examples

Slightly adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Supervised learning task: How do we approach it?

Given a training set of N example input-output pairs

(x(1), y(1)), (x(2), y(2)), . . . (x(N), y(N))

where each yj was generated by an unknown function y = f(x), discover a function h
that approximates the true function f .

Choose a type of models, i.e., the hypothesis class H.
Find h ∈ H that fits best with the examples

I For parametric models (different h ∈ H have different parameters w)
F Find w that best fits the data. This gives us the model hw, our best hypothesis
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Supervised learning a.k.a. Learning from examples
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Note that this is a reflex-based model (feedforward input → output operation)
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Core concepts of learning from examples in a nutshell

Design choices:

Model selection – hypothesis class H (Which predictors are possible?)

Model optimization – the best hypothesis within H (find the best predictor h)
I How to compute the best predictor? learning algorithm

F How good is a predictor? loss function
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Hyperparameters

Definition (Hyperparameters)

Design decisions (hypothesis class, training objective, optimization algorithm) that
need to be made before running the learning algorithm.

How do we choose hyperparameters?

Choose hyperparameters to minimize the error on the training set?
I Bad idea! – Why?

Choose hyperparameters to minimize the error on the test set?
I Bad idea! – Why?

Hence, we need a separate validation set!

Definition (Validation set)

A validation set is taken out of the training set and used to optimize hyperparameters.
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Training, validation and test sets

Optimization of the hyperparameters means selection of a particular candidate model
(E.g., depth of a decision tree, number of layers in a neural network, batch size etc.)

Let D denote the dataset of all available labelled examples
Basic ML rule: split D into three disjoint sets:

Training set (Dtrain) – to train candidate models

Validation set (Dval) – to evaluate the candidate models and choose the best one

Test set (Dtest) – to do a final unbiased evaluation of the best model
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Cross-validation

Splitting D \ Dtest into Dtrain and Dval:

Hold-out cross validation
I split randomly
I fails to use all available data

k-fold cross validation
I k subsets of data; k rounds of learning

– each time 1/k of the data is held as a validation set

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5

testfold 1 fold 2 fold 3 fold 4 fold 5
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Formal description of supervised learning

Let H denote the hypothesis space

The learning problem is realizable if the hypothesis space
contains the true function

A possible formal description is a probabilistic interpretation: “Choose the
hypothesis h? that is most probable given the data”:

h? = argmax
h∈H

P (h|data) = argmax
h∈H

P (data|h)P (h)
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Performance measurement

How do we know that h ≈ f? (Hume’s Problem of Induction)
1 Use theorems of computational/statistical learning theory

I Any seriously wrong hypothesis will be “find out” with high probability after a small
number of examples because it will make an incorrect prediction

2 Try h on a new test set of examples

Learning curve = % correct on test set as a function of training set size
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Performance measurement cont’d

Learning curve can indicate

A realizable or non-realizable learning task
I realizable meaning it can express target function
I non-realizability can be due to missing attributes or too restricted hypothesis class

redundant expression, e.g., due to loads of repetitive/irrelevant data

% correct

# of examples

1

nonrealizable
redundant

realizable
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Error rate and loss

Error rate: proportion of mistakes that a hypothesis makes

Loss function: the amount of utility lost by replacing the correct answer
f(x) = y by a hypothesis h(x) = ŷ

Definition (Loss function)

L(x, y, ŷ) = Utility(result of using y given an input x)

− Utility(result of using ŷ given an input x)

Sometimes it is more convenient to write L(y, h(x)) or simply L(y, ŷ)

In the case of parameteric learning ŷ = hw(x)
→ We will use interchangeably L(y, hw(x)) and L(x, y,w)

(since the loss depends on x, y and w in both)
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Some common loss functions

Absolute-value loss: L1(y, ŷ) = |y − ŷ|
Squared-error loss: L2(y, ŷ) = C(y − ŷ)2 where C is a constant1

Zero-one loss: L0−1(y, ŷ) = 0 if ŷ = y, otherwise 1

1typically set to 1 but sometimes to 1/2 for normalization of the expressions with derivatives.
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Generalization loss and the best hypothesis

The learning agent maximizes its expected utility by choosing the best hypothesis
according to some well-defined criterion

Definition (Generalization loss)

The expected generalization loss for a hypothesis h, with respect to loss function L is

GenLossL(h) =
∑

(x,y)∈E

L(y, h(x))P (x, y)

E – the set of all possible input-output pairs; P (x, y) – joint probability of x and y.

The best hypothesis is the one with the minimum expected generalization loss:

h∗ = argmin
h∈H

GenLossL(h)
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Empirical loss and Training loss

In reality, P (x, y) is not known, so the learning agent can only estimate the
generalization loss with an empirical loss on a set of examples, E:

EmpLossL,E(h) =
1

|E|
∑

(x,y)∈E

L(y, h(x))

The estimated best hypothesis is the one with the minimum empirical loss

ĥ∗ = argmin
h∈H

EmpLossL,E(h)

Definition (Training loss)

Training loss is the empirical loss over the set of training examples:

TrainLossL,Dtrain(h) =
1

|Dtrain|
∑

(x,y)∈Dtrain

L(y, h(x))
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Training loss: Notation and examples

For compactness, we will omit from the expression for the training loss the indices that
denote the loss function and the training set, i.e., we write it as

TrainLoss(h) =
1

|Dtrain|
∑

(x,y)∈Dtrain

L(y, h(x))

When learning parametrized models (the task is to find w), we will write:

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

L(y, hw(x))

Our task is then min
w

TrainLoss(w). For example, with the squared-error loss:

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

(hw(x)− y)2
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Regularization

Search for a hypothesis that directly minimizes the weighted sum of empirical loss and
the complexity of the hypothesis, which is also called total cost

Cost(h) = EmpLoss(h) + λ Complexity(h)

ĥ∗ = argmin
h∈H

Cost(h)

λ is a parameter, often determined by cross-validation. This process explicitly
penalizes complex hypotheses and is therefore called regularization (preference is given
to more regular functions). In practice, our training objective will become:

min
w

1

|Dtrain|
∑

(x,y)∈Dtrain

L(y, hw(x)) +Reg(w)

where Reg(w) is some regularization function imposed on the weights, e.g.,
`1-regularization: Reg(w) = |w| or `2-regularization: Reg(w) = w2.
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Linear regression framework

Design choices:

Model selection – hypothesis class H (Which predictors are possible?)

Model optimization – the best hypothesis within H (find the best predictor)
I How to compute the best predictor? learning algorithm

F How good is a predictor? loss function

Slide adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Univariate linear regression

Goal: learn the real-valued coefficients w0 and w1 of a univariate linear function

y = w1x+ w0

w0 and w1 can be seen as weights: the value of y is changed by changing the relative
weight of one term or another

Denote the vector of weights by w = [w0 w1] and define

hw(x) = w1x+ w0

Linear regression is the task of finding hw(x) that best fits the data
(i.e. finding w such that hw(x) best fits the data)
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Univariate linear regression cont’d

Find the values of weights w = [w0 w1] that minimize the empirical loss

Traditionally, the squared-error loss L2 is used∗

TrainLoss(w) =
∑

(x,y)∈Dtrain

(y − (w1x+ w0))
2

The training loss is minimized by setting

∂

∂w0
TrainLoss(w) = 0;

∂

∂w1
TrainLoss(w) = 0

Carl Friedrich Gauss
1777-1855

The least squares linear regression
Prediction of the Ceres orbit (1801)

∗Gauss showed that if the noise in y’s is normally distributed, the most likely values of
the weights are obtained by minimizing the sum of the squared errors.
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Univariate linear regression cont’d

For compactness of the expressions that follow, denote by (x(i), y(i)) the i-th example
(x, y) from the training set and by N = |Dtrain| the number of training examples.

Then, from

∂

∂w0

N∑
i=1

(y(i) − (w1x
(i) + w0))

2 = 0;
∂

∂w1

N∑
i=1

(y(i) − (w1x
(i) + w0))

2 = 0

we obtain

w1 =
N
∑

i x
(i)y(i) −

∑
i x

(i)
∑

i y
(i)

N
∑

i (x
(i))

2 −
(∑

i x
(i)
)2 ; w0 =

(∑
i

y(i) − w1

∑
i

x(i)
)
/N
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Univariate linear regression cont’d

Observe that the training loss function is convex.
This is true for every linear regression problem with an L2 loss function.
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Gradient descent

We need a general method for minimizing loss that can be applied to any loss function
(such that we don’t need to depend on finding the zeroes of its derivatives)

Idea: Search through a continuous weight space by incrementally modifying
the parameters.

One such general local search algorithm is gradient descent algorithm:
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Univariate linear regression: Deriving the learning rule

Let us now derive the learning rule for the linear regression with the common L2 loss.

We start from a simplified case with one training example (x, y):

We will easily generalize this result to the case with multiple samples knowing that the
derivative of the sum is the sum of the derivatives.
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Univariate linear regression: Deriving the learning rule

Note: the factor 2 was folded into the unspecified learning rate α.

– Why is it interesting to consider this procedure at all when we can have the
exact solutions for the weights as analytical expressions?
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Multivariable linear regression

A generalization of univariate lin. regression: input examples are vectors [x1, ..., xd]
>:

hw(x) = w0 + w1x1 + · · ·+ wnxd = w0 +
∑
j

wjxj

To treat w0 in the same way as all other wj , introduce a dummy input x0 = 1 and
denote x = [x0, ..., xd]

>. Then

hw(x) = w · x = w>x =
∑
j

wjxj

We say that the output of the linear regression is the score w · x.
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Analytical solution for the weights

Let X be the data matrix and y a vector of all target values from the training set:

X =


x(1)>

...

x(N)>

 =

x
(1)
0 x

(1)
1 · · · x

(1)
d

...

x
(N)
0 x

(N)
1 · · · x

(N)
d

 ; y =

 y
(1)

...

y(N)


The training loss can now be expressed as

TrainLoss(w) =
∑

(x,y)∈Dtrain

L2(y,w · x) = ‖y −Xw‖22 = (y −Xw)>(y −Xw)

Setting its gradient to zero yields the normal equation: X>Xw = X>y. Thus,

w∗ = argmin
w

∑
(x,y)∈Dtrain

L2(y,w · x) = argmin
w
‖y −Xw‖22 = (X>X)−1X>︸ ︷︷ ︸

pseudoinverse

y

In practice, it may be difficult to calculate the pseudoinverse of a large data matrix.
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Least Means Squares (LMS) algorithm

Recall that our model is
hw(x) = w · x =

∑
j

wjxj

Now optimize w using the gradient descent algorithm:

wj ← wj − α
∂

∂wj
TrainLoss(w)

Under the L2 loss, it boils down to the update (simultaneous for all j = 0, ..., d):

wj ← wj + α
∑

(x,y)∈Dtrain

(y − hw(x))xj

which reaches for this linear regression model the unique minimum w∗.
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Learning linear regression: Example

Slide from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Multivariate linear regression: the influence of regularization

The use of regularization is common in multivariate regress. (to avoid overfitting)

Cost(h) = EmpLoss(h) + λComplexity(h)

A common class of regularization functions is

Complexity(hw) = `p(w) =
∑
j

|wj |p
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Multivariate linear regression: Ridge and LASSO regression

Consider squared error loss and `p-regularization.

Cost(hw) = ‖y −Xw‖22 + λ`p(w); w∗ = argmin
w

Cost(hw);

For p = 2, this is known as the Ridge regression or Tikhonov regularization:

Cost(hw) = ‖y −Xw‖22 + λ‖w‖22 =
∑

(x,y)∈Dtrain

(
y − hw(x)

)2
+ λ

∑
j

w2
j

For p = 1, we have LASSO (Least Absolute Shrinkage and Selection Operator) regression:

Cost(hw) = ‖y −Xw‖22 + λ‖w‖1 =
∑

(x,y)∈Dtrain

(
y − hw(x)

)2
+ λ

∑
j

|wj |
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Linear classification framework

Design choices:

Model selection – hypothesis class H (Which predictors are possible?)

Model optimization – the best hypothesis within H (find the best predictor)
I How to compute the best predictor? learning algorithm

F How good is a predictor? loss function

Slide adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Linear classifier with a hard threshold

A decision boundary is a line (or a surface, in higher dimensions) that separates the
two classes

hw(x) =
{ 1 if w · x ≥ 0

0 otherwise
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Linear classifier with a hard threshold

hw(x) =
{ 1 if w · x ≥ 0

0 otherwise

We can think of the classifier h as the result of passing the linear operation w · x
through a threshold function:

hw(x) = Threshold(w · x), where Threshold(z) =
{ 1 z ≥ 0

0 otherwise

A simple update rule, identical to the update rule for linear regression:

wj ← wj + α(y − hw(x))xj

called perceptron learning rule converges to the perfect linear separator (provided
that data are linearly separable) Reason about the meaning and effects of this rule!
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Binary classification: Example

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Problems with hard threshold

The hard nature of the threshold causes some problems:

The hypothesis hw(x) is not differentiable and is in fact a discontinuous function
of its inputs and its weights

This makes learning with the perception rule very unpredictable

Furthermore, the linear classifier always announces a “completely confident”
prediction 0 or 1. We often need more graduated predictions

These problems are alleviated by softening the threshold function: approximating a
hard threshold with a continuous, differentiable function
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Logistic function

The logistic (a.k.a. sigmoid) function

Logistic(z) =
1

1 + e−z

was first published by a Belgian mathematician
P.F. Verhulst in the 19th century.

For the logistic regression:

hw(x) = Logistic(w · x) = 1

1 + e−w·x Pierre François Verhulst
(1804-1849) born in Brussels,

a mathematician and a doctor in

number theory from Ghent University
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Logistic regression

The output of the logistic function can be interpreted as a probability of belonging
to the class labeled 1

The process of fitting the weights with this model is called logistic regression
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Least-square error logistic regression

We first derive the update rule for the logistic regression under L2 loss.

Let g denote the logistic function and g′ its derivative. As we did for linear regression,
we will use the chain rule for the derivatives: ∂g(f(x))/∂x = g′(f(x))(∂f(x)/∂x)

We start again from a simplified case with one training example (x, y). The derivation
is similar as for the linear regression but now hw(x) = g(w · x), so we have:

∂

∂wj
TrainLoss(w) =

∂

∂wj
(y − hw(x))2

= 2(y − hw(x))
∂

∂wj
(y − hw(x))

= −2(y − hw(x))g′(w · x)
∂

∂wj
(w · x)

= −2(y − hw(x))g′(w · x)xj
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Least-square error logistic regression

We derived:

∂

∂wj
TrainLoss(w) =

∂

∂wj
(y − hw(x))2 = −2(y − hw(x))g′(w · x)xj

The derivative of the logistic function satisfies g′(z) = g(z)(1− g(z)), so we have

g′(w · x) = g(w · x)(1− g(w · x)) = hw(x)(1− hw(x))

and the weight update for minimizing the loss is

wj ← wj + α(y − hw(x))hw(x)(1− hw(x))xj

Note: this rule was derived for one training example (stochastic gradient descent)
– How does it generalize to the update rule based on N examples?
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Alternative formal representations for linear classification

We used the convention y ∈ {0, 1} for which the classification hypothesis is

hw(x) =
{ 1 if w · x ≥ 0

0 otherwise

If we use instead the label set y ∈ {−1,+1}, we can have a more compact
formulation in some expressions. With the label set {−1,+1}, we have:

hw(x) = sign(w · x)

Remark (Linear classification with {−1,+1} labels)

In this formulation, the prediction is the sign of the score. The score w · x of an
example (x, y) tells us how confident we are in predicting +1 and the margin (w · x)y
tells us how correct we are.
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Alternative formal representations for linear classification

Convention y ∈ {0, 1}

score: z = w · x
prediction: ŷ = hw(x) = Threshold(z)

perceptron update rule:

wj ← wj + α(y − hw(x))xj

.

Convention y ∈ {−1, 1}

score: z = w · x
prediction: ŷ = hw(x) = sign(z)

perceptron update rule:

if hw(x) = y

do nothing

else

wj ← wj + αyxj

.

Regardless of the convention, the weights are effectively updated in the same way!

Holds always (the form of the update rule gets adapted accordingly)
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Next lecture

Optimization in ML

Stochastic gradient descent

Logistic regression
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