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The slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/; D. Klein &

P. Abbeel: CS188 Artificial Intelligence (Berkeley) and M. Charikar & Koyejo: CS221 Artificial Intelligence: Principles and Techniques (Stanford).
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Decision trees

Decision trees are able to learn complex, nonlinear relationships between variables,
using a series of simple, intuitive decision rules.

Easy to undersand and interpret. Require little or no data preparation.

Widely used in today’s machine learning approaches.

Example: Should I play tennis today?

A simple idea: start with one test, and depending on its outcome decide what the next
test will be. Continue until a decision is reached.
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Interpretation of a decision tree

Like any supervised ML approach, a decision tree is learned from (x, y) ∈ Dtrain,
where x are the values of some features (or attributes) X and y is the output label.

Internal nodes test a feature Xi

In this tree: X1 = Outlook, X2 = Humidity, X3 = Wind

Branching is determined by the feature value
E.g. x3 = wind ∈ {Strong,Weak}

Leaf nodes are outputs (predictions):
I numerical (regression tree); categorical (classification tree)
I tuple-valued variable (multi-target trees) or P (y|x) (probability estimation trees)
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Case study: “Restaurant domain”

Decide whether to wait for a table in a restaurant depending on the following
attributes (R&N):

1 Alternate (Alt): Is there a suitable alternative restaurant nearby?

2 Bar (Bar): Is there a comfortable bar area in the restaurant, where I can wait?

3 Fri/Sat (Fri): True on Fridays/Saturdays

4 Hungry (Hun): Are we hungry?

5 Patrons (Pat): How many people are in the restaurant (None, Some or Full)

6 Price (Price): the restaurant’s price range ($, $$, $$$)

7 Raining (Rain): Is it raining outside?

8 Reservation (Res): Did we make a reservation?

9 Type (Type): the kind of restaurant (French, Italian, Thai or burger)

10 WaitEstimate (Est): the wait time estimated by the host (0-10, 10-30, 30-60, or>60 min)
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Decision trees

Examples for the restaurant domain R&N, table 19.2 (adapted notation)

Example
Input Attributes Output

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

1 T F F T Some $$$ F T French 0–10 T
2 T F F T Full $ F F Thai 30–60 F
3 F T F F Some $ F F Burger 0–10 T
4 T F T T Full $ F F Thai 10–30 T
5 T F T F Full $$$ F T French >60 F
6 F T F T Some $$ T T Italian 0–10 T
7 F T F F None $ T F Burger 0–10 F
8 F F F T Some $$ T T Thai 0–10 T
9 F T T F Full $ T F Burger >60 F

10 T T T T Full $$$ F T Italian 10–30 F
11 F F F F None $ F F Thai 0–10 F
12 T T T T Full $ F F Burger 30–60 T

Each raw is an example (x(i), y(i)), where the output y(i) is true (T) or false (F).
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Decision trees

Examples for the restaurant domain R&N, table 19.2 (adapted notation)

Each raw is an example (x(i), y(i)), where the output y(i) is true (T) or false (F).
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Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:
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Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B
F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Trivially, there is a consistent decision tree for any training set
with one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

We prefer to find more compact decision trees
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Expressiveness cont’d

How many distinct decision trees with n Boolean attributes??
= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 (≈ 1019) trees
With 10 Boolean attributes there are about 10308 trees

More expressive hypothesis space
– increases chance that target function can be expressed ¨̂
– increases number of hypotheses consistent w/ training set

=⇒ may get worse predictions _̈
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Decision tree learning: Idea

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree:

Start with the whole training set and an empty decision tree

Pick a feature that gives the best split

Split on that feature and recurse on sub-partitions
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Decision tree learning algorithm

The function IMPORTANCE measures the importance of attributes (as explained
next). The PLURALITY-VALUE function selects the most common output value
among a set of examples, breaking ties randomly.
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Choosing attribute tests

Idea: a good (=important) attribute splits the examples into subsets that are (ideally)
“all positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice – gives information about the classification
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Information gain

Information answers questions

The more clueless we are about the answer initially, the more information is
contained in the answer

1 bit = answer to Boolean question with prior 〈0.5, 0.5〉
Information in an answer when prior is 〈P1, . . . , Pn〉 is

H(〈P1, . . . , Pn〉) =
n∑

i=1

−Pi log2 Pi

(also called entropy of the prior)
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Information gain, cont’d

Suppose we have p positive and n negative examples at the root
=⇒ H(〈p/(p+ n), n/(p+ n)〉) bits needed to classify a new example

E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which (we hope) needs less
information to complete the classification

Let Ei have pi positive and ni negative examples
=⇒ H(〈pi/(pi + ni), ni/(pi + ni)〉) bits needed to classify a new example
=⇒ expected number of bits per example over all branches is∑

i

pi + ni

p+ n
H
(〈 pi

pi + ni
,

ni

pi + ni

〉)
For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
=⇒ choose the attribute that minimizes the remaining information needed
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Information gain cont’d

Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree — a more complex hypothesis isn’t justified by
small amount of data
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Some considerations
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Left: a small tree fits the training data almost perfectly. It can be grown to fit
perfectly (right), but a relatively large area to the right will then be predicted positive,
while the data contains very little evidence for this.
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Ensemble Learning
Idea: select a collection, or ensemble, of hypotheses, h1, h2, . . . , hn, and combine their
predictions by averaging, voting, or another level of machine learning.

– Individual hi: base models; their combination: ensamble model

Motivation:

Reduce bias: an ensamble can be more expressive than a single base model

Reduce variance, e.g., majority voting counteracts individual classifier errors

Example: Consider an ensemble of K = 5 binary classifiers using majority voting. If
each classifier has an accuracy of 75%, the ensemble improves the overall accuracy
significantly.

Common Methods:

Bagging
Random Forests
Stacking
Boosting
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Ensemble Learning: Idealized Example

Consider an ensemble of K = 5 binary classifiers combined by majority voting
→ To missclassify an example at lest 3 classifiers have missclassify it

Suppose

A single classifier trained on Dtrain is correct in 80% of cases

We create an ensemble of 5 classifiers
I individual classifiers trained on different subsets of Dtrain are independent
I accuracy of each individual classifier is only 75%

Then the ensemble’s majority vote is correct in nearly 90%

For K = 17, and the same accuracies of the base models, this would be 99%

In practice, the independence assumption is unreasonable. Why?
But if base classifiers are not strongly correlated

ensemble learning will make fewer miss-classifications.
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Bagging (Bootstrap aggregating)

Generate K distinct training sets by sampling with replacement from D.
i.e., randomly pick N examples from the training set, but each of those picks

might be an example we picked before.
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Bagging, cont’d

For regression problems:

For classification problems, we take instead of averaging the majority vote

Bagging reduces variance and is most commonly used with decision trees
I Appropriate because decision trees are unstable

(slightly different D can lead to a quite tree)
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Bagging: Effect on variance
Consider a regression problem and let ŷi = hi(x) be the prediction of the ith base
model. Bagging gives:

h(x) =
1

K

K∑
i=1

hi(x) i.e., ŷ =
1

K

K∑
i=1

ŷi

Does bagging influence bias? And variance?
To simplify, assume that ŷi are independent. Then

E(ŷ) = E
( 1

K

K∑
i=1

ŷi

)
= E(ŷi) and V ar(ŷ) = V ar

( 1

K

K∑
i=1

ŷi

)
=

1

K
V ar(yi)

Bagging reduces variance and is most commonly used with decision trees
I Appropriate because decision trees are unstable

(slightly different D can lead to a quite different tree)
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Random forests

Random forests = bagged decision trees, with one extra trick to decorrelate the
predictions

When choosing each node of the decision tree, choose a random set of d input
features, and only consider splits on those features

Random forests are one of the most widely used ML algorithms
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Extensions: Random Forest

Paul%T%Baker%et#al.%Mul-variate%Classifica-on%with%Random%Forests%
for%Gravita-onal%Wave%Searches%of%Black%Hole%Binary%Coalescence.%%
Phys.#Rev.%D,%vol.%91%(2015).%

Random decision forest
combines a multitude of decision trees
(T.K. Ho, 1995; L. Breiman, 2001;
A. Cutler, 2005)
Output:

The mode of the classes (in
classification tasks)

Mean prediction (in regression
tasks)

Bagging (Bootstrap aggregating) —
improve the performance by combining
classifications on randomly generated
training sets. Reduces variance and
helps to avoid overfitting
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Boosting
Samples can have
different weights

Generate new
hypotheses by giving
more weight to
difficult-to-classify
samples

Hypotheses that do
better on their
respective weighted
training sets get more
weight finally:

h(x) =
1

K

K∑
i=1

zihi(x)
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Next lesson

Perceptron

Neural networks
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