

E016350 - Artificial Intelligence Lecture 4

Machine learningDecision Trees and Ensamble Learning

Aleksandra Pizurica

Ghent University Spring 2025

Outline

- Decision trees
- 2 Ensemble Learning
 - Bagging
 - Random forests
- Boosting

[R&N], Chapter 19

The slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/; D. Klein &

P. Abbeel: CS188 Artificial Intelligence (Berkeley) and M. Charikar & Koyejo: CS221 Artificial Intelligence: Principles and Techniques (Stanford).

Outline

- Decision trees
- 2 Ensemble Learning
 - Bagging
 - Random forests

Boosting

- Decision trees are able to learn complex, nonlinear relationships between variables, using a series of simple, intuitive decision rules.
- Easy to undersand and interpret. Require little or no data preparation.
- Widely used in today's machine learning approaches.

Example: Should I play tennis today?

A simple idea: start with one test, and depending on its outcome decide what the next test will be. Continue until a decision is reached.

Interpretation of a decision tree

Like any supervised ML approach, a decision tree is learned from $(\mathbf{x}, y) \in \mathcal{D}_{train}$, where \mathbf{x} are the values of some features (or attributes) \mathbf{X} and y is the output label.

- Internal nodes test a feature X_i In this tree: $X_1 = Outlook$, $X_2 = Humidity$, $X_3 = Wind$
- Branching is determined by the feature value

E.g.
$$x_3 = wind \in \{Strong, Weak\}$$

- Leaf nodes are outputs (predictions):
 - numerical (regression tree); categorical (classification tree)
 - tuple-valued variable (multi-target trees) or $P(y|\mathbf{x})$ (probability estimation trees)

Case study: "Restaurant domain"

Decide whether to wait for a table in a restaurant depending on the following attributes (R&N):

- Alternate (Alt): Is there a suitable alternative restaurant nearby?
- ② Bar (Bar): Is there a comfortable bar area in the restaurant, where I can wait?
- Fri/Sat (Fri): True on Fridays/Saturdays
- Hungry (Hun): Are we hungry?
- **5** Patrons (Pat): How many people are in the restaurant (None, Some or Full)
- Price (Price): the restaurant's price range (\$, \$\$, \$\$\$)
- \bigcirc Raining (Rain): Is it raining outside?
- **1** Reservation (Res): Did we make a reservation?
- Type (Type): the kind of restaurant (French, Italian, Thai or burger)
- WaitEstimate (Est): the wait time estimated by the host (0-10, 10-30, 30-60, or>60 min)

Examples for the restaurant domain R&N, table 19.2 (adapted notation)

	Input Attributes										Output
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
2	T	F	F	T	Full	\$	F	F	Thai	<i>30–60</i>	F
3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
7	F	T	F	F	None	\$	T	F	Burger	0–10	F
8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
9	F	T	T	F	Full	\$	T	F	Burger	>60	F
10	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
11	F	F	F	F	None	\$	F	F	Thai	0–10	F
12	Τ	T	T	T	Full	\$	F	F	Burger	<i>30–60</i>	Τ

Each raw is an example $(\mathbf{x}^{(i)}, y^{(i)})$, where the output $y^{(i)}$ is true (T) or false (F).

Examples for the restaurant domain R&N, table 19.2 (adapted notation)

Input Attributes										Output	
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
2	T	F	F	T	Full	\$	F	F	Thai	<i>30–60</i>	F
3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
$(\mathbf{x}^{(5)}, y^{(5)})$	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
6	F	Т	F	T	Some	\$\$	Т	Т	Italian	0–10	T
7	F	T	F	F	None	\$	T	F	Burger	0–10	F
8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
9	F	T	T	F	Full	\$	T	F	Burger	>60	F
10	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
11	F	F	F	F	None	\$	F	F	Thai	0-10	F
12	T	T	T	T	Full	\$	F	F	Burger	<i>30–60</i>	T

Each raw is an example $(\mathbf{x}^{(i)}, y^{(i)})$, where the output $y^{(i)}$ is true (T) or false (F).

One possible representation for hypotheses

E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \rightarrow path to leaf:

Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in \mathbf{x}) but it probably won't generalize to new examples

We prefer to find more compact decision trees

Expressiveness cont'd

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 ($\approx 10^{19}$) trees With 10 Boolean attributes there are about 10^{308} trees

More expressive hypothesis space

- increases chance that target function can be expressed $\ddot{-}$
- increases number of hypotheses consistent w/ training set

Decision tree learning: Idea

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree:

- Start with the whole training set and an empty decision tree
- Pick a feature that gives the best split
- Split on that feature and recurse on sub-partitions

Decision tree learning algorithm

function LEARN-DECISION-TREE(examples, attributes, parent_examples) returns a tree

```
if examples is empty then return PLURALITY-VALUE(parent\_examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else A \leftarrow \operatorname{argmax}_{a \in attributes} \text{ IMPORTANCE}(a, examples) tree \leftarrow a \text{ new decision tree with root test } A for each value v of A do exs \leftarrow \{e : e \in examples \text{ and } e.A = v\} subtree \leftarrow \text{LEARN-DECISION-TREE}(exs, attributes - A, examples) add a branch to tree with label (A = v) and subtree subtree return tree
```

The function IMPORTANCE measures the importance of attributes (as explained next). The PLURALITY-VALUE function selects the most common output value among a set of examples, breaking ties randomly.

Choosing attribute tests

Idea: a good (=important) attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice – gives **information** about the classification

Information gain

- Information answers questions
- The more clueless we are about the answer initially, the more information is contained in the answer
- 1 bit = answer to Boolean question with prior (0.5, 0.5)
- Information in an answer when prior is $\langle P_1, \dots, P_n \rangle$ is

$$H(\langle P_1, \dots, P_n \rangle) = \sum_{i=1}^n -P_i \log_2 P_i$$

(also called entropy of the prior)

Information gain, cont'd

Suppose we have p positive and n negative examples at the root

 $\implies H(\langle p/(p+n), n/(p+n)\rangle) \text{ bits needed to classify a new example E.g., for 12 restaurant examples, } p=n=6 \text{ so we need 1 bit}$

An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification

Let E_i have p_i positive and n_i negative examples

- $\implies H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify a new example
- ⇒ **expected** number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H\left(\left\langle \frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i} \right\rangle\right)$$

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

 \implies choose the attribute that minimizes the remaining information needed

Information gain cont'd

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree — a more complex hypothesis isn't justified by small amount of data

Some considerations

Left: a small tree fits the training data almost perfectly. It can be grown to fit perfectly (right), but a relatively large area to the right will then be predicted positive, while the data contains very little evidence for this.

Outline

- Decision trees
- 2 Ensemble Learning
 - Bagging
 - Random forests
- Boosting

Ensemble Learning

Idea: select a collection, or ensemble, of hypotheses, h_1, h_2, \dots, h_n , and combine their predictions by averaging, voting, or another level of machine learning.

- Individual h_i : base models; their combination: ensamble model

Motivation:

• Reduce bias: an ensamble can be more expressive than a single base model

• Reduce variance, e.g., majority voting counteracts individual classifier errors

Ensemble Learning: Idealized Example

Consider an ensemble of K=5 binary classifiers combined by majority voting

 \rightarrow To missclassify an example at lest 3 classifiers have missclassify it

Suppose

- A single classifier trained on \mathcal{D}_{train} is correct in 80% of cases
- We create an ensemble of 5 classifiers
 - individual classifiers trained on different subsets of \mathcal{D}_{train} are independent
 - ► accuracy of each individual classifier is only 75%
- Then the ensemble's majority vote is correct in nearly 90%
- ullet For K=17, and the same accuracies of the base models, this would be 99%

In practice, the independence assumption is unreasonable. Why?

But if base classifiers are not strongly correlated

ensemble learning will make fewer miss-classifications.

Outline

- Decision trees
- Ensemble Learning
 - Bagging
 - Random forests

Boosting

Bagging (Bootstrap aggregating)

Generate K distinct training sets by sampling with replacement from \mathcal{D} . i.e., randomly pick N examples from the training set, but each of those picks might be an example we picked before.

Bagging, cont'd

For regression problems:

- For classification problems, we take instead of averaging the majority vote
- Bagging reduces variance and is most commonly used with decision trees
 - Appropriate because decision trees are unstable (slightly different D can lead to a quite tree)

Bagging: Effect on variance

Consider a regression problem and let $\hat{y}_i = h_i(\mathbf{x})$ be the prediction of the *i*th base model. Bagging gives:

$$h(\mathbf{x}) = \frac{1}{K} \sum_{i=1}^K h_i(\mathbf{x}) \quad \text{i.e.,} \quad \hat{y} = \frac{1}{K} \sum_{i=1}^K \hat{y}_i$$

Does bagging influence bias? And variance?

To simplify, assume that \hat{y}_i are independent. Then

$$\mathbb{E}(\hat{y}) = \mathbb{E}\Big(\frac{1}{K}\sum_{i=1}^K \hat{y}_i\Big) = \mathbb{E}(\hat{y}_i) \quad \text{and} \quad Var(\hat{y}) = Var\Big(\frac{1}{K}\sum_{i=1}^K \hat{y}_i\Big) = \frac{1}{K}Var(y_i)$$

- Bagging reduces variance and is most commonly used with decision trees
 - ▶ Appropriate because decision trees are unstable (slightly different D can lead to a quite different tree)

Outline

- Decision trees
- 2 Ensemble Learning
 - Bagging
 - Random forests

Boosting

Random forests

- Random forests = bagged decision trees, with one extra trick to decorrelate the predictions
- ullet When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- Random forests are one of the most widely used ML algorithms

Extensions: Random Forest

Paul T Baker *et al*. Multivariate Classification with Random Forests for Gravitational Wave Searches of Black Hole Binary Coalescence. *Phys. Rev. D*, vol. 91 (2015).

Random decision forest combines a multitude of decision trees (T.K. Ho, 1995; L. Breiman, 2001; A. Cutler, 2005)
Output:

- The mode of the classes (in classification tasks)
- Mean prediction (in regression tasks)

Bagging (Bootstrap aggregating) — improve the performance by combining classifications on randomly generated training sets. Reduces variance and helps to avoid overfitting

Outline

- Decision trees
- 2 Ensemble Learning
 - Bagging
 - Random forests
- Boosting

Boosting

- Samples can have different weights
- Generate new hypotheses by giving more weight to difficult-to-classify samples
- Hypotheses that do better on their respective weighted training sets get more weight finally:

$$h(\mathbf{x}) = \frac{1}{K} \sum_{i=1}^{K} z_i h_i(\mathbf{x})$$

Next lesson

- Perceptron
- Neural networks