
E016350 - Artificial Intelligence

Lecture 6

Machine learning
Neural networks

Part 2

Aleksandra Pizurica

Ghent University
Spring 2025



Feed-forward networks - example

Feed-forward network = a parameterized family of nonlinear functions:

a5 = g(w3,5a3 + w4,5a4)

= g
(
w3,5g(w1,3x1 + w2,3x2) + w4,5g(w1,4x1 + w2,4x2)

)
Adjusting weights changes the function: do learning this way!

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 2 / 29



Weight matrix
(For simplicity, we assume no bias)

a5 = g

([
w3,5 w4,5

] [a3
a4

])
= g
([
w3,5 w4,5

]︸ ︷︷ ︸
W(2)

g
([w1,3 w2,3

w1,4 w2,4

]
︸ ︷︷ ︸

W(1)

[
x1
x2

]))

= g

(
W(2)g

(
W(1)x

))
W(l) is the weight matrix in the l-th layer. Its rows are the weight vectors.

Omitting the layer index: W(j, :) = wj
> = [w0,j . . . wn,j ].

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 3 / 29



Matrix notation for multilayer neural networks

For now still assume no bias (What should change in the equations otherwise?)

a(1) = g(W(1)x)

a(2) = g(W(2)a(1))

...

a(L−1) = g(W(L−1)a(L−2))

zOUT = W(L)a(L−1)

Regression: hw(x) = zOUT ; Classification: hw(x) = Threshold(zOUT )
(or feed the output scores to sigmoid or to softmax for multiclass classification)

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 4 / 29



Matrix notation for multilayer neural networks

For m neurons in layer i with d inputs:

W(i) =


w

(i)
1

>

...

w
(i)
m

>

 =


w

(i)
1,1 . . . w

(i)
d,1

...

w
(i)
1,m . . . w

(i)
d,m



zOUT = W(n)g

(
W(n−1) . . . g

(
W(1)x

))

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 5 / 29



Matrix notation for multilayer neural networks

For the neural network on the left:

W(1) =


w

(1)
1

>

...

w
(1)
4

>

 =


w

(1)
1,1 w

(1)
2,1 w

(1)
3,1

...

w
(1)
1,4 w

(1)
2,4 w

(1)
3,4



W(2) =
[
w(2)>

]
=
[
w

(2)
1 w

(2)
2 w

(2)
3 w

(2)
4

]

zOUT︸ ︷︷ ︸
score

= w(2) · g
(
W(1)x

)
= w(2)>g

(
W(1)x

)

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 6 / 29



Two-layer regression neural network

Hypothesis class:

H = {hW(1),w(2) : W(1) ∈ Rm×d,w(2) ∈ Rm}

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 7 / 29



Two-layer classification neural network

Hypothesis class:

H = {hW(1),w(2) : W(1) ∈ Rm×d,w(2) ∈ Rm}

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 8 / 29



Compact matrix notation for multilayer neural networks

We can use the same compact notation when bias is not omitted

a(1) = g(W(1)x)

a(2) = g(W(2)a(1))

...

a(L−1) = g(W(L−1)a(L−2))

zOUT = W(L)a(L−1)

We stipulate: each unit has an extra input from a dummy unit that is fixed to +1
and a weight w0,j for that input

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 9 / 29



Multilayer neural networks in matrix notation

Slide adapted from: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 10 / 29



Multilayer neural networks in matrix notation

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 11 / 29



Layers represent multiple levels of abstractions

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 12 / 29



Optimization in neural networks: A motivating example
Consider regression with a four-layer neural network.

Loss on one example:

Loss(x, y,W(1),W(2),W(3),w(4)) = (w(4) · g(W(3)g(W(2)g(W(1)x)))− y)2

(Stochastic) gradient descent:

W(1) ←W(1) − α∇W(1)Loss(x, y,W(1),W(2),W(3),w(4))

W(2) ←W(2) − α∇W(2)Loss(x, y,W(1),W(2),W(3),w(4))

W(3) ←W(3) − α∇W(3)Loss(x, y,W(1),W(2),W(3),w(4))

w(4) ←W(3) − α∇w(4)Loss(x, y,W(1),W(2),W(3),w(4))

We learned to compute the gradients in the inner layers by backpropagation.
Still, this seems very complex!

Easy with automatic differentiation tools that use computation graphs.
A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 13 / 29



Digression: How do we typically represent deep neural nets

Simpler: or even simpler:

Sergey Levine: Backpropagation - Designing, Visualizing and Understanding Deep Neural Networks.

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 14 / 29



Gradient of the loss function

∇wLoss =

(
∂Loss

∂w

)>
∂Loss

∂w(2)
∈ R1×n ;

∂Loss

∂W(1)
∈ Rm×d

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 15 / 29



Backpropagation

∂Loss

∂W(1)
=

∂z(1)

∂W(1)

∂a(1)

∂z(1)
∂z(2)

∂a(1)
∂Loss

∂z(2)︸ ︷︷ ︸
δinit︸ ︷︷ ︸

compute first: δ︸ ︷︷ ︸
update: new δ

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 16 / 29



Why this recursion?

∂Loss

∂W(1)
=

∂z(1)

∂W(1)

∂a(1)

∂z(1)
∂z(2)

∂a(1)
∂Loss

∂z(2)

∂z(1)

∂W(1) ,∂a
(1)

∂z(1)
, ∂z(2)

∂a(1) are Jacobian matrices

Suppose m = n (a(i), z(i) are of size n)

Both ∂a(1)

∂z(1)
, ∂z(2)

∂a(1) are n× n

Computing ∂a(1)

∂z(1)
∂z(2)

∂a(1) is O(n3) !

(AlexNet has layers with n = 4096)

Make “cheap” computation in each step

Initialize: ∂Loss
∂z(2)

= δinit

compute: ∂z(2)

∂a(1) δinit = δ

∂Loss

∂W(1)
=

∂z(1)

∂W(1)

∂a(1)

∂z(1)
δ︸ ︷︷ ︸

O(n2)

compute: ∂a(1)

∂z(1)
δ = δnew

∂Loss

∂W(1)
=

∂z(1)

∂W(1)
δnew︸ ︷︷ ︸

O(n2)

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 17 / 29



Computation graphs

Definition (Computation graph)

A directed acyclic graph whose root node represents the final mathematical expression
and each node represents intermediate subexpressions.

Automatically compute gradients (how TensorFlow and PyTorch work)

Gain insight into modular structure of gradient computations
A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 18 / 29



Computation graphs concepts: Functions as boxes

Gradients: how much does c change if a or b changes?

M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 19 / 29



Basic building blocks of computation graphs

σ denotes sigmoid (logistic) function. M. Charikar & Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 20 / 29



Function composition

M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 21 / 29



Two-layer neural networks

Loss(x, y,W(1),w(2)) = (w(2) · g(W(1)x)− y)2

Let g(x) = σ(x) (sigmoid activation function)

∇w(2)Loss(x, y,W(1),w(2)) = 2(residual)a

∇W(1)Loss(x, y,W(1),w(2)) = 2(residual)w(2) ◦ a ◦ (1− a)x>

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 22 / 29



A simple backpropagation example
Loss(x, y,w) = (w · x− y)2

Forward/backward values:
Forward: fi is value for subexpression rooted at i
Backward: bi =

∂Loss
∂fi

is how fi influences loss

Backpropagation:
1 Forward pass: compute each fi (from leaves to root)
2 Backward pass: compute each bi (from root to leaves)

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 23 / 29



Backpropagation in neural networks explained

∂Loss

∂W(1)
=

∂z(1)

∂W(1)

∂a(1)

∂z(1)
∂z(2)

∂a(1)
∂Loss

∂z(2)

Easily from the computation graph:

2(residual)w(2) ◦ a(1) ◦ (1− a(1))x>

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 24 / 29



Cross-entropy loss

In deep learning, commonly we talk about minimizing cross-entropy loss

Cross-entropy H(P,Q) is a measure of dissimilarity
between the two distributions P and Q

General definition:

H(P,Q) = Ez∼P (z)[− logQ(z)] = −
∫
P (z) logQ(z)dz

Typically: P is the true distribution over the training examples P ∗(x, y),
and Q is the predictive hypothesis P (y|x,w)

I But we don’t know P ∗(x, y). We have access to its samples though!
I So, approximate the expectation by the sum over the samples
I Practical approach:

w∗ = argmin
w
−

N∑
j=1

logP (y(j)|x(j),w) = argmax
w

N∑
j=1

logP (y(j)|x(j),w)

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 25 / 29



Residual neural networks
A popular approach to building very deep neural networks

Instead of learning the desired mapping h(x), the stacked nonlinear layers fit the
residual F(x) = h(x)− x. Hence, the original mapping recast to F(x) + x

It is easier to optimize the residual mapping than to optimize the original,
unreferenced mapping

I Think if an identity mapping were optimal, easier to push residual to zero than to fit
identity mapping by a stack of nonlinear layers

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 26 / 29



Regularization in deep neural networks

Some common regularization approaches in deep learning include

Weight decay: add a penalty λ
∑

i,j w
2
i,j to the loss function

I Not straightforward to interpret the effect of weight decay in neural network
I Common to use λ near 10−4

Dropout: deactivate a random chosen subset of units in each step of training

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 27 / 29



Does stochastic gradient descent (SGD) work for neural networks?

For neural networks, optimization is hard

In practice, SGD can work for neural nets much better than the theory predicts
The gap between theory and practice not well understood yet!

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 28 / 29



How to train neural networks

Careful initialization (random noise, pre-training)

Overparameterization (more hidden units than needed)

Adaptive step sizes (AdaGrad, Adam)

Don’t let gradients vanish or explode!

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Neural networks 29 / 29


