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Overview

Dimensionality reduction
I PCA
I A glimpse of nonlinear methods – basic insights

Clustering
I K-Means
I Examples of more advanced methods

Andrew Ng: Lecture notes – Machine Learning (CS229), Ch. 10 & Ch 12
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High-dimensional data
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High-dimensional data
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High-dimensional data

Hyperspectral remote 
sensing image

100+
bands

DNA microarray

1000+
genes

Medical images 
(Ultrasound, MRI, CT scan)
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High-dimensional data

Rich information
Data transmission

Data storage

Data analysis

Challenges Benefit

Feature extraction
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Dimensionality reduction

Goal: convert the high-dimensional data set X = {x(1),x(2), . . . ,x(N)}, x(i) ∈ Rd

into a lower-dimensional data Y = {y(1),y(2), . . . ,y(N)}, y(i) ∈ Rk, k << d

Often k is 2 or 3 so that Y can be displayed in a scatterplot

Note this is different from pure visualization of high-dimensional data

y(i) are often refereed to as the map points of x(i) and Y is called a map

Traditional linear dimensionality reduction techniques focus on keeping the
low-dimensional representations of dissimilar datapoints far apart.

I Principal Component Analysis (PCA)
I Multidimensional scaling (MDS)

Nonlinear dimensionality reduction techniques
aim to preserve the local structure
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Curse of dimensionality

The same number of data points shown in 1D, 2D and 3D.

When the data dimensionality increases, the volume of the space increases so fast
that the available data become sparse

The amount of data needed for training grows exponentially with the number of
features/dimensions
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Principal Component Analysis – PCA

[“Piloting example”, Andrew Ng]

We may reason that data actually lies along some diagonal axis (the u1 direction)
capturing the intrinsic information, with only a small amount of noise lying off this axis.

→ How can we automatically compute this u1 direction?
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Preprocessing

Preprocess the data by normalizing each feature to have mean 0 and variance 1:

x
(i)
j ←

x
(i)
j − µj
σj

where

µj =
1

N

N∑
i=1

x
(i)
j and σ2j =

1

N
(x

(i)
j − µj)

2

Dividing by σj rescales each coordinate to have unit variance, which ensures that
different attributes are all treated on the same “scale”
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Finding the major axis of variation

Suppose we have already carried out the normalization and now seeking the projection
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Finding the major axis of variation – Intuition

Projected data still has a fairly large variance, and the points tend to be far from zero.
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Finding the major axis of variation – Intuition

In contrast, here much smaller variance, and points much closer to the origin.
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Finding the major axis of variation – Formally
For a point x and a unit vector u, the length of the projection of x onto u is x>u

Hence, to maximize the variance of the projections, choose u so as to maximize:

1

N

N∑
i=1

(x(i)>u)2 =
1

N

N∑
i=1

u>x(i)x(i)>u = u>

(
1

N

N∑
i=1

x(i)x(i)>

︸ ︷︷ ︸
Σ

)
u

We require max
u

u>Σu subject to ‖u‖2 = 1

where ‖u‖2 = u>u. Te method of Lagrange multipliers, for some λ, gives:

max
u

u>Σu + λ(1− u>u)

Setting ∂/∂u to zero, gives Σu = λu ⇒ u must be an eigen vector of Σ
The variance u>Σu = λ is largest when u corresponds to the largest eigen value λ
→ u is the principal eigen vector of Σ
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Finding the major axis of variation – Formally

We showed: to project the data onto a 1-D subspace, preserving the maximum
variance, u should be the principal eigenvector of Σ

More generally, to project the data onto a k-dimensional subspace (k < d), we
should choose u1, . . . ,uk to be the top k eigenvectors of Σ, i.e., those that
correspond to the k largest eigenvalues λ1, . . . , λk

I The ui’s now form a new, orthogonal basis for the data
I The map point of x(i) in this basis is

y(i) =


u>
1 x(i)

u>
2 x(i)

...
u>
k x(i)

 ∈ Rk

I The amount of variance explained by each eigenvector (or principal component) is
indicated by its corresponding eigen value:

The portion of variance explained by the ith PCA compnent is λi∑
j λj
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Example of dimensionality reduction in HSI
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Other applications: Data compression

Example from C. Bishop: Pattern Recognition and Machine Learning
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Example: Image analysis
Consider a dataset of 32 faces
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Example: Image analysis

Approximation by 4 principal components only:

For this image: q1 = 0.078; q2 = 0.062; q3 = −0.182; q4 = 0.179

Example from: V. Hlavác, Principal Component Analysis (PCA) applied to images
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Limitations

PCA doesn’t unroll the structure. We need nonlinear methods for that!
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Nonlinear dimensionality reduction methods

S. T. Roweis and L. K. Saul: Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, 2000.
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Locally Linear Embedding (LLE)

S. T. Roweis and L. K. Saul: Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, 2000.
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Isomap

Idea: preserve geodesic distances in the lower-dimension

(A) In the highdimensional input space the Euclidean distance may not accurately reflect the intrinsic similarity between data points, as measured by
geodesic distance. (B) The neighborhood graph allows an approximation (red segments) to the true geodesic path. (C) The 2-D embedding, which

best preserves the shortest path distances in the neighborhood graph.
.

J. B. Tenenbaum, V. de Silva, J. C. Langford: A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, 2000.
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Example: Swiss roll after PCA and Isomap

Experiment with this in the notebook ’Principal Component Analysis’ (Ufora).
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t-SNE
A variant of SNE (Stochastic Neighbor Embedding) [Hinton & Roweis, 2002]

SNE starts by converting the high-dimensional Euclidean distances between
datapoints into conditional probabilities that represent similarities

I The similarity of x(j) to x(i) is the conditional probability, pj|i, that x(i) would pick

x(j) as its neighbor if neighbors were picked in proportion to their probability density
under a Gaussian centered at x(i), i.e.

pj|i =
exp(‖x(i) − x(j)‖2/2σ2

i )∑
k 6=i exp(‖x(i) − x(k)‖2/2σ2

i )

I Do equivalently for the low-dimensional counterparts y(i) and y(j) of the high-dim.
datapoints x(i) and x(j) and denote this conditional probability by qj|i. (Some
technicalities: normalize the variance of the Gaussian and set pi|i = 0 and qi|i = 0)

I Idea: If the map points y(i) and y(j) correctly model the similarity between x(i) and
x(j), the conditional probabilities pj|i and qj|i will be equal

F Minimize the Kullback-Leibler (KL) divergence between pj|i and qj|i
F practically, minimize KL divergences over all datapoints using gradient descent
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Example: handwritten digits from the MNIST data set

L. van der Maaten and G. Hinton: Visualizing Data using t-SNE, Journal of Machine Learning Research, 2008.
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Demo: web-based fast t-SNE

https://nicola17.github.io/tfjs-tsne-demo/
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Clustering

Example: motion segmentation:

E. Elhamifar and R. Vidal: Sparse Subspace Clustering: Algorithm, Theory, and Applications, IEEE Trans. Pattern Anal. Mach. Intell. 2013

A. Pizurica, E016350 Artificial Intelligence (UGent) Spring 2025 Unsupervised learning 28 / 35



Clustering task

Given the input training data Dtrain = [x(1), . . . ,x(N)], output the assignment of
each point to a cluster. The assignment vector is:

c = [c(1), . . . , c(N)], where c(i) ∈ {1, . . .K}

Each cluster is represented by a centroid µ = µ1, . . . µk

Intuition: we want each point x(i) to be close to its assigned centroid µc(i)
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K-Means

Losskmeans(c,µ) =

N∑
j=1

‖x(j) − µc(j)‖

K-Means objective:

min
c,µ

Losskmeans(c,µ)
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K-Means algorithm
K-Means

Initialize µ = µ1, . . . µk randomly
Iterate:

Step 1: Set assignments c given µ
(x(j) → nearest centroid):

∀j, c(j) = arg min
i=1,...,k

‖x(j) − µi‖2

Step 2: Set centroids µ given c
i = 1, . . . , k:

µi ←
1

|{j : c(j) = i}|
∑

j:c(j)=i

x(j)

.
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Example

The number of clusters is a parameter of K-Means

Experiment with this in the notebook ’Clustering Tutorial’ (Ufora).
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Other clustering algorithms

DBSCAN – Density-based clustering (determines automatically the number of clusters)

Experiment with this in the notebook ’Clustering Tutorial’ (Ufora).

Soft clustering: Gaussian Mixture Models (GMM)
(can be seen as a probabilistic extension of K-Means)
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K-Means vs GMM
K-Means

Initialize µ = µ1, . . . µk randomly
Iterate:

Step 1: Set assignments c given µ
(x(j) → nearest centroid):

∀j, c(j) = arg min
i=1,...,k

‖x(j) − µi‖2

Step 2: Set centroids µ given c
i = 1, . . . , k:

µi ←
1

|{j : c(j) = i}|
∑

j:c(j)=i

x(j)

.

GMM

Initialize µi,Σi, i = 1, . . . k
Iterate:

E-step: Find probabilities that
data points were generated by
different components

∀i, j pij = P (C = i|x(j))

M-step: Find new parameters
that maximize the log-likelihood:

Using pij , update µi,Σi, πi

.
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K-Means vs GMM

Experiment with this in the notebook ’Kmeans&Gmm’ (Ufora).
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