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Solutions: Inference in Bayesian networks

1. Given the Bayesian network below, calculate marginal and conditional probabilities P (¬x3)
and P (x2 | ¬x3) by using:

(a) the method of inference by enumeration,

(b) the method of variable elimination.

P(X1)
x1 0.4
¬x1 0.6

P(X3 | x2)
x2 x3 0.2
x2 ¬x3 0.8
¬x2 x3 0.3
¬x2 ¬x3 0.7

P(X2 | X1)
x1 x2 0.8
x1 ¬x2 0.2
¬x1 x2 0.5
¬x1 ¬x2 0.5

P(X4 | X2)
x2 x4 0.8
x2 ¬x4 0.2
¬x2 x4 0.5
¬x2 ¬x4 0.5

Solution:

(a) Inference by enumeration sums the joint probabilities of atomic events. For a typical
query, we express

P(Q | e) = αP(Q, e) = α
∑
h

P(Q, e,h)

and we express the joint probability P(Q, e,h) using the particular structure of
the probabilistic model. For a Bayesian network consisting of random variables
X1, . . . , Xn, this joint probability is:

P(X1, . . . , Xn) = P(X1 | parents(X1)) · . . . ·P(Xn | parents(Xn)).
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Some of these random variables will be the query variables, others evidence or hidden
variables. For the given Bayesian network, we have the following:

P (¬x3) =
∑

x1,x2,x4

P (x1, x2,¬x3, x4)

=
∑

x1,x2,x4

P (x1)P (x2|x1)P (¬x3 | x2)P (x4|x2)

= P (x1)P (x2 | x1)P (¬x3 | x2)P (x4 | x2)
+ P (x1)P (x2 | x1)P (¬x3 | x2)P (¬x4 | x2)
+ P (x1)P (¬x2 | x1)P (¬x3 | ¬x2)P (x4 | ¬x2)
+ P (x1)P (¬x2 | x1)P (¬x3 | ¬x2)P (¬x4 | ¬x2)
+ P (¬x1)P (x2 | ¬x1)P (¬x3 | x2)P (x4 | x2)
+ P (¬x1)P (x2 | ¬x1)P (¬x3 | x2)P (¬x4 | x2)
+ P (¬x1)P (¬x2 | ¬x1)P (¬x3 | ¬x2)P (x4 | ¬x2)
+ P (¬x1)P (¬x2 | ¬x1)P (¬x3 | ¬x2)P (¬x4 | ¬x2)
= 0.4 · 0.8 · 0.8 · 0.8 + 0.4 · 0.8 · 0.8 · 0.2 + 0.4 · 0.2 · 0.7 · 0.5
+ 0.4 · 0.2 · 0.7 · 0.5 + 0.6 · 0.5 · 0.8 · 0.8 + 0.6 · 0.5 · 0.8 · 0.2
+ 0.6 · 0.5 · 0.7 · 0.5 + 0.6 · 0.5 · 0.7 · 0.5
= 0.2048 + 0.0512 + 0.028 + 0.028 + 0.192 + 0.048 + 0.105 + 0.105

= 0.762.

Similarly, we obtain:

P (x2,¬x3) =
∑
x1,x4

P (x1, x2,¬x3, x4)

=
∑
x1,x4

P (x1)P (x2 | x1)P (¬x3 | x2)P (x4 | x2)

= P (x1)P (x2 | x1)P (¬x3 | x2)P (x4 | x2)
+ P (x1)P (x2 | x1)P (¬x3 | x2)P (¬x4 | x2)
+ P (¬x1)P (x2¬¬x1)P (¬x3 | x2)P (x4 | x2)
+ P (¬x1)P (x2¬x1)P (¬x3 | x2)P (¬x4 | x2)
= 0.4 · 0.8 · 0.8 · 0.8 + 0.4 · 0.8 · 0.8 · 0.2
+ 0.6 · 0.5 · 0.8 · 0.8 + 0.6 · 0.5 · 0.8 · 0.2
= 0.2048 + 0.0512 + 0.192 + 0.048 = 0.496

and

P (x2 | ¬x3) =
P (x2,¬x3)
P (¬x3)

=
0.496

0.762
= 0.6509.

The method repeats many calculations. It is a routine and easily formalized algo-
rithm, but computationally expensive. Its complexity is exponential in the number
of variables.

2



Remark: Note that we could employ the properties of directed graphical model
to manually simplify inference by enumeration. When calculating P (¬x3) and also
P (x2 | ¬x3), X4 is a leaf that is neither a query nor evidence. This means that it can
be eliminated without changing the target probabilities. (Do this as an exercise!).

(b) Variable elimination avoids repeated calculations. The idea is simply to do each
calculation once and store it for later use. We again express a typical query as

P(Q | e) = αP(Q, e) = α
∑
h

P(Q, e,h)

and we again express the joint probability P(Q, e,h) using the structure (conditional
independences) in the particular network. But now we will group the resulting terms
into factors that will be calculated once and (as intermediate results) stored for
further use. We have

P (¬x3) =
∑

x1,x2,x4

P (x1, x2,¬x3, x4)

=
∑

x1,x2,x4

P (x1)P (x2|x1)P (¬x3 | x2)P (x4|x2)

=
∑
x1

P (x1)︸ ︷︷ ︸
f1(X1)

∑
x2

P (x2|x1)︸ ︷︷ ︸
f2(X1,X2)

P (¬x3 | x2)︸ ︷︷ ︸
f3(X2)

∑
x4

P (x4|x2)︸ ︷︷ ︸
1

All the three factors are given by the corresponding CPT’s in the problem description,
e.g., f1(X1) = 〈0.4, 0.6〉 and f3(X2) = 〈0.8, 0.7〉 We can also choose this ordering:

P (¬x3) =
∑
x2

P (¬x3 | x2)︸ ︷︷ ︸
f3(X2)

∑
x1

P (x1)︸ ︷︷ ︸
f1(X1)

P (x2|x1)︸ ︷︷ ︸
f2(X1,X2)

∑
x4

P (x4|x2)︸ ︷︷ ︸
1

Both must give the same result. With this second one, we form the factor

f4(X2) =
∑
x1

f1(X1)× f2(X1, X2) = 0.4 · 〈0.8, 0.2〉+ 0.6 · 〈0.5, 0.5〉 = 〈0.62, 0.38〉

Then we need just one more step:

P (¬x3) =
∑
x2

f3(X2)× f4(X2) = 0.8 · 0.62 + 0.7 · 0.38 = 0.762.

• P (x2 | ¬x3) =?
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Let us express first

P(X2|¬x3) = αP(X2,¬x3) = α
∑
x1

∑
x4

P (x1)P(X2|x1)P(¬x3|X2)P(x4|X2)

= α
∑
x1

P (x1)︸ ︷︷ ︸
f1(X1)

P(X2|x1)︸ ︷︷ ︸
f2(X1,X2)

P(¬x3|X2)︸ ︷︷ ︸
f3(X2)

∑
x4

P(x4|X2)︸ ︷︷ ︸
〈1,1〉

= αP(¬x3|X2)︸ ︷︷ ︸
f3(X2)

∑
x1

P (x1)︸ ︷︷ ︸
f1(X1)

P(X2|x1)︸ ︷︷ ︸
f2(X1,X2)︸ ︷︷ ︸

f4(X2)

= α f4(X2)× f3(X2)

= α〈0.62, 0.38〉〈0.8, 0.7〉 = α〈0.496, 0.266〉 = 〈0.6509, 0.3491〉

Note that all the factors f1(X1), f2(X1, X2) and f3(X2) are here the same vectors as
in the previous calculation (for the query P (¬x3)) although in that previous case we
needed both values of X2 because of the summation over x2 and here because we
kept X2 as a variable. Hence,

∑
x1
f1(X1) × f2(X1, X2) is the same factor f4(X2) =

〈0.62, 0.38〉 that we already calculated before, so we just re-used it here.

Thus, we have that P (x2 | ¬x3) = 0.6509.

2. Suppose a burglary alarm which can function in its basic mode and with an additional ultra-
sonic sensor (which can be turned on or off). The network in Figure 2 represents a complete
burglar alarm and notification system, with the following binary random variables: B (bur-
glary happens when B = 1), U (ultrasonic sensor is on when U = 1), A (alarm sounds when
A = 1) and N (neighbor calls when N = 1).

Figure 1: Bayesian network for a simplified burglar alarm system.

When the ultrasonic sensor is active, the probability that alarm is properly activated by
burglary is increased from x to y, but the probability of false alarm is also increased, from
ε to 2ε. (When the ultrasonic sensor is not active, the probability of false alarm is ε, and
with ultrasonic sensor on, the false alarm appears with probability 2ε). Prior probability of
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burglary in the neighborhood where the house is located is b and the probability that the
ultrasonic sensor is active is u.

(a) Write the joint probability for the network in Fig. 2 (a). Write also a table, which displays
conditional probabilities of A given B and U .

(b) Express the probability that there is a burglary if alarm goes on in terms of x, y, u, ε
and b.

(c) Suppose that the neighbor calls to report the alarm with probability n when the alarm
is on and never when the alarm is off. Express the probability that there is a burglary if
the neighbor calls and if the ultrasonic sensor is off.

(d) Extend the network from Figure 2(a) so that it can represent the following statements:

(i) the alarm can be activated by pets;

(ii) when the alarm goes on, an SMS notification is sent automatically via the Internet.

Solution:

(a) The joint probability of the network in Figure 2 (a) is

P(B,U,A,N) = P(B)P(U)P(A|B,U)P(N |A).

The conditional probability table is

B U P (A = 0|B,U) P (A = 1|B,U)
0 0 1− ε ε
0 1 1− 2ε 2ε
1 0 1− x x
1 1 1− y y

(b) From the Bayes theorem we have

P (B = 1|A = 1) =
P (A = 1|B = 1)P (B = 1)

P (A = 1)

=
P (A = 1|B = 1)P (B = 1)

P (A = 1|B = 0)P (B = 0) + P (A = 1|B = 1)P (B = 1)
.

Using the conditional probability table from (a), we obtain

P (A = 1|B = 1) = P (A = 1|B = 1, U = 0)P (U = 0) + P (A = 1|B = 1, U = 1)P (U = 1)

= x(1− u) + yu

and

P (A = 1|B = 0) = P (A = 1|B = 0, U = 0)P (U = 0) + P (A = 1|B = 0, U = 1)P (U = 1)

= ε(1− u) + 2εu.

With P (B = 1) = b we can express

P (B = 1|A = 1) =
b[x(1− u) + yu]

(1− b)[ε(1− u) + 2εu] + b[x(1− u) + yu]
.
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(c) We need to express P (B = 1|N = 1, U = 0) by using the given network structure
from (a): P(B,U,A,N) = P(B)P(U)P(A|B,U)P(N |A) and

P (N = 1|A = 0) = 0

P (N = 1|A = 1) = n.

We can write

P (B = 1|N = 1, U = 0) = αP (B = 1, N = 1, U = 0)

= α[P (B = 1, N = 1, U = 0, A = 0)

+ P (B = 1, N = 1, U = 0, A = 1)]

= α[b(1− u)(1− x) · 0 + b(1− u)x · n]

= αb(1− u)xn

and also

P (B = 0|N = 1, U = 0) = αP (B = 0, N = 1, U = 0)

= α[P (B = 0, N = 1, U = 0, A = 0)

+ P (B = 0, N = 1, U = 0, A = 1)]

= α[(1− b)(1− u)(1− ε) · 0 + (1− b)(1− u)ε · n]

= α(1− b)(1− u)εn.

From P (B = 1|N = 1, U = 0) + P (B = 0|N = 1, U = 0) = 1 we have that:

αb(1− u)xn+ α(1− b)(1− u)εn = α(1− u)n[bx+ (1− b)ε] = 1

which yields

α =
1

(1− u)n[bx+ (1− b)ε]
and we finally obtain

P (B = 1|N = 1, U = 0) =
bx

bx+ (1− b)ε
.

(d) The network should be extended with two additional nodes P (pets activating alarm)
and S (SMS notification sent when alarm goes on) as follows:

6



3. PacLabs has just created a new type of mini power pellet that is small enough for Pacman
to carry around with him when he’s running around mazes. Unfortunately, these mini-pellets
don’t guarantee that Pacman will win all his fights with ghosts, and they look just like the
regular dots Pacman carried around to snack on.

Pacman just ate a snack (P ), which was either a mini-pellet (p), or a regular dot (¬p), and
is about to get into a fight (W ), which he can win (w) or lose (¬w). Both these variables are
unknown, but fortunately, Pacman is a master of probability. He knows that his bag of snacks
has 5 mini-pellets and 15 regular dots. He also knows that if he ate a mini-pellet, he has a
70% chance of winning, but if he ate a regular dot, he only has a 20% chance.

(a) What is P (w), the marginal probability that Pacman will win?

(b) Pacman won! Hooray! What is the conditional probability P (p | w) that the food he ate
was a mini-pellet, given that he won?

(c) Pacman can make better probability estimates if he takes more information into account.
First, Pacman’s breath, B, can be bad (b) or fresh (¬b). Second, there are two types
of ghost (M): mean (m) and nice (¬m). Pacman has encoded his knowledge about the
situation in the following probability distribution

P(M,P,B,W ) = P(M)P(P )P(W |M,P )P(B | P ).

Based on the given probability distribution, in the box below draw the corresponding
Bayesian network.

P(M)
m 0.5
¬m 0.5

P(W |M,P )
m p w 0.60
m p ¬w 0.40
m ¬p w 0.10
m ¬p ¬w 0.90
¬m p w 0.80
¬m p ¬w 0.20
¬m ¬p w 0.30
¬m ¬p ¬w 0.70

P(P )
p 0.25
¬p 0.75

P(B|P )
p b 0.80
p ¬b 0.20
¬p b 0.40
¬p ¬b 0.60

(d) Just based on the structure, which of the following are guaranteed to be true? Explain
your answers.

(1) W ⊥⊥ B

(2) W ⊥⊥ B | P
(3) M ⊥⊥ B

(4) M ⊥⊥ B | P
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Solution:

(a) After summing out the hidden variable P we obtain

P (w) = P (w, p) + P (w,¬p) = P (w | p)P (p) + P (w | ¬p)P (¬p)

=
7

10
· 5

20
+

2

10
· 15

20
=

13

40
= 0.325.

(b) By using the Bayes’ formula we get that

P (p | w) =
P (w | p)P (p)

P (w)
=

7
10
· 1
4

13
40

=
7

13
≈ 0.538.

(c) From the probability distribution we infer that M and P have no parents. Similarly
we see that W has two parents, namely M and P . Finally, B has one parent P .

M

W

P

B

(d) (2), (3) and (4) can be guaranteed to be true and (1) not (the divergent node P
without evidence does not block the path between W and B).
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