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Solutions: Markov decision processes

1. [Adapted from R&N, 3rd Ed] Sometimes MDPs are formulated with a reward function R(s,a)
that depends on the action taken or with a reward function R(s,a,s’) that also depends on
the outcome state. In some formulations, rewards are assigned to the states alone: R(s).

(a) Write the Bellman equations for these formulations.

(b) Explain compactly in words the meaning of the Bellman equation for the formulation
with R(s).

(¢) Show how an MDP with reward function R(s,a,s’) can be transformed into a different
MDP with reward function R(s, a), such that optimal policies in the new MDP correspond
exactly to optimal policies in the original MDP.

(d) Now do the same to convert MDPs with R(s,a) into MDPs with R(s).

Solution:

(a) This exercise tests the student’s understanding of the formal definition of MDPs.
The key here is to get the max and summation in the right place.
For R(s,a,s") we have

U(s) = Hl(?XZT(S, a,s') [R(s,a,s)+~U(s)].

If R(s,a,s') = R(s,a), then there is no dependency of the reward from the suc-
cessor state s’ in the sum, allowing the reward term to be moved outside the sum.
The corresponding expression is

a

U(s) = max[R(s,a) + 7 Z T(s,a,s)U(s")]

where we use that for any given s and a, >, T'(s,a,s’) = 1.
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Solution:

()

(d)

(Continued) Finally, if R(s,a,s’) = R(s), then the immediate reward does not
depend on the action in max, either, and can be moved outside the maximization
too. Then we easily obtain the following expression

U(s) = R(s) + *ymngT(s, a,s\U(s),

where we use the algebraic property max(g + f(a)) = ¢g + max f(a), which holds

whenever ¢ is independent of a.

The Bellman equation in the formulation with R(s) reads directly as follows:

The utility of a state is the immediate reward for that state plus the discounted
expected utility of the next state, assuming that the agent chooses the optimal ac-
tion.

There are a variety of solutions here. One is to create a “pre-state” pre(s,a,s’) for
every s, a, s', such that executing a in s leads not to s’ but to pre(s, a, s’). In this
state is encoded the fact that the agent came from s and did a to get here. From
the pre-state, there is just one action b that always leads to s’. Let the new MDP
have transition 7", reward R’, and discount 4'. Then

T'(s,a,pre(s,a,s')) =T(s,a,s)
T'(pre(s,a,s'),b,s') =1
R'(s,a) =0
(pre(s,a,s'),b) = v2 R(s,a,s)
1
Y =72

Following the idea of part (c), we can create a “post-state” post(s,a) for every s,
a, such that

T'(s,a,post(s,a)) =1
T'(post(s,a),b,s') =T(s,a,s)
R'(s)=0

R,(pOSt(Sa a’)) =7 2 R(Sa a)

v =7




. Consider the infinite-horizon Markov decision process M represented by figure below with
discount factor v € [0,1). States are represented by circles and actions by hexagons.

The numbers on the arrows from actions to states represent the transition probability, for
instance, T'(s2, ag, s3) = P(s3 | s2,a9) = q. Each of the parameters p and ¢ are in the interval
[0,1]. The reward is 10 for state s3, 1 for state s and 0 otherwise.

(a) List all the possible policies for M.

(b) Show the equation representing the optimal value function for each state of M, i.e.,

U*(s0), U*(s1), U*(s2) and U*(s3).

(c) Is there a value for p such that for all v € [0,1) and ¢ € [0, 1], 7*(so) = a2? Explain.

(d) Is there a value for ¢ such that for all v € [0,1) and p > 0, 7*(sg) = a1? Explain.

(e) Using p = ¢ = 0.25 and v = 0.9, compute 7* and U* for all states of M.

Solution:

EDEIE

(a) There are two possible policies: [ 7, [ a; | ag | ao | ao

T2 || G2 | Qo | Qo | Qo

(b) Since the reward depends only on the state and not on the transition, from Exercise
1 we have the following:

U*(sp)) = 0+~ max T(sg,a,s)U*(s") = ymax{U*(s1),U"(s2)}

a€{ai,az} 7

U'(s1) = 0+ymax » T(s1,a,5)U(s) =7 [(1—p)U"(s1) + pU”(s3)]

a€{ao} m

U'(s2) = 14+ max 30 Tsa,0, )0 () = 14+ 7[(1 = U (30) + gU" (s9)]

a€a0




Solution:

(b)

(c)

(Continued)

a€1ao0

U(sz) = 10+~ Hl{aX}ZT(Sg,CL, sSYU*(s") = 10 + yU*(s0)

Note that
*(s0) = yarg maxz T(s,a,s\U*(s"),

ac{ai,a2} o

therefore if v = 0 then a; and as are tied and 7* is not unique, so we cannot
guarantee that 7*(sg) = as. For v > 0, 7*(sg) = ag if and only if U*(s2) > U*(s1)
for all ¢ € [0,1]. If p =0, then U*(s1) = yU*(s1) = 0 and since

U(s2) = 14+7[(1 = q)U"(s0) + qU"(s3)] = 1,
we have that U*(s2) > U*(s1) and 7*(sg) = ag for all v € (0,1) and ¢ € [0, 1].

No. Since

U(s2) = 14+7[(1 = q)U"(s0) + qU"(s3)] = 1,
then 7*(sg) = ay if and only if U*(s1) > U*(s2) > 1 for all v € [0,1) and p > 0.
We have that

U(s1) = 7[(1 =p)U"(s1) + pU"(s3)] = %'

Therefore we can always find a value for v sufficiently small such that U*(s1) < 1.
Notice that if v equals 0, then 7* is not unique (as in the previous item).

We obtain the following:

T [ [ e o]
U* || 14.1846 | 15.7608 | 15.6969 | 22.7661
" aq aop Qg ag

We can either solve the recursion we obtained in (b) or implement value iteration.
In the latter case, we also have to specify the error between U and U*.

It is simpler to solve the recursion in (b). Directly we have that

U*(s1) = 6.92 + 0.623 U*(s0)
U*(Sg) =10+0.9 U*(So)

from where follows that
U*(s9) = max{6.92 + 0.623 U*(sg),3.25 + 0.877U"(s0)}

and thus U*(sp) = 14.1846 and the action which lead to this value corresponds with
a = a;. Now we easily obtain U*(s;), U*(s2) and U*(s3) with the only available

action a = ag. 4




3. Let us consider a Pacman agent in a deterministic environment. A goal state is reached when
there are no remaining food pellets on the board. Pacman’s available actions are {N, S, E, W},
but Pacman can not move into a wall. Whenever Pacman eats a food pellet he receives a
reward of +1.

Assume that pacman eats a food pellet as soon as he occupies the location of the food pellet
- i.e., the reward is received for the transition into the square with the food pellet.

Consider the particular Pacman board states shown below. Throughout this problem assume
that Up(s) = 0 for all states s. Let the discount factor be v = 1.

State A State B

(a) What is the optimal value of state A, U*(A)?
(b) What is the optimal value of state B, U*(B)?
(c) At what iteration, k, will Uy(B) first be non-zero?

(d) How do the optimal g-state values of moving W and F from state A compare? (choose
one)

O Q(AW) > Q"(A E) O Q (A W) <@ (A E) O QA W) = Q" (A E)

(e) If we use this MDP formulation, is the policy found guaranteed to produce the shortest
path from pacman’s starting position to the food pellet? If not, how could you modify the
MDP formulation to guarantee that the optimal policy found will produce the shortest
path from pacman’s starting position to the food pellet?



Solution:

(a)
(b)

U*(A) = 1.

U(B)=0+1-0+1-0+0-14+1-1=1.

The reason the answers are the same for both (b) and (a) is that there is no penalty
for existing. With a discount factor of v = 1, eating the food at any future step
is just as valuable as eating it on the next step. An optimal policy will definitely
find the food, so the optimal value of any state is always 1.

Note: If a discount factor vy # 1 then the answers wouldn’t be the same (see (e)).

5

The value function at iteration k is equivalent to the maximum reward possible
within k steps of the state in question, B. Since the food pellet is exactly 5 steps
away from Pacman in state B, Us(B) = 1 and Ug5(B) = 0.

Note that you only receive your reward the moment you enter the box. So for
k = 1 the boxes around the dot receive value 1. In iteration & = 0 everything
is set to 0. In iteration k = 1 each state gets the value of the reward of its best
action plus the utility of the state that follows from that action as specified in the
assignment. The neighbors of the dot will first obtain the reward 1 according to
the value iteration. And thus we have indeed that k = 5.

Compare it with the Grid world example from the theory lesson on MDP.

Note: The time-limited value for a state s with a time-limit of k time steps is
denoted by Ug(s), and represents the maximum expected utility attainable from s
given that the Markov decision process under consideration terminates in £ time
steps. For every s € S we initialize Uy(s) = 0.

Q (A, W) = Q" (A E)
Once again, since v = 1, the optimal value of every state is the same, since the
optimal policy will eventually eat the food.

No. The @Q-values for going West and Fast from state A are equal so there is no
preference given to the shortest path to the goal state. Adding a negative living
reward (example: —1 for every time step) will help differentiate between two paths
of different lengths. Setting v < 1 will make rewards seen in the future worth less
than those seen right now, incentivizing Pacman to arrive at the goal as early as
possible.




4. Pacman is in a bonus levell With no ghosts around, he can eat as many dots as he wants. He
is in the 5 x 1 grid shown. The cells are numbered from left to right as 1,...,5. In cells 1
through 4, the actions available to him are to move Right (R) or to Fly (F) out of the bonus
level. The action Right deterministically lands Pacman in the cell to the right (and he eats
the dot there), while the Fly action deterministically lands him in a terminal state and ends
the game. From cell 5, Fly is the only action. Eating a dot gives a reward of 10, while flying
out gives a reward of 20. Pacman starts in the leftmost cell (cell 1).

e | - -] | -

1 2 3 4 o)

We write this as an MDP where the state is the cell that Pacman is in. The discount is 7.

Consider the following 3 policies:

mo(s) = F for all s
m(s) = Rif s <3, F otherwise
mo(s) = R if s < 4, F otherwise

(a) Assume v = 1.0. Calculate:
1. U™(1) = 2. U™(1) = 3. U™(1) = 4. U*(1) =

(b) Now consider an arbitrary value for .

1. Does there exist a value for v such that 7y is strictly better than both 7 and 757
If yes, give a value for ~. If no, write none.

2. Does there exist a value for « such that 7 is strictly better than both 7wy and 757
If yes, give a value for ~. If no, write none.

3. Does there exist a value for v such that 7, is strictly better than both 7y and 77
If yes, give a value for «. If no, write none.



Solution:

(a) v = 1.0 so we obtain:

1. From here the pacman has to fly out so the reward is 20 and then U™ (1) = 20.

2. Here the pacman moves right three times and then flies out, so we obtain
that U™ (1) = 10 + 10 + 10 + 20 = 50.

3. Similarly, U™ (1) = 60.
4. The optimal value of state 1 is U*(1) = 60.

b 1. Yes. 0 < < l Let us explain how to get this answer. ASSU.HIng we start
fy 3
at state 1:

U™(1) > U™(1)
20 > 104+10-7v+10-72+10-~+*+20-4*
0 > —1+y+7"+7°+2¢

We have to study the function f(v) = —1+~+~2+~>+2+* over the interval
[0,1], with its derivative f/(7) = 1+ 27 + 3v% + 8y® we can get the following
variation table :

') +

f() /

Then looking at the bounds of f(7) on the interval [0, 1] ;

f0) = -1
f) = 4

and as f € C°([0,1]) and f strictly monotonous on [0, 1] as a consequence of
the bijection theorem, we get that 3z € [0,1]/f(zo) = 0.

We know there is one unique solution but we need an intuition to find its
value. From Zeno’s paradoxes geometric serie, we know :

=1 1
Dog = 11

1
n=1 1 2
1




Solution:

b) 1.

(Continued) Hence stopping the serie at any order of n = k will yield the
residual :

i,}/n _ 7k+1
n=~k 1- v
with v = %,
S1o
on 2k
n=k
and then we have f (%) =0:
v 0 L 1
2
f'() +
. 4
f) 0
-1

Finally,

ur1)>Um(1) <= f(7) <0

1
= 0§7<§

and similarly for U™ (1) > U™ (1) we get 1 > 293 + 42 + v, which in both
cases gives us that v < %

. None! Similarly, like in 1. from U™ (1) > U™(1) we get that v > 1. From

U™ (1) > U™(1) follows that 7 < . Then we obtain there doesn’t exists
such that the both conditions are satisfied.

. Yes. % < v < 1. From before, we know that to beat m, we must have v > %

Writing out U™ (1) < U™ (1) will give the same inequality.




5. It is useful to know that partially observable MDP (POMDP) can be solved by defining an
observable MDP on belief states. Furthermore, it can be shown that an optimal policy for this
MDP 7*(b) is also an optimal policy for the original MDP. In other words, solving a POMDP
on a physical state space can be reduced to solving an MDP on the corresponding belief-state
space. To specify the needed MDP on the belief space, we need to define the corresponding
transition model and a reward function.

(a) How can we calculate the transition model for the belief states P(b’ | b,a) from the
available information, which includes the transition model on the physical states and the
the sensor model? Write the concrete expression.

(b) Write the expression for the expected reward if the agent does a in belief state b.

Solution:

(a) The desired transition model is the probability of reaching &’ from b, given action
a, which we write as P(b' | b,a). This probability needs to be calculated taking
into account all possible evidence values e as follows:

P | b,a) =Pl | a,b) = ZPb’|eab )P(e | a,b).

The probability of perceiving e, given that a was performed starting in belief state
b, is given by summing over all the actual states s’ that the agent might reach:

P(e| a,b) = ZP6|asb P(s" | a,b)
ZZP€|S (s" | a,b)
- Z P(e| )Y P(s' | s,a)b(s)
Finally, we obtain that

P | b,a) = ZPb’|eabZPe]s ZPs|sa

where P(b' | e,a,b) is 1 if ¥ = FORWARD(b, a, e) and 0 otherwise.

(b) We can also define a reward function for belief states, more precisely, the expected
reward if the agent does a in belief state b is

a) = Z b(s) Z P(s'| s,a)R(s,a,s).

Together, P(b' | b,a) and p(b,a) define an observable MDP on the space of belief
states.

10



6. Let us consider the following problem which takes place in various instances of a grid world
MDP. Shaded cells represent walls. In all states, the agent has available actions {f, ], —, <}.
Performing an action that would transition to an invalid state (outside the grid or into a wall)
results in the agent remaining in its original state. In states with an arrow coming out, the
agent has an additional action EXIT. In the event that the FXIT action is taken, the agent
receives the labeled reward and ends the game in the terminal state 7". Unless otherwise stated,
all other transitions receive no reward, and all transitions are deterministic.

For all parts of the problem, assume that value iteration begins with all states initialized to

zero, i.e., Uy(s) = 0, for every s. Let the discount factor be v = %

(a) Suppose that we are performing value iteration on the grid world MDP below.

EXIT
B ' ]

r=+1

. T

A EXIT f

r=+100

(i) Find in the optimal values for A and B, i.e., determine U*(A) and U*(B).
(ii) After how many iterations k will we have Uy (s) = U*(s) for all states s? If it never
occurs, write “never”. Explain your reasoning.
(iii) Suppose that we wanted to re-design the original reward function R(s,a,s’). For
which of the following new reward functions would the optimal policy remain un-

changed?

O Ri(s,a,s') =10R(s,a,s")
O Ray(s,a,s') =14+ R(s,a, s)
O R3<57a7 8/> = ( (S,CL,S ))
O Ru(s,a,s') =

(O None

(b) For the following problem, we add a new state in which we can take the EXIT action
with a reward of +x.

C EXIT

r=+1 }
i !
EXIT T
r=+100

EXIT
r=+x

(i) For what values of x is it guaranteed that our optimal policy 7* has 7*(C) = <7
Write +00 and —oc if there is no upper or lower bound, respectively. Write the upper
and lower bounds on the following lines:

<r<

11



(ii) For what values of x does value iteration take the minimum number of iterations k
to converge to U™ for all states? Write +00 and —oo if there is no upper or lower
bound, respectively. Write the upper and lower bounds on the following lines:

<z <

(iii) What is the minimum number of iterations k until Uy has converged to U* for all
states.

12



Solution:

(a) ()

(i)

(iii)

(i)

We know that we can only claim reward from going through one of the two
exists since all other transitions receive no reward and we know that the dis-
count factor is v = 0.5. Moreover, it is clear that the optimal policy will not
go through the top exit. So without a living reward and if the only way to gain
a reward is through the bottom exit, we can easily obtain that U*(A) = 25
and U*(B) = 2, since the optimal values will decrease by a factor § as we
go further away from the bottom exit. Indeed, U*(A) = 5 - 100 = 25 and

= a2
U*(B) = 5 - 100 = 2.

Here we are asked how many steps will it take us to calculate the values Ug(s),
for every state s. Here it is enough to calculate the number of steps only
for the state B (since it is the furthest one from the bottom exit). Ug(B) is
essentially the number of steps needed to get from B to the bottom exit. So
we obtain that £ = 6.

Ry: Scaling the reward function does not affect the optimal policy, as it scales
all Q-values by 10, which retains ordering.

R5 : Since reward is discounted, the agent would get more reward exiting then
infinitely cycling between states.

R3 : The only positive reward remains to be from exiting state +100 and +1,
so the optimal policy doesn’t change.

R4 With negative reward at every step, the agent would want to exit as soon
as possible, which means the agent would not always exit at the bottom-right
square.

We want the optimal policy at state C' to be to go left and we will find a bound
for x for which that is guaranteed to be true. It essentially asks us, which path
will grant us the better reward. In other words, we want to choose now the
new exit in the bottom left corner over the one in the bottom right corner.
We obtain that the value of going left is Q(C, ) = 5 - = ¢ and similarly
that Q(C, —) = 51 - 100 = 2. So the question is for which value of x is £ > 2
which implies that

50 <z < 400

The two states that will take the longest for value iteration to become non-
zero from either +x or +100, are states C, and the state to the right of C,
let us denote it by D. C' will become nonzero at iteration 4 from +x, and D
will become nonzero at iteration 4 from +100. We must bound x so that the
optimal policy at D does not choose to go to 4z, or else value iteration will
take 5 iterations. Similar reasoning for C' and 4+100. Then our inequalities are

1 1 1 1
— x> —-100 and — o< =

53 51 51 5 100.

Simplifying, we get the following bound on z:

20 <z < 200

As already explained in (a)-(ii);gnd (b)-(ii) we obtain that k = 4.




