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Solutions: Reinforcement learning

1. Consider the grid-world given below and Pacman who is trying to learn the optimal policy. If
an action results in landing into one of the shaded states the corresponding reward is awarded
during that transition. All shaded states are terminal states, i.e., the MDP terminates once
arrived in a shaded state. The other states have the North, East, South, West actions available,
which deterministically move Pacman to the corresponding neighboring state (or have Pacman
stay in place if the action tries to move out of the grad). Assume the discount factor γ = 0.5
and the Q-learning rate α = 0.5 for all calculations. Pacman starts in state (1, 3).

(a) What are the utilities of the following states:

U(3, 2) = U(2, 2) = U(1, 3) =

(b) The agent starts from the top left corner and you are given the following episodes from
runs of the agent through this grid-world. Each line in an Episode is a tuple containing
(s, a, s′, r).

Episode 1 Episode 2 Episode 3
(1,3), S, (1,2), 0 (1,3), S, (1,2), 0 (1,3), S, (1,2), 0
(1,2), E, (2,2), 0 (1,2), E, (2,2), 0 (1,2), E, (2,2), 0
(2,2), S, (2,1), -100 (2,2), E, (3,2), 0 (2,2), E, (3,2), 0

(3,2), N, (3,3), +100 (3,2), S, (3,1), +80
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Using Q-Learning updates, what are the following Q-values after the above three episodes:

Q((3, 2), N) = Q((1, 2), S) = Q((2, 2), E) =

(c) Consider a feature based representation of the Q-value function:

Qf (s, a) = w1f1(s) + w2f2(s) + w3f3(a)

f1(s) : The x coordinate of the state f2(s) : The y coordinate of the state

f3(N) = 1, f3(S) = 2, f3(E) = 3, f3(W ) = 4

1. Given that all wi are initially 0, what are their values after the first episode:

w1 = w2 = w3 =

2. Assume the weight vector w is equal to (1, 1, 1). What is the action prescribed by
the Q-function in state (2, 2)?

Solution:

(a) The utility of a state is the expected reward for the next transition plus the dis-
counted utility of the next state, assuming that the agent chooses optimal action.
Or briefly: the state utilities are the optimal values for the states found by comput-
ing the expected reward for the agent acting optimally from that state onwards.
Note that you get a reward when you transition into the shaded states and not
out of them. So for example the optimal path starting from (2, 2) is to go to the
+100 square which has a discounted reward of 0 + γ · 100 = 50. For (1, 3), going
to either of +25 or +100 has the same discounted reward of 12.5.
U(3, 2) = 100 U(2, 2) = 50 U(1, 3) = 12.5

(b) Q-values obtained by Q-learning updates:

Q(s, a)← (1− α)Q(s, a) + α(R(s, a, s′) + γmax
a′

Q(s′, a′)).

� Episode 1:

Q((1, 3), S) = 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0

Q((1, 2), E) = 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0

Q((2, 2), S) = 0.5 · 0 + 0.5(−100 + 0.5 · 0) = −50

Let us explain how we obtain those values. At the beginning the values that
are stored inside of the Q-table, are all set to zero. After each episode we
update the Q-table and proceed to the next episode. For example:

Q((1, 3), S) = 0.5 ·Q((1, 3), S) + 0.5
(
0 + 0.5 ·max

a
Q((1, 2), a)

)
= 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0
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Solution:

(b) � (Continued) Episode 2:

Q((1, 3), S) = 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0

Q((1, 2), E) = 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0

Q((2, 2), E) = 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0

Q((3, 2), N) = 0.5 · 0 + 0.5(100 + 0.5 · 0) = 50

� Episode 3:

Q((1, 3), S) = 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0

Q((1, 2), E) = 0.5 · 0 + 0.5(0 + 0.5 · 0) = 0

Q((2, 2), E) = 0.5 · 0 + 0.5(0 + 0.5 · 50) = 12.5

Q((3, 2), S) = 0.5 · 0 + 0.5(80 + 0.5 · 0) = 40

For clarity, let us show more detailed calculations for Q((2, 2), E) and
Q((3, 2), S). After the previous two episodes we know that all the current
Q-values are zero, apart from Q((2, 2), S) = −50 and Q((3, 2), N) = 50.
Then we obtain that

Q((2, 2), E) = 0.5 ·Q((2, 2), E) + 0.5
(
0 + 0.5 ·max

a
Q((3, 2), a)

)
= 0.5 · 0 + 0.5 (0 + 0.5 ·Q((3, 2), N))) = 0.25 · 50 = 12.5

Similarly, we obtain:

Q((3, 2), S) = 0.5 ·Q((3, 2), S) + 0.5
(
80 + 0.5 ·max

a
Q((3, 1), a)

)
= 0.5 · 0 + 0.5 (80 + 0.5 · 0) = 0.5 · 80 = 40.

Now we can fill in the following values:

Q((3, 2), N) = 50 Q((1, 2), S) = 0 Q((2, 2), E) = 12.5

(c) 1. Using the approximate Q-learning weight updates:

wi ← wi + α[(R(s, a, s′) + γmax
a′

Q(s′, a′))−Q(s, a)]fi(s, a).

The only time the reward is non zero in the first episode is when it transitions
into the −100 state.

w1 = −100 w2 = −100 w3 = −100
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Solution:

(b) 1. (Continued) West.
Indeed, here we have Qf (s, a) = w1f1(s) + w2f2(s) + w3f3(a), and since we
have that w1 = w2 = w3 = 1, then

Qf ((2, 2), a) = f1((2, 2)) + f2((2, 2)) + f3(a) = 2 + 2 + f3(a)

= 4 +


1, north

2, south

3, east

4, west

=


5, north

6, south

7, east

8, west

The action prescribed at (2, 2) is maxaQ((2, 2), a) where Q(s, a) is computed
using the feature representation. In this case, the Q-value for West is
maximum (2 + 2 + 4 = 8).
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2. (Old exam question) Consider the following MDP: We have infinitely many states s ∈ Z and
actions a ∈ Z, each represented as an integer. Taking action a from state s deterministically
leads to new state s′ = s+ a and reward r = s− a.
For example, taking action 3 at state 1 results in new state s′ = 1 + 3 = 4 and reward
r = 1− 3 = −2.
We perform approximate Q-Learning, with features and initialized weights defined below.

Feature Initial weight
f1(s, a) = s w1 = 1

f2(s, a) = −a2 w2 = 2

(a) Write down Q(s, a) in terms of w1, w2, s and a.

(b) Calculate Q(1, 1).

(c) We observe a sample (s, a, r, s′) of (1, 1, 0, 2). Assuming a learning rate of α = 0.5 and
discount factor of γ = 0.5, compute new weights after a single update of approximate
Q-Learning.

(d) Compute the new value for Q(1, 1).

Solution:

(a) Q(s, a) = w1 · s+ w2 · (−a2)

(b) Q(1, 1) = w1 · f1(1, 1) + w2 · f2(1, 1) = 1 · 1 + 2 · (−12) = −1

(c) First we obtain the difference

Difference = (0 + 0.5 ·max
a

Q(2, a))− (−1)

Difference = (0.5 ·max
a

(2− 2 · a2)) + 1

Difference = (0.5 · (2 + 2 ·max
a

(−a2))) + 1

Difference = (0.5 · (2 + 2 · 0)) + 1

Difference = 1 + 1 = 2

From here: w1 = 1 + 0.5 · 2 · 1 = 2 and w2 = 2 + 0.5 · 2 · (−12) = 1.

(d) Q(1, 1) = w1 · 1 + w2 · (−12) = 2 · 1 + 1 · (−1) = 1
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3. (Old exam question) Consider a board game where the agent - Pacman moves on a virtual
board with the goal to accumulate as many points by eating dots (food). Some ghosts move
around the maze unsystematically. Meeting with the ghost in the same square is fatal for
Pacman: he looses a life and when all lives have been lost the game is over. Suppose only a
part of the maze, as shown in the figures below, is relevant for the current state and possible
successor states.

The agent is using feature-based representation to estimate the Q(s, a) value of taking an
action a in a state s. The features the agent uses are f0 and f1 defined as the inverse of 1+ the
Manhattan distance to closest food and ghost, respectively.

The four possible successor states from a given state s = A are shown in the figure below,
together with their feature representation vectors f(s, a) = [f0(s, a), f1(s, a)]. For example,
f(A, STOP ) =

[
1
4
, 1
4

]
.

(a) The agent picks the action according to

argmax
a

Q(s, a) = argmax
a

{w0f0(s, a) + w1f1(s, a)},

where the features fi(s, a) are as defined above, and wi are weights, with i = 0, 1. Us-
ing the weight vector w = [0.2, 0.5], which action, of the ones shown above, would the
agent take from state A? Circle the right answer(s) and show below the corresponding
calculation.

A. STOP B. RIGHT C. LEFT D. DOWN

(b) Suppose now the situation depicted in the figure below. With the same weights as in (a),
the agent goes down aiming to eat the dot, but the ghost moves at the same time to the
right. Pacman looses a life, which costs him 100 points. How will the agent adapt its
weights based on this unhappy experience? Calculate the resulting values of w0 and w1

if the learning rate is 0.0045.
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Solution:

(a) Let us denote the actions {STOP,RIGHT,LEFT,DOWN} by {t, r, l, d}, respec-
tively. Then for the state s = A and w = [w0, w1] = [0.2, 0.5] we have the following

argmax
a∈{t,r,l,d}

Q(s, a) = argmax
a∈{t,r,l,d}

{0.2f0(s = A, a) + 0.5f1(s = A, a)}

= argmax
a∈{t,r,l,d}

{
0.2 · 1

4
+ 0.5 · 1

4
; 0.2 · 1

3
+ 0.5 · 1

5
; 0.2 · 1

5
+ 0.5 · 1

3
; 0.2 · 1

3
+ 0.5 · 1

3

}
= argmax

a∈{t,r,l,d}
{0.175; 0.1666; 0.206; 0.233} = 0.2333.

As we can see Q(s, a) for s = A is maximal when the chosen action is a = DOWN.

(b) The estimated Q-value of taking the action a = DOWN from the state s where
the agent was before loosing its life was:

Q(s,DOWN) = 0.2 f0(s,DOWN) + 0.5 f1(s,DOWN) = 0.2 · 1 + 0.5 · 1
2
= 0.45.

However, the agent gets instead a reward or r = −100 and lands in a state from
which any further state value is 0. Hence, the difference between the actual value
of the new state and the estimated value is Difference = −100−0.45 = −100.45.
The new weights are

w0 = 0.2 + α ·Difference · f0(s,DOWN) = 0.2 + 0.0045 · (−100.45) · 1.0 = −0.252
w1 = 0.5 + α ·Difference · f1(s,DOWN) = 0.5 + 0.0045 · (−100.45) · 0.5 = 0.273
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