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Solutions: Intro to supervised learning – Part 1

1. Linear regression

(a) Assume that you record a scalar input x and a scalar output y. First, you record x(1) = 2,
y(1) = −1, and thereafter x(2) = 3, y(2) = 1. Fit a linear regression model ŷ = hw(x) =
w0 + w1x using the squared error loss. Use the model to predict the output for the test
input xt = 4, and add the model to the plot below:

(b) Now, assume you have made a third observation y(3) = 2 for x(3) = 4 (is that what you
predicted in (a)?). Update the parameters w to all 3 data samples, add the new model
to the plot (together with the new data point) and find the prediction for xt = 5.

(c) Repeat (b), but this time using a model without intercept term, i.e., hw(x) = w1x.

(d) Repeat (b), but now using Ridge Regression with the regularization parameter λ = 1
instead of the ordinary least squares.
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Solution:

(a) Our data matrix is X =

[
1 2
1 3

]
and the vector of target values is y =

[
−1

1

]
.

The least squares solution for the weights is given by the normal equation
X>Xw∗ = X>y. We thus solve it[

1 2
1 3

]> [
1 2
1 3

]
w∗ =

[
1 2
1 3

]> [−1
1

]
⇒

[
2 5
5 13

]
w∗ =

[
0
1

]
⇒ w∗ =

[
−5

2

]
The predictor becomes hw(x) = −5 + 2x, and thus for xt = 4 the predicted output
is ŷt = −5 + 2× 4 = 3.

(b) Again, the solution is given by the normal equations

X>Xw∗ = X>y⇒

([
1 1 1
2 3 4

]1 2
1 3
1 4

)w∗ =

[
1 1 1
2 3 4

]−1
1
2

 ⇒ w∗ =
1

6

[
−23

9

]

The prediction for xt = 5 is hence ŷt = 1
6
(−23 + 9× 5) = 11

3
≈ 3.67.

(c) With no intercept term, w reduces to w1, the data matrix is X =

2
3
4

, and thus

X>Xw∗ = X>y⇒
[
2 3 4

] 2
3
4

w∗ =
[
2 3 4

] −1
1
2

 ⇒ w∗ = w1 =
9

29

The prediction is now ŷ = w∗1x and for xt = 5 we have ŷt = 45
29
≈ 1.55.

(d) Ridge Regression also has a closed form solution, and in particular, the normal
equation now becomes (X>X + λI)w∗ = X>y, i.e., w∗ = (X>X + λI)−1y, where
I is the identity matrix. Here, λ = 1 and I = I2 (it is of size 2× 2). We thus have:

(X>X + I2)w
∗ = X>y ⇒

([
1 1 1
2 3 4

]1 2
1 3
1 4

+

[
1 0
0 1

])
w∗ =

[
1 1 1
2 3 4

]−1
1
2


⇒ w∗ =

1

39

[
−21

18

]
The prediction for xt = 5 is hence ŷt = w∗0 + w∗1 × 5 = 69

39
≈ 1.77.
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Solution:
(Continued) The four predictors from (a) – (d) are shown in the figure below:

2. Deriving least squares linear regression from maximum likelihood

Assume a linear regression model

y = w0 + w1x1 + . . . wdxd + ε

where the errors ε are independent, identically distributed (i.i.d.) and follow a normal distri-
bution with zero mean ε ∼ N (0, σ2

ε ).

Show that the maximum likelihood estimate for the weights in this case is equivalent to the
least squares solution, i.e., to the weight optimization under the squared error loss.
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Solution:
The maximum likelihood estimate of w is

wML = arg max
w

P (y|X;w)

where X is the data matrix, whose rows are the input examples (x(i))> = [x
(i)
1 . . . x

(i)
d ],

i = 1, . . . N , and y = [y(1) . . . y(N)]> are the corresponding target values. Since ε is
independent for each data point, we can write the joint probability in the expression
above as the product of the independent terms, for each data point and thus we have

wML = arg max
w

N∏
i=1

P (y(i)|x(i);w)

Since the errors are assumed to be normally distributed, ε ∼ N (0, σ2
ε ), we can further

specify the likelihood as

P (y|X;w) =
N∏
i=1

P (y(i)|x(i);w)

=
N∏
i=1

N (w0 + w1x
(i)
1 + . . .+ wdx

(i)
d − y

(i)︸ ︷︷ ︸
ε

|0, σ2
ε )

∝
N∏
i=1

e
− 1

2σ2ε
(w0+w1x

(i)
1 +...+wdx

(i)
d −y

(i))2

= exp

(
N∑
i=1

− 1

2σ2
ε

(
w0 + w1x

(i)
1 + . . .+ wdx

(i)
d − y

(i)
)2)

Instead of maximizing this distribution directly, we can equivalently maximize its loga-
rithm (since log is a monotonically increasing function)

arg max
w

P (y|X;w) = arg max
w

logP (y|X;w)

= arg max
w

{
N∑
i=1

− 1

2σ2
ε

(
w0 + w1x

(i)
1 + . . .+ wdx

(i)
d − y

(i)
)2}

= arg min
w

{
N∑
i=1

(
w0 + w1x

(i)
1 + . . .+ wdx

(i)
d − y

(i)
)2}

and this is exactly the least squares solution for w. So, we gave the maximum likelihood
interpretation to the weight optimization under the squared error loss function.
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3. Consider the following training data

x y
1 3
2 1
3 0.5

Suppose the data comes from a model y = cxβ + noise, for unknown constants c and β. Use
least squares linear regression to find an estimate of c and β.

Solution:

Write log y︸︷︷︸
y′

= log c︸︷︷︸
w0

+ β︸︷︷︸
w1

log x︸︷︷︸
x′

Data becomes:

x′ y′

0 log 3
log 2 0
log 3 log 0.5

The data matrix, the vector of target vales and the weight vector are:

X =

1 0
1 log 2
1 log 3

 ; y =

log 3
0

log 5

; w =

[
log c
β

]

Solve min
w
‖y −Xw‖2

Solution is given by w∗ = (X>X)−1X>y

w∗ =

[
0.899
−0.5

]

c = e0.899 = 2.45; β = −0.5
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4. Consider the following data set

Item x1 x2 Class y
A 1 2 yes=1
B 2 1 yes=1
C 1 1 no=0
D 1 0 no=0

(a) Is this dataset linearly separable? Explain.

(b) We are training a perceptron (linear classifier with a hard threshold) on this data. We
append x0 = 1 to each data point to account for the bias term (e.g. for item A, (1, 2)
becomes (1, 1, 2)). Suppose the current weigths to be w = (0,−1, 1). Assume a learning
rate α = 0.2. How should the weights be updated if point A is considered?

(c) How should the weights be updated if point B is considered?
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Solution:

(a) Yes. The data points can be separated by a line, e.g., x1 + x2 = 2.5.

(b) If we denote the prediction of a linear classifier with a hard threshold by
ŷ = hw(x) = Threshold(w · x), where Threshold(z) = 1 if z ≥ 0 and 0 otherwise,
the perceptron update rule is

wj ← wj + α(y − hw(x))xj, j = 0, 1, 2

Or we can write more compactly:

w← w + α(y − hw(x))x

For the point A, the score is w · x = (0,−1, 1) · (1, 1, 2) = 1 ≥ 0. The prediction
ŷ = hw(x) = 1 is correct, we thus have y − hw(x) = 0 and the weights will not be
updated.

(c) For B, the score is w · x = (0,−1, 1) · (1, 2, 1) = −1 ≤ 0 and thus the predicted
label is ŷ = hw(x) = 0, while the given target label is y = 1. The weights are now
updated as

w←w + α︸︷︷︸
0.2

(y − hw(x))︸ ︷︷ ︸
1

x

=(0,−1, 1) + 0.2× 1× (1, 2, 1)

=(0.2,−0.6, 1.2)
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5. You are asked to use regularized linear regression to predict the target y ∈ R from the eight-
dimensional feature vector x ∈ R8. Let us define the model y = wTx and consider the following
objective functions:

min
w

n∑
i=1

(
y(i) −wTx(i)

)2
(1)

min
w

n∑
i=1

(
y(i) −wTx(i)

)2
+ λ

8∑
j=1

w2
j (2)

min
w

n∑
i=1

(
y(i) −wTx(i)

)2
+ λ

8∑
j=1

|wj| (3)

(a) Circle regularization terms in the objective functions above.

(b) For large values of λ in objective (2) the bias would:

• increase • decrease • remain unaffected?

(c) For large values of λ in objective (3) the variance would:

• increase • decrease • remain unaffected?

(d) The following table contains the weights learned for all three objective functions (not in
any particular order). Beside each objective write the appropriate column label (A, B,
or C):

Column A Column B Column C
w1 0.60 0.38 0.50
w2 0.30 0.23 0.20
w3 -0.10 -0.02 0.00
w4 0.20 0.15 0.09
w5 0.30 0.21 0.00
w6 0.20 0.03 0.00
w7 0.02 0.04 0.00
w8 0.26 0.12 0.05

• Objective (1):

• Objective (2):

• Objective (3):
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Solution:

(a) The regularization term in (2) is λ
8∑
j=1

w2
j = λ‖w‖22 (Tikhonov).

The regularization term in (3) it is λ
8∑
j=1

|wj| = λ‖w‖1 (LASSO).

(b) Bias is the expected deviation between the predicted value and the true value.
When λ is large, then the regularization term dominates the objective function.
Thus, the bias would increase.

(c) Variance is an error from sensitivity to small changes in the training set. We can
similarly as in (b) reason that for large λ, the variance will decrease.

(d) Columns A, B and C correspond to the objectives (1), (2) and (3), respectively.
The regularization term in the objective tells us which w solutions are preferred.
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6. Alice is building a model to know if a student will pass the exam or not. She has the hypothesis
that the hours of study will be a good indicator of passing or not. She surveys her friends, 7
who failed the exam and 7 who passed, and asks them how many hours they spent studying.
Here is what she finds:

• Number of hours of study for each student who failed: [1, 2, 2, 3, 5, 5, 6]

• Number of hours of study for each student who passed: [5, 5, 7, 9, 9, 10, 11]

She trains a logistic regression classifier on the data and plots the classifier against the data,
see Figure 1.
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Figure 1: Plot of Alice’s classifier model. The blue line represents the output of the model.

Answer the following questions assuming the logistic regression model:

(a) Consider a student who spent 5 hours studying. According to the model, what is roughly
the probability that he will fail the exam? The probability that he will pass?

(b) How many hours a student must study for the model to guarantee without a doubt that
she will pass?

(c) How is a logistic regression model normally turned into a binary classifier? If you turn
the model into a classifier in this way, what is the accuracy of the classifier on the training
data?

(d) It is most important to reduce false negatives, i.e. we want to avoid that a pass is classified
as a fail. To achieve that, we want to avoid false negatives in the training dataset. How
can this goal be described in terms of training precision and recall? How can the logistic
regression classifier be modified to try to achieve this goal?
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Solution:

(a) We read from the graph that P (0|x = 5) = 0.6 and P (1|x = 5) = 0.4.

(b) You can never be sure with a logistic regression model, there is no way to get a
probability of 1.

(c) This is normally done by choosing the class 1 if P (1|x) ≥ 0.5. We see from the
graph that this classify 5 pass correctly, 2 pass incorrectly, 6 fails correctly and 1
incorrectly. Altogether 11 out of 14 are classified correctly, yielding and accuracy
of 11/14.

(d) The precision and recall are defined as follows:

Precision =
tp

tp+ fp
; Recall =

tp

tp+ fn

where tp denotes ‘true positive’, fp ‘false positive’, and fn ‘false negative’.

To minimize the false negatives for pass we should aim at a good recall (small fn
for pass). Equivalently, we can formulate this as aiming at a good precision for
fail (because then we minimize the false positive for fail, i.e., the fraction of pass
that was detected as fail, which are the false negatives for pass).

We achieve this by changing the threshold to a value different from 0.5. For the
training data, a threshold of 0.4 would suffice to remove the false negatives for
pass completely. If we want to be prepared for more variation in the test data, we
could set the threshold even lower. Of course, we risk having more false positives
that way.
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