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Disclaimer: These lecture notes were written by Prof. Aleksandra Pizurica to accompany the
slides of the course E016350: Artificial Intelligence, facilitating their understanding. The lecture
notes are not meant to be self-contained, and do not cover all the study material in the course.
They are by no means meant to replace the recommended textbook and do not necessarily cover all
the relevant aspects that are presented in the slides and explained in the lectures. Some sections
are adapted from the book of S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach.
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Figure 1: The optimization in ML aims at finding the weights that minimize the training loss.
Left: A convex loss function (e.g., in the case of linear regression under the L2 loss); Right: in
general, the “loss landscape” is much more complex, non-convex with many local minima.

1 Optimization in machine learning

Our learning task is to determine the parameters (weights) w of a hypothesis hw(x) that
approximates the true, unknown function y = f(x) that generated the data. We find the optimal
w by minimizing the training loss

TrainLoss(w) =
1

N

N∑
i=1

L(x(i), y(i),w) (1)

where L(x(i), y(i),w) is some loss function. Formally, we solve a minimization problem:

w∗ = arg min
w

TrainLoss(w) (2)

This is typically done by applying some variant of the gradient descent algorithm.

When the loss function is convex (like in the left of Fig. 1), the gradient descent, unless applied
with a very wrong step size, is guaranteed to find the global optimum. In general, the training loss
will have a much more complex landscape with many local minima, especially in deep learning.
The illustration on the right of Fig. 1 gives some idea about such more complex training loss
functions with only two weights, since we cannot visualize higher dimensional ones. The gradient
descent algorithm will in these cases likely end up in a local optimum, but its variants, like the
so-called stochastic gradient descent will in practice find good solutions even for very complex
loss functions.

1.1 Gradient descent algorithm

We can minimize an arbitrary loss function by applying iterative optimization. The idea
is to start with some w and keep on tweaking it to make the loss go down until we reach the
minimum. To make the best “move” in the weight space at each step, we can use the gradient
of the function. The gradient of a scalar-valued differentiable function of several variables is the
vector field whose value at each point gives the direction and the rate of the fastest increase of
the function at that point. Hence, moving along the direction of the negative gradient decreases
the loss function. This iterative optimization procedure is called gradient descent. If the goal
of the optimization procedure is to maximize an objective function, then we move in the direction
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Figure 2: An illustartion of the gradient descent procedure with a good learning rate (left) and
with a too large learning rate (right).

of the gradient to reach the maximum – this is known as the gradient ascent algorithm. We can
use either of these two algorithms for the same problem if we can flip the objective function.

Thus, to minimize the training loss by the gradient descent, we will first initialize w to some
value (say, all zeros) and then take a number of steps in the weight space, each time in the direction
of the negative gradient. This means that we will each time subtract from w the gradient at that
point ∇wTrainLoss(w) multiplied by some positive constant α that determines the step size.
Concretely, the algorithm is as follows.

Algorithm: Gradient Descent (GD)

initialize w = [0, . . . , 0]

for iter 1, 2, ...
w← w − α∇wTrainLoss(w)

Observe that in each iteration all the training data are used. Therefore, each iteration here is
an epoch, the term which refers to using all the training data at once. The step size α ≥ 0, also
called the learning rate, specifies how aggressively we want to pursue the descent direction. The
step size and the number of epochs are two hyperparameters of the optimization algorithm.

The loss minimization by the gradient descent procedure is illustrated in Fig. 2. In the case
where the learning rate is well chosen, the algorithm steadily steps towards the minimum, while
with a too large learning rate it will take too large sweeps, therefore “overshooting” and possibly
even completely failing to reach the optimum (see also an illustration in Fig. 3). Generally, larger
steps sizes are like driving fast: you can get faster convergence, but you might also get very unstable
results and “crash”. On the other hand, smaller step sizes give more stability , but the destination
is reached more slowly. Note that when α = 0, the weights don’t change.

Some general strategies for choosing the learning rate include:

• set α such that update changes of w are about 0.1–1%

• decreasing: start with α = 1 and then let α = 1/
√

#updates made so far

• more sophisticated – adapt α based on the data

– e.g., AdaGrad and Adam optimizer
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Figure 3: The influence of the learning rate. Illustration Credit: E. Duchesnay.

1.2 Stochastic gradient descent

While gradient descent is a powerful general-purpose algorithm to optimize the training loss,
one problem with it is that it’s very slow. It is because it requires in each step the gradient of the
full training loss, and the training loss is a sum over all the training data, see Eq (1). Thus, if we
have millions of the training examples, each gradient computation requires going through those
millions of examples, before we can make any small update of the weights.

The natural question is then – Can we make progress before seeing all the data? The answer to
this question is – yes : rather than looping through all the training examples to compute a single
gradient, we can make an update of the weights based on each example. This way the procedure
will be much less stable and we will need many more steps, but each of these steps will be very
cheap! This method is called the stochastic gradient descent (SGD).

Algorithm: Stochastic Gradient Descent (SGD)

• init w = [0, . . . , 0]

• for iter 1, 2, ...

– For (x, y) ∈ Dtrain:
w← w − α∇wL(x, y,w)

Each update now is not as good as with the (standard) gradient descent algorithm because we
are only looking at one example at a time rather than taking all the examples. But the advantage
is that each of these updates we compute very quickly so we can make many more steps this way.

There is a version between SGD and GD called minibatch SGD, where each update is made
based on a batch of B examples. There are other variants of SGD. E.g., we can randomize the
order in which we loop over the training data in each iteration. This is important, e.g., if in the
training data we had all the positive examples first and the negative examples after that [1].
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Figure 4: The logistic (sigmoid) function Logistic(z) = 1/(1 + e−z) and an example of a logistic
regression hypothesis hw(x) = Logistic(w · x) for some weight vector w ∈ R2. Figure from [3].

2 Logistic regression

Now we return to the task of binary classification. Previously we have seen that for some
weight vector w ∈ Rd, the logistic regression hypothesis is

hw(x) = Logistic(w · x) =
1

1 + e−w·x
= g(w · x) (3)

and we derived the update rule for the weights using (stochastic) gradient descent under the L2

loss. Note that the loss function under the L2 loss:
∑

i(y
(i) − hw(x(i)))2 was convex for linear

regression where hw(x) = w · x. But with the nonlinear logistic regression hypothesis hw(x) this
loss is nonconvex with many local minima. So, although we could derive the update rule for logistic
regression under the L2 loss, the optimization with the gradient descent will be difficult (gradient
descent may not find the global optimum – it may get stuck in a local minimum).

2.1 Logistic loss

For the reasons explained above, we will rarely use the logistic regression with square-error
loss, but rather with the so-called logistic loss:

L(hw(x), y) =

{
− log(hw(x)) if y = 1

− log(1− hw(x)) if y = 0
(4)

which has nice properties for optimization and which can also be derived using the principle of
maximum likelihood estimation as we will show next.

The logistic loss is illustrated schematically in Fig. 5. Note that hw(x) from Eq (3) is between
0 and 1 and the logistic loss is a monotonic decreasing function with respect to the hypothesis
when y = 1, and monotonically increasing when y = 0. Moreover, the loss is exactly zero when we
are 100% confident while making the correct hypothesis and tends to infinity when we are 100%
confident while making the wrong hypothesis.

For binary classification with y ∈ {0, 1}, the logistic loss function from Eq (4) can be written
more compactly as:

L(hw(x), y) = −y log(hw(x))− (1− y) log(1− hw(x)) (5)

We will show now how we can derive this loss function using maximum-likelihood estimation.
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Figure 5: A schematic plot of the logistic loss from the machine learning course of Andrew Ng,
with adapted notation.

2.2 Logistic regression under the maximum likelihood optimization

We already said earlier that the logistic regression hw(x) = Logistic(w ·x) given in Eq (3) can
be interpreted as the probability that y = 1. Let us now write this statement formally:

P (y = 1|x,w) = hw(x)

P (y = 0|x,w) = 1− hw(x) (6)

Since y is always 1 or 0, we can write this more compactly as

P (y|x,w) = (hw(x))y(1− hw(x))(1−y) (7)

If the training examples were generated independently, the likelihood of the weights is:

L(w) =
N∏
i=1

P (y(i)|x(i),w) =
N∏
i=1

(
hw(x(i)

)y(i)(
1− hw(x(i)

)1−y(i)
(8)

In the maximum-likelihood philosophy, the optimal weights are those that are most likely given
the data, i.e., those that yield the maximum likelihood. It is easier to maximize the logarithm of
this likelihood and it will yield exactly the same solution as maximizing the likelihood itself, since
the logarithm is a monotonic function. Therefore, we express first the log likelihood:

`(w) = logL(w) =
N∑
i=1

y(i) log hw(x(i)) + (1− y(i)) log(1− hw(x(i))

Observe that this is in fact the logistic loss from Eq (5) which was there written for one example
only.

Now we can determine the update rule for the logistic regression by maximizing the log-
likelihood of the weights. This is the most common form of the logistic regression.

Note that now TrainLoss(w) = −`(w), so we are applying the gradient descent algorithm to
−`(w), or equivalently, we are applying the gradient ascent to `(w):

w← w + α∇w`(w) (9)
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We start with one training example (x, y):

∂

∂wj

`(w) =
(
y

1

g(w · x)
− (1− y)

1

1− g(w · x)

) ∂

∂wj

g(w · x)

=
(
y

1

g(w · x)
− (1− y)

1

1− g(w · x)

)
g(w · x)(1− g(w · x))

∂

∂wj

(w · x)

= (y(1− g(w · x)) − (1− y)g(w · x))xj

= (y − hw(x))xj

In the derivation above, we used the fact that g′(z) = g(z)(1 − g(z)). Hence, the maximum-
likelihood update rule for the logistic regression, with one example, is

wj ← wj + α(y − hw(x))xj

and with all training examples

wj ← wj + α
N∑
i=1

(y(i) − hw(x(i)))x
(i)
j

Note that this update looks exactly the same as for the least-squares linear regression but, of
course, hw is different. We followed here the derivation from [2], where you can find more details
about the logistic regression, including an alternative algorithm for the maximization of `(w).
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