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Disclaimer: These lecture notes were written by Prof. Aleksandra Pizurica to accompany the
slides of the course E016350: Artificial Intelligence, facilitating their understanding. The lecture
notes are not meant to be self-contained, and do not cover all the study material in the course.
They are by no means meant to replace the recommended textbook and do not necessarily cover all
the relevant aspects that are presented in the slides and explained in the lectures. Some sections
are adapted from the book of S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach.
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Figure 1: The concept of multiclass linear classification illustrated on a case with three classes.
The input data point x is assigned to the class that gives the biggest score. Credit: D. Klein & P.
Abbeel [1].

1 Multiclass linear classification

So far we considered only binary linear classification. Now we turn to a more general case where
we can have more than two classes. For example, we want to predict the value of a handwritten
digit or to classify newspaper articles into categories culture, science, sports, politics etc. We still
want to define the decision boundaries based on linear functions of the input, i.e., based on
linear combinations of input features. This task is called multiclass linear classification.

Let our input be a d-dimensional vector as before x ∈ Rd. We now have a weight vector
wy ∈ Rd for each output class y ∈ {1, . . . , K}, and a new input x is classified based on the scores
wy · x that are computed for every class. We will put all the weight vectors together in one long
vector w = [(w1)

>, . . . , (wK)>]> ∈ RKd and we’ll denote the prediction same as before by hw(x).

1.1 Multiclass perceptron

Given the setup above, the prediction rule “the highest score wins”:

hw(x) = arg max
i

wi · x (1)

extends directly the linear binary classification with a hard threshold to multiple classes. This
classification approach is illustrated in Fig. 1 and is often referred to as the multiclass percep-
tron. The scores zi = wi · x are also called activations (this is the terminology that we will use
commonly with neural networks).

Often it is convenient to represent multiclass classification with one-hot encoding. This
means that the target output (the correct classification result) is represented as a vector t with
all zeroes except one entry “1”, which indicates the correct class. For example, if the correct class
out of K possibles classes is the k-th class, the one-hot encoded target output is

t = [0, . . . , 0, 1, 0, . . . , 0]>︸ ︷︷ ︸
entry k is one

∈ RK

We can represent the multiclass perceptron prediction with one-hot encoding as follows. Let
o ∈ RK be the one-hot encoded output vector. Then for the multiclass perceptron

ok =

{
1 if k = arg max

i
wi · x

0 otherwise
(2)

3



1.2 Multiclass logistic regression and the softmax rule

The question now is how to turn the hard multiclass classification that we defined above into
a soft one. In the binary case we replaced the hard threshold with the sigmoid function and we
called the resulting model logistic regression. The nice property of the sigmoid (logistic) function
was that it provided a probabilistic interpretation of the output as the probability of belonging to
class “1”.

We can equivalently turn the scores for multiclass classification into probabilities for belonging
to the corresponding classes by using the softmax rule:

softmax(zi) =
ezi∑K
k=1 e

zk
, i = 1, . . . , K (3)

The original activations zi are transformed this way to softmax activations. The resulting
approach is multiclass logistic regression (also called multinomial logistic regression or
softmax regression) where the hypothesis is defined as:

hw(x) =


P (y = 1|x,w)
P (y = 2|x,w)

...
P (y = K|x,w)

 =
1∑K

k=1 e
wk·x


ew1·x

ew2·x

...
ewK ·x

 (4)

where w = [(w1)
>, . . . , (wK)>]>. If we denote the output vector by o = hw(x) we can write

ok = softmax(wk · x), k = 1, . . . , K (5)

Note how this “softens” the hard classification rule in Eq (2).

2 Learning weights for multiclass linear classification

Let us now see how we learn the weights from the training data for the two above presented
multiclass classification methods.

2.1 Multiclass perceptron learning rule

Remember the perceptron learning rule for binary classification with y ∈ {0, 1}, which can be
written in a vector form as w ← w + α(y − hw(x))x. It did nothing if the output was correct,
and otherwise the weights were either increased or decreased by αx to nudge them in the right
direction (increasing if y = 1 and hw(x) = 0 and decreasing in y = 0 and hw(x) = 1). This is
simply extended to the case with multiple classes as follows:

• If hw(x) = y do nothing

• If hw(x) 6= y update the weights for the true class y and for the predicted class y∗ = hw(x)

– Update the correct class vector as wy ← wy + αx

– Update the wrong class vector as wy∗ ← wy∗ − αx

– Do not change the weights of any other class
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2.2 Optimization for multiclass logistic regression

For multiclass logistic regression we optimize the weights similarly as we did with the logistic
regression in the binary case: by maximizing the likelihood of the weights given the training data:

w∗ = arg max
w
L(w)

Assuming as before that the training examples were generated independently, the likelihood is:

L(w) =
N∏
i=1

P (y(i)|x(i),w1, . . . ,wK︸ ︷︷ ︸
w

) =
N∏
i=1

P (y(i)|x(i),w) (6)

where

P (y(i)|x(i),w) =
e
w

y(i)
·x(i)∑

y

e
w

y(i)
·x(i)

Again, as was the case with the binary logistic regression, we will perform the desired optimization
easier on =the logarithm of the likelihood:

`(w) = logL(w) =
N∑
i=1

logP (y(i)|x(i),w) (7)

The optimization objective is now equivalently expressed as maximizing the likelihood or mini-
mizing the negative log-likelihood, i.e., the training loss is now the negative log-likelihood and we
have that:

w∗ = arg min
w
−`(w) = arg min

w
−

N∑
i=1

logP (y(i)|x(i),w) (8)

Thus the update rule with the stochastic gradient descent is

w← w + α
N∑
i=1

∇ logP (y(i)|x(i),w) (9)

Additional insight (optional reading): It is possible to express this update rule analytically and
to show that it is a direct extension of the update rule for the weights in the case of binary
logistic regression. Let t(i) and o(i) denote one-hot encoded target and predicted output for
the ith example. The update rule for multiclass logistic regression is:

wk ← wk + α

N∑
i=1

(t
(i)
k − o

(i)
k ))x(i), k = 1, . . . , K

The log-likelihood loss in the logistic regression, which is often called the logistic loss or
just log loss) is in the literature often called also cross-entropy loss (although strictly
speaking the logistic loss is an approximation of the true cross-entropy loss, which would
require the actual (unknown) distribution of the examples, and we are approximating this
unknown distribution by its samples contained in the training set). Nevertheless, these terms
are now often used interchangeably and the term cross-entropy loss is common in the machine
learning community.
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