
Lecture Notes

E016350: Artificial Intelligence

Learning with Nonlinear Features

Aleksandra Pizurica

Spring 2024

Contents

1 Linear predictors with nonlinear features 3
1.1 Linear regression machinery with nonlinear features 4
1.2 Classification with nonlinear features . 5
1.3 Limitations and practical considerations . 6

Disclaimer: These lecture notes were written by Prof. Aleksandra Pizurica to accompany the
slides of the course E016350: Artificial Intelligence, facilitating their understanding. The lecture
notes are not meant to be self-contained, and do not cover all the study material in the course.
They are by no means meant to replace the recommended textbook and do not necessarily cover all
the relevant aspects that are presented in the slides and explained in the lectures. Some sections
are adapted from the book of S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach.

2

Figure 1: Examples of more complex data where a non-linear predictor is needed for regression
(left) or classification (right). Figures from [1].

1 Linear predictors with nonlinear features

So far we were dealing with linear regression and linear classification. However, in real life
data are often more complex and a linear predictor may not be a satisfactory fit (see examples in
Fig. 1). In this case, we can turn to more advanced models like decision trees and neural networks
(that we will study next). Before doing so, let’s see how we can tackle these tasks still with the
machinery of linear predictors but then feeding them with nonlinear features. You will see that in
some cases this can work pretty well!

The main idea is to extract a vector of nonlinear features φ(x) ∈ Rn from the input x ∈ Rd

and to feed these nonlinear features to a linear predictor. The prediction will be non-linear in x!
With appropriately selected nonlinear features we can fit the data as illustrated in Fig. 2.

Figure 2: By extracting nonlinear features φ(x) from the input x and feeding those to linear
regression as hw(x) = φ(x) ·w or to logistic regression as hw(x) = Logistic(φ(x) ·w), we obtain
predictions that are nonlinear in x. Illustrations from [1].

3

(a) (b) (c)

Figure 3: Examples of predictors with (a) quadratic features; (b) piece-wise constant features and
(c) features with periodicity structure. Illustrations from [1].

1.1 Linear regression machinery with nonlinear features

We generalize linear regression x · w by replacing the “raw” input x by some feature vector
φ(x). The resulting predictor is

hw(x) = φ(x) ·w (1)

The feature vector φ(x) can be arbitrary. We will illustrate the use of nonlinear features for
univariate regression only, i.e., for the case where the input is scalar x from which we will construct
a n-dimensional feature vector φ(x). Fig. 3 illustrates three classes of nonlinear predictors that
are obtained with different feature vectors.

Note that with φ(x) = [1, x]> the predictor in Eq (1) would simply be univariate linear regres-
sion (the dummy variable x0 = 1 allows us to include the intercept term w0 in the vector w). Now,
if we construct a nonlinear feature vector by adding a quadratic term x2:

φ(x) = [1, x, x2]>

we obtain quadratic predictors illustrated in Fig. 2(a). The different curves there correspond to
different weight vectors w. The yellow line corresponds to w = [1, 1, 0]> which sets the quadratic
term to zero, thus the predictor reduces to the linear case. The predictor shown with the red line
corresponds to w = [2, 1,−0.2]> and the one in purple to w = [4,−1, 0.1]>.

The piecewise constant predictors in Fig. 2(b) are obtained with feature extractors that
divide the input space into regions and allow the predicted value of each region to vary indepen-
dently. Specifically, each component of the feature vector corresponds to one region (e.g., (0, 1] or
(1, 2], etc.) and is 1 if x lies in that region and 0 otherwise:

φ(x) = [1[0 < x ≤ 1],1[1 < x ≤ 2],1[2 < x ≤ 3],1[3 < x ≤ 4],1[4 < x ≤ 5]]>

Assuming the regions are disjoint, the weight associated with a component/region is exactly the
predicted value. E.g., in Fig. 2(b), the predictor shown in red corresponds to w = [1, 2, 4, 4, 3]> and
the one in purple to w = [4, 3, 3, 2, 1.5]>. As we make the regions smaller, we get more features,
and the expressiveness of our hypothesis class increases. In the limit, we can essentially capture
any predictor we want. This sounds awesome but there are some practical considerations and
limitations especially when the input is not scalar, we reflect on this in Section 1.3.

4

Fig. 2(c) shows yet another family of the predictors, these have some periodicity structure.
In particular, these were obtained with the feature vector

φ(x) = [1, x, x2, cos(3x)]>

The line in red corresponds to w = [1, 1,−0.1, 1]> and the one in purple to w = [3,−1, 0.1, 0.5]>.

For all these predictors, the hypothesis space can be expressed as

H = {hw(x) = w · φ(x) : w ∈ Rn}

where φ(x) is the particular feature vector and n its dimension (for our first example, with the
quadratic predictor, n = 3, in the second example we had n = 5, and in the third one n = 4).

We showed three examples but there is an unboundedly large design space of possible feature
extractors. In practice, the choice of features is informed by the prediction task that we wish to
solve (either prior knowledge or preliminary data exploration) [1].

1.2 Classification with nonlinear features

Similarly as we did with regression, we can feed the “machinery” of linear classifiers with
nonlinear features φ(x) of the input x. The classification will be linear in φ(x) but nonlinear in x.

For example, to obtain a circular decision boundary we extend the input x = [x1, x2]
> with the

quadratic term x21 + x22 and we feed this nonlinear feature vector

φ(x) = [x1, x2, x
2
1 + x22]

>

to a linear binary classifier, say with a hard threshold:

hw(x) = Threshold(w · φ(x)) =
{ 1 if w · φ(x) ≥ 0

0 otherwise
(2)

Fig. 4 shows the resulting decision boundary for the case where the weights are w = [2, 2,−1]>.
Indeed, it is easy to verify that with the given feature vector and with this weight vector the
predictor in Eq (2) can be rewritten as

hw(x) =
{ 1 (x1 − 1)2 + (x2 − 1)2 ≤ 2

0 otherwise

As a sanity check, we you can see that x = [0, 0]> results in a score of 0, which means that it
is on the decision boundary. And as either of x1 or x2 grow in magnitude (either |x1| → ∞ or
|x2| → ∞), the contribution of the third feature dominates and because w3 = −1 the score w ·φ(x)
will be negative and thus the predicted label will be 0.

The same principle remains when we replace the hard classifier with a soft one, like in logistic
regression, now with nonlinear features:

hw(x) =
1

1 + e−w·φ(x)

By constructing more complex feature vectors φ(x, we can obtain also more complex decision
boundaries.

5

Figure 4: A circular decision boundary obtained with with a linear classifier acting on the nonlinear
feature vector φ(x) = [x1, x2, x

2
1 + x22] with the weight vector w = [2, 2,−1]>. Example from [1].

1.3 Limitations and practical considerations

We have seen that by constructing appropriate feature vectors we can solve – in principle – any
nonlinear regression or classification task with the machinery of linear predictors. The components
of the feature vector, i.e., the individual features, represent what properties might be useful for
prediction. If a feature is not useful, then the learning algorithm can assign a weight close to zero
to that feature. Of course, the more features one has, the harder learning becomes. This poses
some fundamental limitations to how far we can go with the approach described in this Section.

For example, in Section 1.1, we constructed a quadratic predictor for the case where the input
was scalar x ∈ R. This was inexpensive, we needed to add just one component x2 to construct the
desired nonlinear feature vector. But if the input were d-dimensional x ∈ Rd, then there would
be O(d2) quadratic features of the form xixj for i, j ∈ {1, . . . , d}. When d is large, then d2 can be
prohibitively large, which is one reason that using the machinery of linear predictors to increase
expressiveness can be problematic [1]. Similarly, take the example of the piece-wise predictors from
Section 1.1 where the feature vector is an indicator function over the successive intervals. Think
what happens if x were not a scalar, but a d-dimensional vector. Then if we want to increase the
expressiveness of the model by breaking up each component of the feature vector (each interval)
into B bins there will be Bd features! For each feature, we need to fit its weight, and there will in
generally be too few examples to fit all the features. So, we will need to study other mechanisms
for nonlinear learning on high-dimensional inputs.

References

[1] M. Charikar and S. Koyejo. Artificial Intelligence: Principles and Techniques (CS221). Stanford
University, 2024.

6

	Linear predictors with nonlinear features
	Linear regression machinery with nonlinear features
	Classification with nonlinear features
	Limitations and practical considerations

