
Lecture Notes

E016350: Artificial Intelligence

Supervised Learning:

Linear Regression and Classification

Aleksandra Pizurica

Spring 2024

Contents

1 Theory of learning 3
1.1 Model selection and optimization . 5
1.2 Parametric models . 5
1.3 Training, validation and test sets . 5
1.4 Loss function . 6
1.5 Training loss . 7

2 Linear regression 8
2.1 Univariate linear regression . 8
2.2 Multivariate linear regression . 10
2.3 Regularization . 12

3 Linear Classification 16
3.1 Linear classification with a hard threshold . 16
3.2 Soft classification with a logistic function . 17
3.3 Least-square error logistic regression . 17

Disclaimer: These lecture notes were written by Prof. Aleksandra Pizurica to accompany the
slides of the course E016350: Artificial Intelligence, facilitating their understanding. The lecture
notes are not meant to be self-contained, and do not cover all the study material in the course.
They are by no means meant to replace the recommended textbook and do not necessarily cover all
the relevant aspects that are presented in the slides and explained in the lectures. Some sections
are adapted from the book of S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach.

2

1 Theory of learning

In supervised learning, we have a training set of N input-output pairs (training examples)
Dtrain = {(x(i), y(i)); i = 1, . . . N}. The input x(i) is sometimes also called input features, and
sometimes we rather use a separate notation φ(x) to stress that features φ are extracted from a
(raw) input x. The output y(i) is a target variable (also called label) that we are trying to predict.

When the output y is a number (such as the predicted arrival time), the learning problem is
called regression. When the output is one of a finite set of values (e.g., land-cover class in a satel-
lite photo: road, building, vegetation or water), the learning problem is called classification. In
Boolean or binary classification there are only two values (e.g., classification of online comments
to toxic or non-toxic or tissue classification in a medical image to normal or pathologic, etc.).

In the formal (mathematical) theory of learning, we say that given the set of training examples
{(x(i), y(i)) . . . (x(N), y(N))}, where each y(i) was generated by an unknown function y = f(x), the
goal of supervised learning is to discover a function h that approximates the true function f .

The function h is a hypothesis about the world and is drawn from some hypothesis space
H. For example, the hypothesis space is the set of all polynomials up to some predefined degree.
In different words, we say that h is a model of the data drawn from some model class H, or,
in general, it is a function drawn from some function class. For parametric models, different
h ∈ H have different parameters w. Here, the hypothesis is a parametrized function hw(x), and
the optimization consists in finding w that best fits the training data.

Fig. 1 illustrates the principle of supervised learning and Fig. 2 clarifies the notion of the
hypthesis space and the functions within it. But how do we choose H to start with? We might
exploit some prior knowledge about the underlying processes that generated the data. We can also
perform exploratory data analysis: examining the data with statistical tests and visualizations
–histograms, scatter plots, box plots – to get a feel for the data, and some insight into what
hypothesis space might be appropriate [5]. Often we also try multiple hypothesis spaces (different
types of models and/or different variants of the same kind of models) and evaluate which one
works best for the given task.

The next question is how to choose a good hypothesis from within the hypothesis space. We
say that a hypothesis is good if it correctly predicts the value of y for new examples. We then say
that the hypothesis generalizes well. Intelligence can be seen as the ability to predict (e.g.
the next sample) and generalize to unseen scenarios [4].

Figure 1: The principle of supervised learning, illustrated for a parameteric approach (h = hw).

3

Figure 2: An illustration of the hypothesis space, exemplified with a parameteric model for binary
linear classification where different hypotheses hwi

are characterized with different parameters
(weights) wi. Here, each hwi

yields a different decision boundary. (e.g., hwi
yields the predicted

label for the input x as y = 1 if wi,1x+ wi,0 > 0 and y = 0 otherwise).

Figure 3: Finding hypotheses to fit data. Top row: four plots of best-fit functions from four
different hypothesis spaces trained on data set 1. Bottom row: the same four functions, but
trained on a slightly different data set (sampled from the same f(x) function). Taken from [5].

The example in Fig. 3 shows how the best-fitted model differs depending on the chosen hy-
pothesis space and it also illustrates the effect of the particular training set. Observe that the
linear model has a large bias (i.e., a large deviation from the expected value when averaged over
different training sets). It is because it allows only functions consisting of straight lines and thus
fails to represent any patterns in the data other than the overall slope of a line. We say that such
a hypothesis, which fails to find a pattern in the data, is underfitting. In the other extreme,
a 12-order polynomial has a small bias but it has a large variance: a small fluctuation in the
training data set translates into a large difference in the hypothesis. It means that at least one
of the two found hypotheses must be a poor approximation for the true underlying f from which
both datasets were drawn. Such a function that pays too much attention to the particular data
set it is trained on is said to be overfitting and will perform poorly on unseen data.

Hence, we often face a bias-variance trade-off: a choice between more complex, low-bias
hypotheses that fit the training data well and simpler, low-variance hypotheses that may generalize
better [5]. A general principle, known as Ockham’s razor tells us that the best models are simple
models that fit the data well. In other words, simpler explanations are, other thing s being equal,
generally better than more complex ones.

4

1.1 Model selection and optimization

The task of finding a good hypothesis consists of two main subtasks:

1. Model selection: selection of the model class, i.e, selection of the hypothesis space H.
This step determines the hyperparameters of the learning algorithm. For example, a
learning algorithm typically involves a hyperparameter that determines the size of the model,
like the number of layers in a neural network. If we learn a decision tree, the size could be
the number of nodes in the tree; for polynomials, the maximal degree of the polynomial.

2. Optimization, also called training: finding the best hypothesis h within the selected H.
It involves a concrete learning algorithm, which needs to evaluate how good the predictors
are based on some loss function.

1.2 Parametric models

For parametric models, different h ∈ H have different parameters w. Here, the hypothesis
is a parametrized function hw(x), and the optimization consists in finding w that best fits the
training data. Most of the machine learning approaches that we will cover in this course, ranging
from the simplest linear regression and logistic regression to deep neural networks are parameteric
models. In this chapter, we will deal with parameteric models but we will address nonparameteric
machine learning models as well in some of the subsequent chapters.

1.3 Training, validation and test sets

In machine learning, we want to select a hypothesis that will optimally fit some future examples.
Here we are implicitly making an assumption that the future examples will behave like the past
ones. This is called stationarity assumption. Next, we need to define what is the optimal fit
(i.e., the best hypothesis). We will say that it is a hypothesis that minimizes some error rate,
being the proportion of times that h(x) 6= y for an (x, y) example. To estimate the error rate of a
hypothesis, we need to test it by measuring its performance on a test set of examples. To ensure
a fair evaluation, the simplest way is to split the set of all available examples into a training
set (to create the hypothesis, i.e., to train the model) and a test set (to evaluate it). When we
are creating only one model these two sets are sufficient. But if we want to compare multiple
competing models, which can be entirely different machine learning models or variants of the same
approach (with differently adjusted hyperparameters), then we need a third set of examples called
the validation set. Hence, as a general rule, we need to split the set of all available examples D
into three disjoint sets:

• Training set (Dtrain) – to train candidate models

• Validation set (Dval) – to evaluate the candidate models and choose the best one

• Test set (Dtest) – to do a final unbiased evaluation of the best model

When we don’t have enough data to make properly all three of these data sets with sufficient sizes,
we can use k-fold cross-validation. This technique enables us to “squeeze more” out of the data
by allowing each sample to serve double duty – as training and validation data – but not at the
same time [5]. We then perform k rounds of learning, each time 1/k of the data in D\Dtest is held
as a validation set and the remaining examples are used as the training examples. (Dtest is always

5

Figure 4: Common loss functions for the regression tasks (left) and binary classification (right).

kept separately and not touched until the testing phase). Popular choices for k are 5 and 10. The
extreme case with k = n is known as leave-one-out cross validation.

1.4 Loss function

Since in AI the decision making (and optimal action) maximizes some form of expected
utility, we can define the loss function in general terms as the amount of utility lost by replacing
the correct answer f(x) = y by a hypothesis h(x) = ŷ. This is the most general formulation. We
will write the loss function as L(y, h(x)) and often simply as L(y, ŷ). In the case of parameteric
learning ŷ = hw(x) we will use interchangeably L(y, hw(x)) and L(x, y,w).

Fig. 4 illustrates some common loss functions for the regression tasks and for the binary clas-
sification tasks. For the regression task, the loss function needs to increase with the difference
between the true and the predicted output. This increase is linear for the absolute value loss
L1(y, ŷ) = |y − ŷ| and quadratic for the squared-error loss: L2(y, ŷ) = (y − ŷ)2. The Huber
loss function behaves as quadratic for small prediction errors and liner for large prediction errors:

Lδ(y, ŷ) =

{
1
2
(y − ŷ)2 if |y − ŷ| ≤ δ
δ(|y − ŷ| − 1

2
δ) otherwise

This makes it less sensitive to outliers in data than the squared error loss. Its parameter δ
allows adjusting the transition between the two regions and the slope of the linear part.

For classification, we want to penalize the cases that will yield ŷ 6= y, but now it makes no
sense to let the loss depend on the value of the difference y − ŷ (think why). Rather, we now can
reason how confident the model was when making a certain prediction and let the loss depend on
the correctness of prediction, which is larger when the model is more confident about its correct
prediction, and, conversely, is smaller when the model is more confident about its wrong prediction.
Fig. 4 shows some common classification loss functions. For the zero-one loss L0−1(y, ŷ) the
penalty is 0 if ŷ = y and 1 if ŷ 6= y regardless of how confident the model was in predicting a
particular value of ŷ. Other, more nuanced loss functions shown in the diagram on the right of
Fig. 4 take this confidence into account.

6

1.5 Training loss

The expected generalization loss for a hypothesis h, with respect to loss function L is the
mathematical expectation of the loss:

GenLossL(h) =
∑

(x,y)∈E

L(y, h(x))P (x, y) (1)

where E denotes the set of all possible input-output pairs, and P (x, y) the joint probability of x
and y. The best hypothesis is the one that yields the minimum expected generalization loss:

h∗ = arg min
h∈H

GenLossL(h) (2)

In reality, the true distribution P (x, y) is not known, so the learning agent can only estimate the
generalization loss with an empirical loss on a set of available examples E:

EmpLossL,E(h) =
1

|E|
∑

(x,y)∈E

L(y, h(x)) (3)

By minimizing the empirical loss, we obtain the estimated best hypothesis:

ĥ∗ = arg min
h∈H

EmpLossL,E(h) (4)

We define the training loss as the empirical loss over the set of training examples Dtrain:

TrainLossL,Dtrain
(h) =

1

|Dtrain|
∑

(x,y)∈Dtrain

L(y, h(x)) (5)

For compactness, we will suppress the subscripts L and Dtrain, and for parameteric models hw, the
loss function can be written both as L(y, hw(x)) and L(x, y,w), so we also write:

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

L(x, y,w) (6)

Sometimes we will find it more convenient to express the training set explicitly as N examples:
Dtrain = {(x(i), y(i)); i = 1, . . . N}, and then write the training loss as

TrainLoss(w) =
1

N

N∑
i=1

L(y(i), hw(x(i))) =
1

N

N∑
i=1

L(x(i), y(i),w) (7)

which is equivalent to (6). Finally, we will sometimes use explicit regularization of a machine
learning model, meaning that we will add a penalty term that penalizes the complexity of the
solution. In other words, we will directly minimize a weighted sum of the empirical loss and the
complexity of the hypothesis, which is also called the total cost:

Cost(h) = EmpLoss(h) + λComplexity(h) (8)

Here, λ ≥ 0 is a parameter, often determined by cross-validation. This process explicitly penalizes
complex hypotheses, promoting thus more ‘regular’ functions as solutions and is therefore called
regularization. In practice, our training objective will become:

min
w

N∑
i=1

L(y(i), hw(x(i))) + λReg(w) (9)

where Reg(w) is some regularization function imposed on the weights, e.g., `1-regularization:
Reg(w) = |w| or `2-regularization: Reg(w) = w2. We address regularization more concretely in
Section 2.2.

7

Figure 5: Left: data points and the fitted line under the squared error loss. Right: Plot of the
training loss

∑
i(y

(i) − (w1x
(i) + w0))

2 for various values of w0, w1. Observe that the training loss
is a convex function. This is true for every linear regression problem with an L2 loss function [5].

2 Linear regression

The task of linear regression is fitting a linear model through the training data. The hypothesis
space is the space of all linear functions of continuous-valued inputs. The learning algorithm
seeks to find the parameters w, which characterize the best fitted line. The produced model hw
in the context of regression is called a predictor.

2.1 Univariate linear regression

In univariate linear regression, the inputs are one-dimensional (real numbers) x. The goal is to
fit a straight line, i.e., to learn the coefficients w0 and w1 of a univariate linear function:

y = w1x+ w0 (10)

The coefficients w0 and w1 can be seen as weights: the value of y is changed by changing the
relative weight of one term or another.

Denoting the vector of weights by w = [w0 w1]
>, the predictor is

hw(x) = w1x+ w0 (11)

and the task is to find w such that hw(x) fits best the training data.

Typically, squared error loss function L2 is used, which is then called least squares linear
regression. An example is shown in Fig. 5.

8

A historical note: Carl Friedrich Gauss showed that when the noise in the outputs y is normally
distributed, the most likely values of the weights are obtained using the L2 loss, i.e., minimizing
the sum of the squared errors [1]. It is believed that Gauss used this method in 1801 to model
the orbit of Ceres (a dwarf planet) and to predict its location. The Ceres dataset consisted of
19 observations of the Ceres’s locations, acquired over 42 days, where each data point consisted
of a time stamp and the location on the sky. Ceres was located within 1/2 degree of Gauss’s
prediction, which was a far better prediction than made by other astronomers at the time.
The least squares method was published by the French mathematician Adrien-Marie Legendre
in 1805, and is attributed to Legendre but usually also co-credited to Gauss.

The training loss for the linear regression is thus commonly defined with the L2 loss function.
If the training set consists of N examples: Dtrain = {(x(i), y(i)); i = 1, . . . N}, the training loss is

TrainLoss(w) =
N∑
i=1

(y(i) − (w1x
(i) + w0))

2 (12)

We find the weights w0 and w1 by setting to zero the corresponding partial derivatives of the
training loss, i.e.,

∂

∂w0

N∑
i=1

(y(i) − (w1x
(i) + w0))

2 = 0;
∂

∂w1

N∑
i=1

(y(i) − (w1x
(i) + w0))

2 = 0 (13)

This yields:

w1 =
N
∑

i x
(i)y(i) −

∑
i x

(i)
∑

i y
(i)

N
∑

i (x
(i))

2 −
(∑

i x
(i)
)2 ; w0 =

(∑
i

y(i) − w1

∑
i

x(i)
)
/N (14)

Although in this case we have a closed form solution, we will need a more general method for
determining the weights that does not rely on solving to find the zeroes of the derivatives of the
entire training loss. This will be needed for various reasons, e.g., when using other than L2 loss
functions and/or when the training examples arrive sequentially.

One such method that can be applied to any loss function – no matter how complex it is – is
the gradient descent. It searches through a continuous weight space by incrementally modifying
the parameters. Fig. 6 gives the pseodo-code and illustrates its operation. The parameter α,
which is called the step size is usually called the learning rate when we are trying to minimize
a loss in a learning problem. It can be a fixed constant, or chosen to decay as the learning process
proceeds [5]. For linear regression with the L2 loss function, the training loss is always convex
and thus gradient descent will find the optimal solution.

Let us now derive the learning rule for the linear regression with the common L2 loss. We start
from a simplified case with one training example (x, y):

∂

∂wj
TrainLoss(w) =

∂

∂wj
(y − hw(x))2 (15)

Applying to both w0 and w1, we get

∂

∂w0

TrainLoss(w) = −2(y − hw(x));
∂

∂w1

TrainLoss(w) = −2(y − hw(x))x; (16)

9

Figure 6: Left: Pseudo-code of the gradient descent algorithm. Right: An illustration of its
operation (image from [1]).

Plugging this into the update rule of the gradient descent and folding the constant 2 into the
unspecified learning rate1 α, we obtain

w0 ← w0 + α(y − hw(x)); w1 ← w1 + α(y − hw(x))x; (17)

These learning rules are intuitive: if hw(x) = y, the prediction is correct so don’t change anything
(keep the weights as they are). If hw(x) > y, i.e., the output of the hypothesis is too large, reduce
w0 a bit and reduce w1 if x is positive but increase w1 if x was negative. The opposite holds
when hw(x) < y. While these updates were obtained for one training example, we can simply
extend them to the case with N training examples. What changes is that in Eq (15) we will have
the partial derivative of the sum

∑
i(y

(i) − hw(x(i)))2 instead of the partial derivative of a single
element (y − hw(x))2. Since the derivative of a sum is the sum of the derivatives, the expressions
in Eq (17) generalize straightforwardly to

w0 ← w0 + α
N∑
i=1

(y(i) − hw(x(i))); w1 ← w1 + α
N∑
i=1

(y(i) − hw(x(i)))x(i); (18)

Note that here we are summing over all the N training examples in each step. This is the so-
called batch gradient descent learning rule for univariate linear regression. Since the loss
function is convex, convergence to the optimum is guaranteed unless the learning rate is chosen
too large so that it “overshoots” (see the following notes). A faster variant, called stochastic
gradient descent makes in each step updates based on one randomly selected sample, according
to Eq (17). Most commonly, the updates are made on a minibatch of m out of total N examples,
and the resulting learning rule is known as the minibatch gradient descent. We return to these
optimization aspects in the following notes.

2.2 Multivariate linear regression

In multivariate linear regression the input is a vector x = [x1, . . . , xn]>. Some authors use
the terms multivariate, multivariable and multiple linear regression interchangeably. In some
cases, a differentiation is made in the sense that the term multivariate denotes a more general case
where the output is also a vector (this is the terminology, e.g., in [5]). We will here consider that
the output is always a single number y.

1Note that we could have written this update rule with some learning rate α′ = 2α but since the learning rate is
not specified, we simply denote the new constant with some generic α, and we could have chosen any other symbol.

10

Figure 7: An illustration of the multivariate linear regression taken from [3].

We generalize the univariate linear regression to the case where each input x is a vector as:

hw(x) = w0 + w1x1 + · · ·+ wnxn = w0 +
∑
j

wjxj (19)

In order to treat the intercept term w0 in the same way as the others, we introduce a dummy input
attribute x0 , which is always 1. Then we can write compactly

hw(x) = w · x = w>x =
∑
j

wjxj (20)

The inner product w · x is in the machine learning literature often called the score.

The optimal weights can be obtained analytically, using the tools of linear algebra and vector
calculus. Let X be the data matrix defined as the matrix of inputs, where each raw is one
n-dimensional input example: X(:, i) = (x(i))> = [x

(i)
1 , . . . , x

(i)
n]. One can show that

w∗ = arg min
w

∑
i

L2(y
(i),w · x(i)) = arg min

w
‖y −Xw‖22 = (X>X)−1X>︸ ︷︷ ︸

pseudoinverse

y (21)

So, we can obtain an analytical solution for the optimal (in the mean squared error sense)
weights as the pseudoinverse (X>X)−1X> of the data matrix X. In practice, it may be difficult
to calculate the pseudoinverse of a large data matrix.

Instead, we can employ the gradient descent, which updates the weights as

wj ← wj + α
∑
i

(y(i) − hw(x(i)))x
(i)
j (22)

Gradient descent reaches the unique minimum because the training loss remains convex also for
multivariate regression with the squared loss function.

11

2.3 Regularization

With multivariable linear functions it is common to use some form of regularization to avoid
overfitting. This is because in high-dimensional spaces the data are more sparse and the chance
is bigger that some dimensions that are in fact irrelevant are given more importance only because
by chance they appeared to be useful.

In Eq (8), we defined a total cost by adding explicitly a regularization term to the optimization
problem. For linear regression, we commonly specify the complexity of the hypthesis in terms of
its weights, and particularly we consider the so-called `p family2 of regularization functions:

Complexity(hw) = `p(w) =
∑
j

|wj|p (23)

Here, `p(w) = ‖w‖pp, where ‖w‖p is the Lp-norm:

‖w‖p =
(∑

j

wpj

)1/p
(24)

With the squared error loss and `p-regularization, the total cost, being now the training loss, is

TrainLoss(w) = Cost(hw) = ‖y −Xw‖22 + λ`p(w) (25)

where λ > 0 is a regularization parameter. The optimal parameters follow as before from the
minimization of the resulting loss:

w∗ = arg min
w
‖y −Xw‖22 + λ`p(w) (26)

Two special cases are of particular interest: p = 2 and p = 1. For p = 2, the resulting optimization
problem is known as the Ridge regression or Tikhonov regularization:

w∗ = arg min
w
‖y −Xw‖22 + λ‖w‖22 = arg min

w

N∑
i=1

(
y(i) − hw(x(i))

)2
+ λ

∑
j

w2
j (27)

For p = 1, the problem is known as the Least Absolute Shrinkage and Selection Operator
(LASSO) regression:

w∗ = arg min
w
‖y −Xw‖22 + λ‖w‖1 = arg min

w

N∑
i=1

(
y(i) − hw(x(i))

)2
+ λ

∑
j

|wj| (28)

LASSO regression promotes sparse solutions. Fig. 8 explains this pictorially and illustrates the
effect of both of these two regularization strategies. Note that we are minimizing the sum of
two terms Loss(w) + λComplexity(w), which is equivalent to minimizing Loss(w) subject to the
constraint that Complexity(w) ≤ c, for some constant c that is related to λ [5]. The shaded regions

2In some cases, which are beyond the scope of this course, `p,q -regularization is used. For example, to impose
‘structured sparsity’, the coefficients w are structured into r groups w = [w>

G1
, . . . ,w>

Gr
]> and different types of

behaviour are promoted within and across the groups, which is expressed by adding an `p,q-regularization term
‖w‖qp,q, where ‖w‖p,q = (

∑r
i ‖wGi‖qp)1/q and Gi is the index set of the i-th group of coefficients. Particularly, `2,1

regularization is popular in group sparse optimization. For more details, see [2].

12

Figure 8: An illustration of the effects of `1 (left) and `2 (right) regularization. The concentric
ovals are the contours of the loss function without regularization (minimum in the middle) and
the shaded areas are the constraints for the corresponding regularization – the solution has to be
within the shaded area. Observe that for `1 the solution will likely be on an axis (meaning other
coefficients zero → sparse solution). Illustration from [5].

in the figure (a diamond-shape for `1 and a circle for `2) represent the set of points that satisfy
the constraint. For both LASSO and ridge regression Loss(w) is squared-error loss, represented in
the figure with concentric contours, with the minimum (smallest achievable loss) being the point
in the middle. The optimal solution is where the shaded area touches the loss contour closest to
the minimum. We can see that with `1 this will likely be along some of the axes, simply because
the constraint area is pointy. It means that at least some of the components of this solution w∗

will be zero, hence, the solution will be a sparse vector.

Why do we want to impose a sparsity constraint? Firstly, sparsity allows us to model naturally
phenomena that are often appearing in real-world signals and images. Secondly, it also brings
various practical (modelling and computational) advantages, as we will explain in the following.

In natural signals, sparsity refers to the phenomenon where only a small number of components
or features in the signal are significant or carry essential information, while the majority are
negligible or redundant. For example, in neuroscience, brain signals recorded from electrodes
often exhibit sparsity because only certain neural events or activities are relevant to a particular
cognitive process or behavior. In audio signals, such as speech or music, sparsity occurs because
most sounds can be represented using a relatively small number of frequency components.

Incorporating a sparsity constraint in a computational model allows for more efficient repre-
sentation and processing of the signals by focusing computational resources on the most relevant
components while ignoring or compressing the redundant ones. When dealing with hight dimen-
sional signal, sparsity provides also a way of mitigating the curse of dimensionality3

3The term curse of dimensionality refers to various challenges and phenomena that arise when working with
high-dimensional data spaces. As the number of dimensions increases, the amount of data required to effectively
cover the space increases exponentially. This leads to various issues, including an increased risk of overfitting, the
need to gather and label large amounts of data, which can be costly and time-consuming, and processing of such
data requires often huge (or even prohibitive) computation complexity.

13

Additional insight (optional reading): Imposing sparse constraints in optimization and machine
learning can be highly beneficial for several reasons:

• Interpretability: Sparse models are often more interpretable because they focus on a
small subset of features that are deemed most relevant for the task at hand. For example,
in LASSO regression, the non-zero coefficients indicate which features are most predictive
of the outcome.

• Dimensionality Reduction: Sparsity helps in reducing the dimensionality of the prob-
lem by selecting only a subset of the available features. This can mitigate the curse of
dimensionality, making the models more tractable and less prone to overfitting, especially
in high-dimensional spaces.

• Improved Generalization: By focusing on the most informative features, sparse mod-
els often generalize better to unseen data. They are less likely to overfit to noise or
irrelevant features present in the training data, leading to better performance on test or
validation sets.

• Robustness to Noise: Sparse regularization can enhance the robustness of models
by filtering out noisy or irrelevant features. This can help in improving the model’s
performance in the presence of noisy data or outliers.

• Memory Efficiency: Sparse representations require less memory storage compared to
dense representations, especially when dealing with large datasets. This makes sparse
models more scalable and feasible for deployment in resource-constrained environments.

• Feature Selection: Sparse regularization techniques naturally perform feature selection
by encouraging many feature weights to be exactly zero. This automatic feature selec-
tion mechanism simplifies the model and can eliminate irrelevant or redundant features,
leading to simpler and more efficient models.

We have seen various advantages of sparse optimization. Tikhonov regularization shares some
of these (it also mitigate overfitting and improves generalization) and has its distinctive advantages
as well, especially in terms of stability, ease of implementation and computational efficiency (see
the additional insight parts for more details).

14

Additional insight (optional reading): Imposing Tikhonov (`2) regularization in optimization
and machine learning has the following advantages:

• Interpretability: Tikhonov regularization has a well-understood theoretical founda-
tion, especially in the context of linear regression. The solution obtained often has a
closed-form expression, allowing for easier interpretation of model parameters and their
significance.

• Improved Generalization: Tikhonov regularization helps prevent overfitting by penal-
izing large parameter values. The regularization term encourages the model to capture
the underlying structure of the data rather than fitting the noise present in the training
set. By controlling overfitting, it enables improved generalization performance.

• Less Susceptible to Small Variations: Tikhonov regularization tends to be less
sensitive to small variations in the input data compared to LASSO. This is because the
penalty term in Tikhonov regularization is proportional to the square of the parameter
values, which provides more stability against Gaussian noise.

• Continuous Solution: Tikhonov regularization typically results in a solution with non-
zero values for all parameters, albeit some may be very small. This continuous shrinkage
of parameter values can be advantageous when the problem domain requires a smooth
and continuous solution.

• Handles Multicollinearity Better: Tikhonov regularization performs well in the pres-
ence of multicollinearity, where predictor variables are highly correlated. It tends to dis-
tribute the penalty evenly among correlated variables, whereas LASSO may arbitrarily
select one of them and shrink the others to zero.

• Simple Implementation: Tikhonov regularization is easy to implement and can be
incorporated into various machine learning algorithms using standard techniques such as
gradient descent or closed-form solutions. The additional computational cost is usually
minimal compared to the benefits gained in terms of performance and stability.

• Efficient Computation: The optimization problem associated with Tikhonov regu-
larization often has a closed-form solution or can be solved efficiently using standard
optimization techniques. This makes Tikhonov regularization computationally less de-
manding compared to LASSO, especially for large-scale problems.

The choice between Tikhonov regularization and LASSO depends on the specific characteristics
of the dataset and the goals of the modeling task. LASSO may be preferred when feature selection
or sparsity of the solution is desired, while Tikhonov regularization may be more suitable for
problems where a continuous solution with less sensitivity to noise is required. Techniques such as
Elastic net regularization combine the strengths of both Tikhonov regularization and LASSO,
offering a more flexible regularization approach.

15

Figure 9: Left: A linearly separable dataset consisting of two classes and a linear decision boundary.
x1 and x2 are two seismic parameters measured for earthquakes (orange circles) and explosions
(green dots). Right: The same domain with more data, no longer linearly separable. This situation
is common in real world. The image is taken from [5].

3 Linear Classification

Now we turn to the linear classification framework. As before, we are given training data,
which consists of a set of examples (x, y), but y’s are now some discrete class labels. We will focus
first on the binary classification problem in which y can take only two values, 0 and 1. An
example of this problem is shown in Fig. 9, where the input x consists of two components x1 and
x2. The task of classification is to learn a model h that we call a classifier and that will for a
new input x return the class label 0 or 1. A line (or surface, in higher dimensions) that separates
the two classes is called a decision boundary. A linear decision boundary is called a linear
separator and a dataset that can be ideally separated by at least one linear decision boundary is
linearly separable.

3.1 Linear classification with a hard threshold

Consider the linearly separable case in Fig. 9 on the left. The depicted linear separator is:

x2 = 1.7x1 − 4.9 or − 4.9 + 1.7x1 − x2 = 0 (29)

We want to classify the explosions (green dots) with value 1. For these points −4.9+1.7x1−x2 > 0,
while for earthquakes (orange circles) it holds −4.9 + 1.7x1 − x2 < 0. Introducing a dummy input
x0 = 1, we can write this compactly in vector form, with w = [−4.9, 1.7,−1]>, as w · x > 0 in one
case and w · x < 0 in the other. Thus, we can write the classification hypothesis as follows:

hw(x) =
{ 1 if w · x ≥ 0

0 otherwise
(30)

We can think of this classifier as the result of passing w · x through a threshold function:

hw(x) = Threshold(w · x), where Threshold(z) =
{ 1 z ≥ 0

0 otherwise
(31)

The question is now how to choose the weights w to minimize the loss. For linear regression, we
were able to determine the weights that minimize the squared error loss both analytically and using

16

gradient descent algorithm. Here we cannot do that because with hw(x) being a step function the
gradient of the training loss is zero almost everywhere in the weight space, except at the transition
w · x = 0 where it is not defined.

However, it can be shown that the simple update rule called the perceptron learning rule

wj ← wj + α(y − hw(x))xj (32)

converges to the perfect linear separator (provided that data are linearly separable). Observe the
following behaviour of this update:

• If the output is correct, i.e., y = hw(x), the weights are not changed

• If y = 1 but hw(x) = 0, then wj is increased when xj is positive and is decreased when xj is
negative. This is because we want to make w · x bigger so that hw(x) outputs 1

• If y = 0 but hw(x) = 1, then wj is decreased when xj is positive and is increased when xj is
negative. This way we make w · x smaller so that hw(x) outputs 0

3.2 Soft classification with a logistic function

The hard nature of the classification threshold causes some problems. The fact that the hy-
pothesis hw(x) is not differentiable and is a discontinuous function of its inputs and its weights,
makes learning with the perception rule very unpredictable [5]. Furthermore, the linear classifier
always announces a “completely confident” prediction 0 or 1, while we often need more graduated
predictions. These problems are alleviated by softening the threshold function: approximating a
hard threshold with a continuous, differentiable function.

A widely used soft-threshold function is the logistic function, also called sigmoid function:

Logistic(z) =
1

1 + e−z
(33)

Replacing the hard threshold with the logistic function, the classification hypothesis becomes

hw(x) = Logistic(w · x) =
1

1 + e−w·x
(34)

Logistic regression is the process of fitting the weights of this model to minimize loss on a data
set [5]. Here we will show how the update rule is derived for the logistic regression under the L2

loss. In the next note, we will address in more detail logistic regression, focusing on maximum
likelihood estimation.

3.3 Least-square error logistic regression

We first derive the update rule for the logistic regression under L2 loss. Let g denote the logistic
function and g′ its derivative. As we did for linear regression, we will use the chain rule for the
derivatives: ∂g(f(x))/∂x = g′(f(x))(∂f(x)/∂x)

We start again from a simplified case with one training example (x, y). The derivation is similar
as for the linear regression but now hw(x) = g(w · x), so we have:

17

∂

∂wj
TrainLoss(w) =

∂

∂wj
(y − hw(x))2

= 2(y − hw(x))
∂

∂wj
(y − hw(x))

= −2(y − hw(x))g′(w · x)
∂

∂wj
(w · x)

= −2(y − hw(x))g′(w · x)xj

The derivative of the logistic function satisfies g′(z) = g(z)(1− g(z)), so we have

g′(w · x) = g(w · x)(1− g(w · x)) = hw(x)(1− hw(x)) (35)

and the weight update for minimizing the loss is

wj ← wj + α(y − hw(x))hw(x)(1− hw(x))xj (36)

Note that this rule was derived for one training example (or for the stochastic gradient descent).
You should know how to generalize it to the update rule based on N examples!

References

[1] M. Charikar and S. Koyejo. (CS221): Artificial intelligence: Principles and techniques. Stanford.

[2] Y. Hu, C. Li, Meng K., J. Qin, and X. Yang. Group sparse optimization via `p,q regularization.
Journal of Machine Learning Research, 18, 2017.

[3] N. Narasimhan. Multiple linear regression-an intuitive approach. Medium, 2020.

[4] T Poggio and S. Smale. The mathematics of learning: Dealing with data. Notices of the AMS,
50(5):537–544, 2003.

[5] S Russel and Norvig. P. Artificial Intelligence: A Modern Approach, 4th Edition. Pearson, 2021.

18

	Theory of learning
	Model selection and optimization
	Parametric models
	Training, validation and test sets
	Loss function
	Training loss

	Linear regression
	Univariate linear regression
	Multivariate linear regression
	Regularization

	Linear Classification
	Linear classification with a hard threshold
	Soft classification with a logistic function
	Least-square error logistic regression

