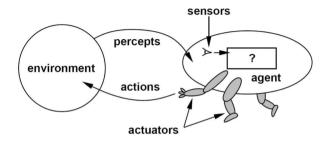


E016350 - Artificial Intelligence Lecture 13 Part 1

Problem-solving agents Intelligent agents

Aleksandra Pizurica

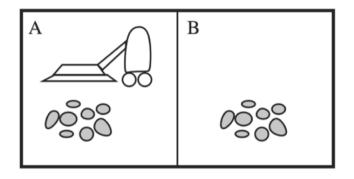

Ghent University Fall 2024

Overview

- Agents and environments
- Agent types
 - [R&N], Chapter 2

This presentation is based on: S. Russel and P. Norvig: *Artificial Intelligence: A Modern Approach*, (Fourth Ed.), denoted as [R&N] and the resource page http://aima.cs.berkeley.edu/

Intelligent agents


Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

 $f: \mathcal{P}^* \to \mathcal{A}$

The agent program runs on a physical architecture to produce f.

Example: Vacuum cleaner world

Percepts: location and contents, e.g., [A, Dirty] Actions: Left, Right, Suck, NoOp

Example: Vacuum cleaner world

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
i	i

function REFLEX-VACUUM-AGENT([location, status]) returns an action

if status = Dirty **then return** Suck **else if** location = A **then return** Right **else if** location = B **then return** Left

What is the **right** function? Can it be implemented in a small program?

Rationality

Fixed performance measure evaluates the environment sequence

- one point per square cleaned up in time T?
- one point per clean square per time step, minus one per move?
- penalize for > k dirty squares?

Definition (Rational action)

Rational action is the action that maximizes the expected value of the performance measure given the percept sequence to date.

- Rational \neq omniscient percepts may not supply all relevant information
- Rational \neq clairvoyant action outcomes may not be as expected
- Hence, rational \neq successful

$\mathsf{Rational} \Rightarrow \textbf{exploration}, \, \textbf{learning}, \, \textbf{autonomy}$

Consider, e.g., the task of designing an automated taxi:

Performance measure??

To design a rational agent, we must specify the **task environment**. Consider, e.g., the task of designing an automated taxi: <u>Performance measure</u>?? safety, destination, profits, legality, comfort, . . .

Consider, e.g., the task of designing an automated taxi:

<u>Performance measure</u>?? safety, destination, profits, legality, comfort, . . . <u>Environment</u>??

Consider, e.g., the task of designing an automated taxi:

<u>Performance measure</u>?? safety, destination, profits, legality, comfort, . . . <u>Environment</u>?? Belgian streets, traffic, pedestrians, weather, . . .

Consider, e.g., the task of designing an automated taxi:

<u>Performance measure</u>?? safety, destination, profits, legality, comfort, . . . <u>Environment</u>?? Belgian streets, traffic, pedestrians, weather, . . . <u>Actuators</u>??

Consider, e.g., the task of designing an automated taxi:

<u>Performance measure</u>?? safety, destination, profits, legality, comfort, . . . <u>Environment</u>?? Belgian streets, traffic, pedestrians, weather, . . . <u>Actuators</u>?? steering, accelerator, brake, horn, speaker/display, . . . <u>Sensors</u>??

Consider, e.g., the task of designing an automated taxi:

Performance measure?? safety, destination, profits, legality, comfort, . . . Environment?? Belgian streets, traffic, pedestrians, weather, . . . Actuators?? steering, accelerator, brake, horn, speaker/display, Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS, . . . To design a rational agent, we must specify the **task environment**. Consider, e.g., the task of designing an internet shopping:

Performance measure??

To design a rational agent, we must specify the **task environment**. Consider, e.g., the task of designing an internet shopping: <u>Performance measure</u>?? price, quality, appropriateness, efficiency . . . To design a rational agent, we must specify the **task environment**. Consider, e.g., the task of designing an internet shopping: <u>Performance measure</u>?? price, quality, appropriateness, efficiency . . . Environment??

Consider, e.g., the task of designing an internet shopping:

<u>Performance measure</u>?? price, quality, appropriateness, efficiency . . . <u>Environment</u>?? current and future WWW sites, vendors, shippers . . .

Consider, e.g., the task of designing an internet shopping:

<u>Performance measure</u>?? price, quality, appropriateness, efficiency . . . <u>Environment</u>?? current and future WWW sites, vendors, shippers . . . <u>Actuators</u>??

Consider, e.g., the task of designing an internet shopping:

Performance measure?? price, quality, appropriateness, efficiency . . . Environment?? current and future WWW sites, vendors, shippers . . . Actuators?? display to user, follow URL, fill in form . . . Sensors??

Consider, e.g., the task of designing an internet shopping:

<u>Performance measure</u>?? price, quality, appropriateness, efficiency . . . <u>Environment</u>?? current and future WWW sites, vendors, shippers . . . <u>Actuators</u>?? display to user, follow URL, fill in form . . . <u>Sensors</u>?? HTML pages (text, graphics, scripts) . . .

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi	
Observable??	Yes	Yes	No	No	
Deterministic??	Yes	No	Partly	No	
Episodic??					
Static??					
Discrete??					
Single-agent??					

	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??				
Discrete??				
Single-agent??				

	Solitaire	Backgammon	Internet shopping	Taxi	
Observable??	Yes	Yes	No	No	
Deterministic??	Yes	No	Partly	No	
Episodic??	No	No	No	No	
Static??	Yes	Semi	Semi	No	
Discrete??					
Single-agent??					

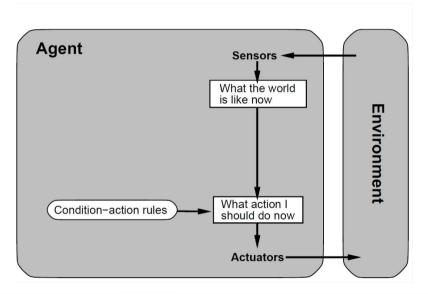
	Solitaire	Backgammon	Internet shopping	Taxi	
Observable??	Yes	Yes	No	No	
Deterministic??	Yes	No	Partly	No	
Episodic??	No	No	No	No	
Static??	Yes	Semi	Semi	No	
Discrete??	Yes	Yes	Yes	No	
Single-agent??					

a Rand - Doubled, http: Dis. 108. 3 Audio 12 -

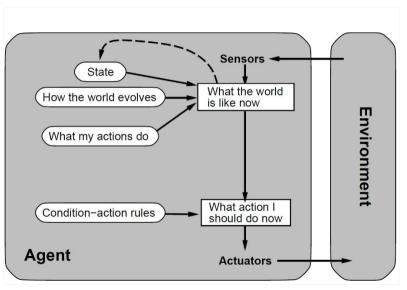
-

The little | Audio Cl

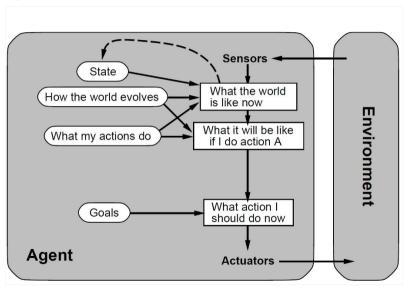
	Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

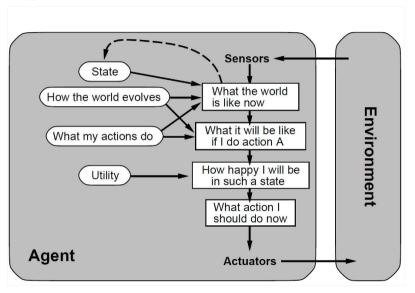


Four basic types in order of increasing generality:


- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

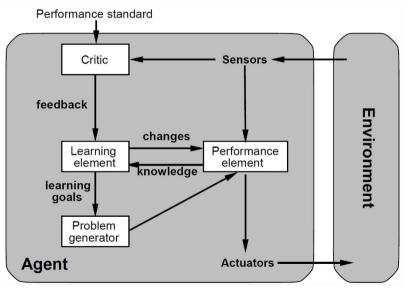
All these can be turned into learning agents


Simple reflex agents


Reflex agents with state

Goal-based agents

Utility-based agents


Advantages of utility-based agents

Can act rationally in two important cases where the others fail:

- Having conflicting goals
- Having several goals, none of which can be achieved with certainty

In reality, partial observability - maximizing the expected utility

Learning agents

Summary

- An agent is an entity that perceives and acts in an environment
- The agent function specifies the action taken in response to any percept sequence
- The performance measure evaluates the environment sequence
- A rational agent maximizes expected performance
- The agent program implements the agent function (designs vary in efficiency)
- In designing an agent a first step must be to specify the task environment: Performance measure, Environment, Actuators and Sensors (PEAS)
- Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?
- Basic agent types: reflex, reflex with state, goal-based, utility-based