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This presentation is based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern

Approach, (Fourth Ed.), denoted as [R&N] and the resource page http://aima.cs.berkeley.edu/
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Problem types

Deterministic, fully observable (topic of this lecture)
Agent knows exactly which state it will be in; solution is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable =⇒ contingency problem
percepts provide new information about current state
solution is a contingent plan or a policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)
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Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:

states: various cities

actions: drive between cities

Find solution:
sequence of cities,
e.g., Arad, Sibiu, Fagaras, Bucharest

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Search strategies 4 / 107



Example: Romania
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Problem-solving agents
Restricted form of general agent:

Note: this is offline problem solving; In an online problem solving the agent doesn’t
know what the state space is, and has to build a model of it as it acts.
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Problem formulation

A search problem is formally defined by:

state space – a set of possible states
and initial state e.g., Arad

actions available to the agent
e.g., Actions(Arad) = [ToSibiu, ToT imisoara, ToZerind]

and transition model, i.e., successor function
describes what each action does
e.g., Result(Arad, ToZerind) = Zerind

goal test, can be
explicit, e.g., x = Bucharest
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x, a, y) is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state
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Problem formulation

state space – a set of possible states
and initial state e.g., particular configuration

actions available to the agent
e.g., N,W,E, S

and transition model, i.e., successor function
describes what each action does
e.g., the resulting configuration

goal test, can be
Sometimes can be satisfied by multiple states,
e.g., “Eat all the dots”

path cost (additive)
e.g., sum of distances, number of actions
c(x, a, y) is the step cost, assumed to be ≥ 0

N

E

1.0

A solution is a sequence of actions leading from the initial state to a goal state
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Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving
(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

e.g., “Arad → Zerind” represents a complex set
of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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Example: vacuum world state space graph
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states?? integer dirt and robot locations (ignore dirt amounts etc.)
actions?? Left, Right, Suck, NoOp
goal test?? no dirt
path cost?? 1 per action (0 for NoOp)
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Example: The 8-puzzle

2

Start State Goal State

51 3

4 6

7 8

5

1

2

3

4

6

7

8

5

states??

integer locations of tiles (ignore intermediate positions)
actions?? move blank left, right, up, down (ignore unjamming etc.)
goal test?? = goal state (given)
path cost?? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: other toy problems

Left: the n-queens problem; Right: the Knuth sequence
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Example: robotic assembly

R

RR
P

R R

states??: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!
path cost??: time to execute
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Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree

includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action
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State-space graphs and search trees

Illustration credit: D. Klein and P. Abbeel: Intro to AI, http://ai.berkeley.edu

All possible action sequences starting at the initial state form a search tree

The branches are actions

The nodes correspond to the states in the state space of the problem.

A node with no children is a leaf node

The set of nodes available for expansion at a given moment is the frontier (fringe)
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Tree search example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad
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Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara
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Tree search example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara
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General tree search

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states

(a.k.a. expanding states)
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General tree search: implementation
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Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness – does it always find a solution if one exists?
time complexity – number of nodes generated/expanded
space complexity – maximum number of nodes in memory
optimality – does it always find a least-cost solution?

Time and space complexity are measured in terms of
b – maximum branching factor of the search tree
d – depth of the least-cost solution
m – maximum depth of the state space (may be ∞)
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Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
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Breadth-first search (BFS)

Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., new successors go at end

A

B C

D E F G
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Properties of breadth-first search

Complete??

Yes (if b is finite)

Time?? 1 + b+ b2 + b3 + . . .+ bd = O(bd), i.e., exp. in d
Space?? O(bd) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Space complexity is the big problem!

Note: the goal test is applied when the nodes are generated.
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Example: time and memory requirements for breadth-first search

The numbers in the table correspond to:
branching factor b = 10; 1 million nodes/second; 1000 bytes/node.
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Uniform-cost search

Expand least-cost unexpanded node
Implementation:

fringe = queue ordered by path cost, lowest first
Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost ≥ ε
Time?? # of nodes with g ≤ cost of optimal solution, O(bdC

∗/εe)
where C∗ is the cost of the optimal solution

Space?? # of nodes with g ≤ cost of optimal solution, O(bdC
∗/εe)

Optimal?? Yes—nodes expanded in increasing order of g(n)
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Uniform-cost search

Expand least-cost unexpanded node
Optimal in general (when costs per step can differ)

Next to queue-ordering by path cost, two important
differences wrt. BFS:

The goal test is applied when the node is
selected for expansion

Before accepting a better candidate path, the
frontier nodes are tested

The complexity can be much greater than O(bd), but not easily characterized in terms
of b and d (depends on the cost of the optimal solution C∗)
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Uniform-cost search: example

Illustration credit: D. Klein and P. Abbeel: Intro to AI, http://ai.berkeley.edu
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Depth-first search (DFS)

Expand deepest unexpanded node
Implementation:

fringe = LIFO queue, i.e., put successors at front
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Properties of depth-first search

Complete??

No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? O(bm): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear space!
Optimal?? No

Example: b = 10, 1000 bytes/node, d = 16 and assume that nodes at the same depth
as the goal node have no successors.
→ Depth-first search requires 160 kilobytes instead of 10 exabytes with BFS!

Depth-first tree search has thus become the basic “workhorse” of many areas of AI
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Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors
Recursive implementation:
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Iterative deepening search (IDS) l = 0

Limit = 0 A A
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Iterative deepening search l = 1

Limit = 1 A
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Iterative deepening search l = 2
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Iterative deepening search l = 3

Limit = 3
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Properties of iterative deepening search

Complete??

Yes

Time?? (d)b1 + (d− 1)b2 + . . .+ (1)bd = O(bd)
Space?? O(bd)
Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison of the worst-case IDS (solution at far right leaf) and BFS for
b = 10 and d = 5:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110

In general, iterative deepening is the preferred uninformed search method when the
search space is large and the depth of the solution is not known
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Summary of algorithms

1 complete if b is finite, and the state space either has a solution or is finite.
2 complete if all action costs are ≥ ε ≥ 0.
3 cost-optimal if action costs are all identical.
4 if both directions are breadth-first or uniform-cost
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Repeated states

How big is the search tree for this problem (from the start state S)?

Illustration credit: D. Klein and P. Abbeel: Intro to AI, http://ai.berkeley.edu
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Problems with tree search in general

Illustration credit: D. Klein and P. Abbeel: Intro to AI,
http://ai.berkeley.edu

Can get stuck searching the same cycle in
the state space graph forever

Even without loops, we can visit the same
node multiple times
(multiple ways to reach it)

exponentially more work!

Solution? Keep track of states that you’ve visited (maintain a closed set)

This is the idea of graph search
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Graph search

Avoids repeated states by keeping a closed set (of already visited nodes)
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Outline

1 Problem-solving agents

2 Examples of search problems

3 Uninformed search strategies

4 Informed search strategies

5 Local search
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Informed search strategies

Idea: use an evaluation function
to estimate desirability of each node

⇒ Expand most desirable unexpanded node

Implementation:

– Fringe is a queue sorted in decreasing
order of desirability

Strategies:

Greedy best-first search

A∗ search
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Search Heuristics

Heuristics are functions that

estimate how close a state is to a goal

are designed for a particular search problem

Examples: Euclidean distance, Manhattan distance
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Search Heuristics
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Greedy best-first search

Evaluation function h(n) (heuristic) = estimate of cost from n to the closest goal

E.g., hSLD(n) = straight-line distance from n to Bucharest

Greedy search expands the node that appears to be closest to goal.
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Greedy search example
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Greedy search example
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Properties of greedy search

Complete?? – No, can get stuck in loops
Complete in finite spaces with repeated state checking

Time?? – O(bm), but a good heuristic can give dramatic improvement
Space?? – O(bm) – keeps all nodes in memory
Optimal?? – No
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A∗ search

Idea: avoid expanding paths that are already expensive
Evaluation function f(n) = g(n) + h(n)

g(n) = cost so far to reach n

h(n) = estimated cost to goal from n

f(n) = estimated total cost of path through n to goal

A∗ search uses an admissible heuristic
i.e. h(n) ≤ h∗(n) where h∗(n) is the true cost from n
(Also require h(n) ≥ 0, so h(G) = 0 for any goal G)

E.g. hSLD(n) never overestimates the actual road distance

Theorem: A∗ search is optimal

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Search strategies 79 / 107



A∗ search example
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A∗ search example
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A∗ search example
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Optimality of A∗
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Optimality of A∗

Complete?? Yes, unless there are infinitely many nodes with f ≤ f(G)
Time?? Exponential in [ relative error in h× length of soln.]
Space?? Keeps all nodes in memory
Optimal?? Yes – cannot expand fi+1 until fi+1 is finished

Let C∗ be the optimal path cost. Then

A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n > C∗
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A∗ expands all nodes with f(n) < C∗

A∗ expands some nodes with f(n) = C∗

A∗ expands no nodes with f(n > C∗
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Choosing a good heuristic function

Consider these three questions:

1 Which conditions h needs to satisfy to guarantee completeness and optimality of
A∗ under tree search?

2 Are these the same in the case of graph search?

3 If multiple h guarantee the optimality, how to choose?
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Admissibility

Admissibility of h guarantees completeness and optimality of A∗ under tree search

Pessimistic h may trap good plans Admissible heuristics are optimistic!

Picture credit: D. Klein & P. Abbeel, Berkeley AI course CS188.
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Admissible heuristics: Examples

E.g., for the 8-puzzle:

h1(n) = number of misplaced tiles
h2(n) = Manhattan distance

(i.e., no. of squares from desired location of each tile)

h1(S)?? 6
h2(S)?? 4 + 0 + 3 + 3 + 1 + 0 + 2 + 1 = 14
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Conditions under graph search

Consider the example below and apply A∗ with graph search. Do you reach the goal?
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Conditions under graph search

Consider the example below and apply A∗ with graph search. Do you reach the goal?

Although h was admissible, A∗ didn’t find the optimal solution!
⇒ A stronger condition on h is required for A∗ under graph search.

h needs to be consistent
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Consistent heuristics
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How to come up with admissible heuristics?

Derive admissible heuristics from the exact solution cost of a relaxed problem

Example: take 8-puzzle and previously defined h1(n) and h2(n)
Consider two relaxed versions of the problem:

If a tile can move anywhere, then h1(n) gives the shortest solution

If a tile can move to any adjacent square, then h2(n) gives the shortest solution

Example: travelling salesperson problem (TSP)

Minimum spanning tree can be computed in O(n2)
and is a lower bound on the shortest tour
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Dominance
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Outline

1 Problem-solving agents

2 Examples of search problems

3 Uninformed search strategies

4 Informed search strategies

5 Local search
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Iterative improvement algorithms

In many optimization problems, path is irrelevant,
the goal state itself is the solution

Then the state space = set of “complete” configurations;
find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., timetable

in such cases, can use iterative improvement algorithms;
keep a single “current” state, try to improve it
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Example: Travelling Salesperson Problem
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Example: n-queens
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Example: n-queens

h: number of attacking pairs
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