

IN FACULTY OF ENGINEERING

E016350 - Artificial Intelligence Lecture 15

Reasoning under Uncertainty & Bayesian ML Temporal probability models

Aleksandra Pizurica

Ghent University Fall 2024

Overview

- Time and uncertainty
- Inference: filtering, prediction, smoothing
- Hidden Markov models
- Kalman filters (a brief mention)
- Dynamic Bayesian networks
- Particle filtering

[R&N], Chapter 14

This presentation is based on: S. Russel and P. Norvig: *Artificial Intelligence: A Modern Approach*, (Fourth Ed.), denoted as [R&N] and corresp. resources http://aima.cs.berkeley.edu/

Time and uncertainty

The world changes; we need to track and predict it

E.g., diabetes management (dynamic) vs vehicle diagnosis (static)

Basic idea: keep track of state and evidence variables at each time step

- $\mathbf{X}_t = \text{set of unobservable state variables at time } t$ e.g., $BloodSugar_t$, $StomachContents_t$, etc.
- $\mathbf{E}_t = \text{set of observable evidence variables at time } t$ e.g., $MeasuredBloodSugar_t$, $PulseRate_t$, $FoodEaten_t$

This assumes discrete time; step size depends on problem

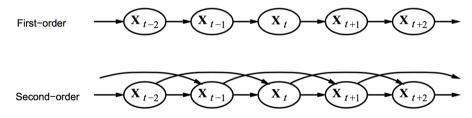
Notation: $\mathbf{X}_{a:b} = \mathbf{X}_a, \mathbf{X}_{a+1}, \dots, \mathbf{X}_{b-1}, \mathbf{X}_b$

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?

Markov assumption: X_t depends on **bounded subset** of $X_{0:t-1}$

First-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ Second-order Markov process: $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-2}, \mathbf{X}_{t-1})$



Sensor Markov assumption: $P(E_t|X_{0:t}, E_{0:t-1}) = P(E_t|X_t)$

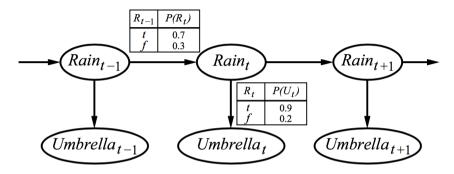
Stationary process: transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$ and sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$ fixed for all t

A. Pizurica, E016350 Artificial Intelligence (UGent)

Example: umbrella

A. Pizurica, E016350 Artificial Intelligence (UGent)

Example: umbrella



First-order Markov assumption not exactly true in real world! Possible fixes:

- 1. Increase order of Markov process
- 2. Augment state, e.g., add $Temp_t$, $Pressure_t$

Another example: robot motion. Augment position and velocity with $Battery_t$

Inference tasks

Filtering: $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ belief state – input to the decision process of a rational agent

Prediction: $\mathbf{P}(\mathbf{X}_{t+k}|\mathbf{e}_{1:t})$ for k > 0

evaluation of possible action sequences; like filtering without the evidence

Smoothing: $\mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:t})$ for $0 \le k < t$

better estimate of past states, essential for learning

Most likely explanation: $\arg \max_{\mathbf{x}_{1:t}} P(\mathbf{x}_{1:t} | \mathbf{e}_{1:t})$ speech recognition, decoding with a noisy channel

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1})$$

= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$
= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

Filtering

Aim: devise a **recursive** state estimation algorithm:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1})$$

= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$
= $\alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$

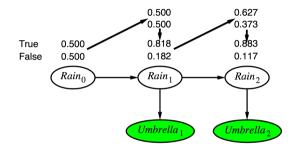
I.e., prediction + estimation. Prediction by summing out \mathbf{X}_t :

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t, \mathbf{e}_{1:t}) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$
$$= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t})$$

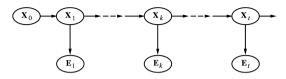
 $\begin{aligned} \mathbf{f}_{1:t+1} &= \alpha \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1}) \text{ where } \mathbf{f}_{1:t} = \mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t}) \\ \text{Time and space constant (independent of } t) \end{aligned}$

A. Pizurica, E016350 Artificial Intelligence (UGent)

Filtering example



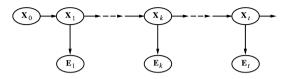
Smoothing



Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k}, \mathbf{e}_{k+1:t}) = \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k}, \mathbf{e}_{1:k})$$
$$= \alpha \mathbf{P}(\mathbf{X}_{k}|\mathbf{e}_{1:k})\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_{k})$$
$$= \alpha \mathbf{f}_{1:k}\mathbf{b}_{k+1:t}$$

Smoothing



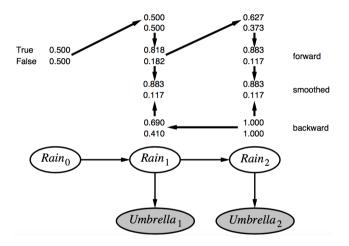
Divide evidence $\mathbf{e}_{1:t}$ into $\mathbf{e}_{1:k}$, $\mathbf{e}_{k+1:t}$:

$$\mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:t}) = \mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:k}, \mathbf{e}_{k+1:t}) = \alpha \mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t} | \mathbf{X}_k, \mathbf{e}_{1:k})$$
$$= \alpha \mathbf{P}(\mathbf{X}_k | \mathbf{e}_{1:k}) \mathbf{P}(\mathbf{e}_{k+1:t} | \mathbf{X}_k)$$
$$= \alpha \mathbf{f}_{1:k} \mathbf{b}_{k+1:t}$$

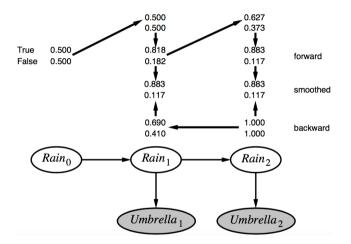
Backward message computed by a backwards recursion:

$$\mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k) = \sum_{\mathbf{x}_{k+1}} \mathbf{P}(\mathbf{e}_{k+1:t}|\mathbf{X}_k, \mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$
$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$
$$= \sum_{\mathbf{x}_{k+1}} P(\mathbf{e}_{k+1}|\mathbf{x}_{k+1}) P(\mathbf{e}_{k+2:t}|\mathbf{x}_{k+1}) \mathbf{P}(\mathbf{x}_{k+1}|\mathbf{X}_k)$$

Smoothing example



Smoothing example



Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

A. Pizurica, E016350 Artificial Intelligence (UGent)

11 / 27

Most likely explanation

Most likely sequence \neq sequence of most likely states!!!!

Most likely path to each \mathbf{x}_{t+1}

= most likely path to some \mathbf{x}_t plus one more step

$$\max_{\mathbf{x}_1...\mathbf{x}_t} \mathbf{P}(\mathbf{x}_1,...,\mathbf{x}_t,\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1})$$

= $\mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \max_{\mathbf{x}_t} \left(\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} P(\mathbf{x}_1,...,\mathbf{x}_{t-1},\mathbf{x}_t|\mathbf{e}_{1:t}) \right)$

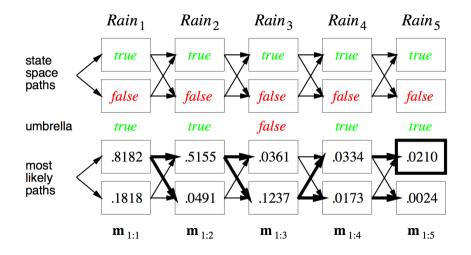
Identical to filtering, except $\mathbf{f}_{1:\mathit{t}}$ replaced by

$$\mathbf{m}_{1:t} = \max_{\mathbf{x}_1...\mathbf{x}_{t-1}} \mathbf{P}(\mathbf{x}_1,\ldots,\mathbf{x}_{t-1},\mathbf{X}_t | \mathbf{e}_{1:t}),$$

I.e., $\mathbf{m}_{1:t}(i)$ gives the probability of the most likely path to state *i*. Update has sum replaced by max, giving the Viterbi algorithm:

$$\mathbf{m}_{1:t+1} = \mathbf{P}(\mathbf{e}_{t+1} | \mathbf{X}_{t+1}) \max_{\mathbf{x}_t} (\mathbf{P}(\mathbf{X}_{t+1} | \mathbf{x}_t) \mathbf{m}_{1:t})$$

Viterbi example



13 / 2

Hidden Markov models

 \mathbf{X}_t is a single, discrete variable (usually \mathbf{E}_t is too) Domain of X_t is $\{1, \dots, S\}$

Transition matrix $\mathbf{T}_{ij} = P(X_t = j | X_{t-1} = i)$, e.g., for the umbrella world $\mathbf{T} = \begin{pmatrix} 0.7 & 0.3 \\ 0.3 & 0.7 \end{pmatrix}$

Sensor matrix O_t for each time step, diagonal elements $P(e_t|X_t = i)$ e.g., for the umbrella world with $U_1 = true$, $O_1 = \begin{pmatrix} 0.9 & 0 \\ 0 & 0.2 \end{pmatrix}$

Forward and backward messages as column vectors:

 $\mathbf{f}_{1:t+1} = \alpha \mathbf{O}_{t+1} \mathbf{T}^{\top} \mathbf{f}_{1:t}$ $\mathbf{b}_{k+1:t} = \mathbf{T} \mathbf{O}_{k+1} \mathbf{b}_{k+2:t}$

Forward-backward algorithm needs time $O(S^2t)$ and space O(St)

A. Pizurica, E016350 Artificial Intelligence (UGent)

Example: robot localization

0	0	0	0		0	0	0	0	0		0	0	0		0
		0	0		0			0		0		0			
	0	0	0		0			0	0	0	0	0			0
0	0		0	0	0		0	0	0	0		0	0	0	0

(a) Posterior distribution over robot location after $E_1 = NSW$

0	0	0	0		0	0	0	0	0		0	0	0		0
		0	0		0			0		0		0			
	0	0	0		0			0	0	0	0	0			0
0	0		0	0	0		0	0	0	0		0	0	0	0

(b) Posterior distribution over robot location after $E_1 = NSW$, $E_2 = NS$

Transition model: $P(X_{t+1} = j | X_t = i) = \mathbf{T}_{i,j} = \frac{1}{N(i)}$ if $j \in \text{NEIGHBORS}(i)$, else 0

Sensor model:

 $P(E_t = e_t | X_t = i) = \mathbf{O}_{t_{i,i}}$ $= (1 - \epsilon)^{4 - d_{it}} \epsilon^{d_{it}}$

 d_{it} is the discrepancy (the number of bits that are different between the true values for square i and the actual reading e_t); ϵ – sensor error rate

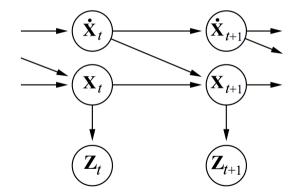
Posterior distribution $P(X_t = i | e_t)$ over robot location: (a) one observation $E_1 = NSW$; (b) after a second observation $E_2 = NS$. The size of each disk corresponds to the probability that the robot is at that location. $\epsilon = 0.2$

Kalman filters

Modelling systems described by a set of continuous variables,

e.g., tracking a bird flying— $\mathbf{X}_t = X, Y, Z, \dot{X}, \dot{Y}, \dot{Z}$.

Airplanes, robots, ecosystems, economies, chemical plants, planets,



Gaussian prior, linear Gaussian transition model and sensor model

Updating Gaussian distributions

1) If the current distribution $\mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t})$ is Gaussian, and the transition model $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t)$ is linear Gaussian, then prediction

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) = \int_{\mathbf{x}_t} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_t) P(\mathbf{x}_t|\mathbf{e}_{1:t}) \, d\mathbf{x}_t$$

is also Gaussian.

2) If the prediction $\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$ is Gaussian, and the sensor model $\mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_t)$ is linear Gaussian, then the updated distribution after conditioning on new evidence

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t})$$

is also a Gaussian distribution

Hence $\mathbf{P}(\mathbf{X}_t | \mathbf{e}_{1:t})$ is multivariate Gaussian $N(\boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t)$ for all t

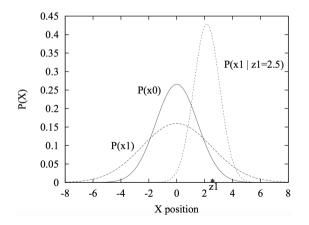
General (nonlinear, non-Gaussian) process: description of posterior grows unboundedly as $t \to \infty$

A. Pizurica, E016350 Artificial Intelligence (UGent)

Simple 1-D example

Gaussian random walk on X-axis, s.d. σ_x , sensor s.d. σ_z

$$\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)z_{t+1} + \sigma_z^2\mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2} \qquad \sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_z^2}{\sigma_t^2 + \sigma_x^2 + \sigma_z^2}$$



General Kalman update

Transition and sensor models:

$$P(\mathbf{x}_{t+1}|\mathbf{x}_t) = N(\mathbf{F}\mathbf{x}_t, \boldsymbol{\Sigma}_x)(\mathbf{x}_{t+1})$$
$$P(\mathbf{z}_t|\mathbf{x}_t) = N(\mathbf{H}\mathbf{x}_t, \boldsymbol{\Sigma}_z)(\mathbf{z}_t)$$

F is the matrix for the transition; Σ_x the transition noise covariance **H** is the matrix for the sensors; Σ_z the sensor noise covariance

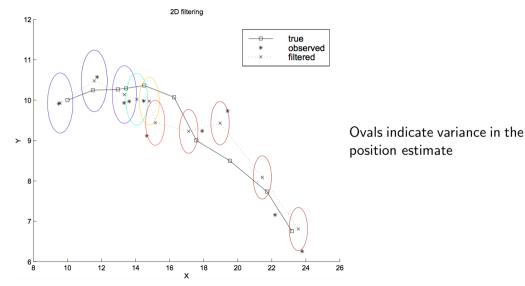
Filter computes the following update:

$$\begin{array}{lll} \boldsymbol{\mu}_{t+1} &=& \mathbf{F} \boldsymbol{\mu}_t + \mathbf{K}_{t+1} (\mathbf{z}_{t+1} - \mathbf{H} \mathbf{F} \boldsymbol{\mu}_t) \\ \boldsymbol{\Sigma}_{t+1} &=& (\mathbf{I} - \mathbf{K}_{t+1}) (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \end{array}$$

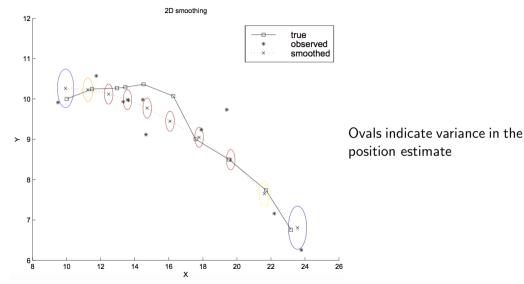
where $\mathbf{K}_{t+1} = (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top (\mathbf{H} (\mathbf{F} \boldsymbol{\Sigma}_t \mathbf{F}^\top + \boldsymbol{\Sigma}_x) \mathbf{H}^\top + \boldsymbol{\Sigma}_z)^{-1}$ is the Kalman gain matrix

 $\mathbf{\Sigma}_t$ and \mathbf{K}_t are independent of observation sequence, so compute offline

2-D tracking example: filtering

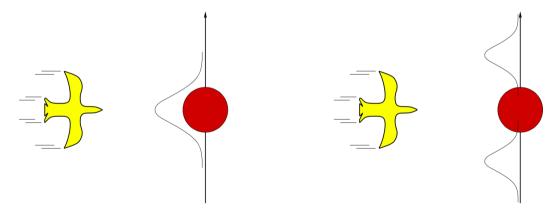


2-D tracking example: smoothing



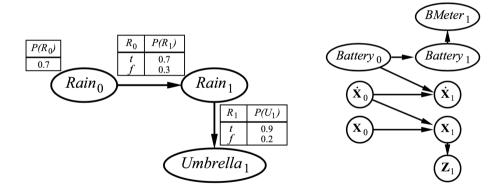
Where it breaks

Cannot be applied if the transition model is nonlinear Extended Kalman Filter models transition as locally linear around $\mathbf{x}_t = \boldsymbol{\mu}_t$ Fails if system is is locally unsmooth



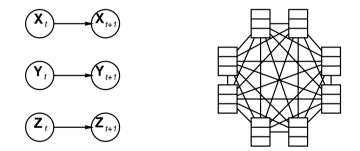
Dynamic Bayesian networks

 \mathbf{X}_t , \mathbf{E}_t contain arbitrarily many variables in a replicated Bayes net



DBNs vs. HMMs

 \mathbf{X}_t , \mathbf{E}_t contain arbitrarily many variables in a replicated Bayes net Every HMM is a single-variable DBN; every discrete DBN is an HMM

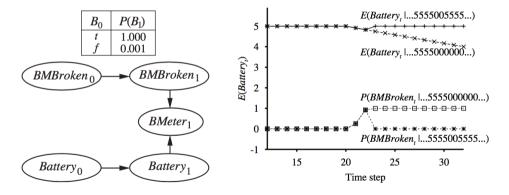


Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

24 / 27

DBNs vs. Kalman filters

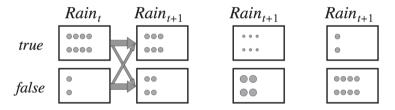
Every Kalman filter model is a DBN, but few DBNs are KFs; real world requires non-Gaussian posteriors



Particle filtering

Basic idea: ensure that the population of samples ("particles") tracks the high-likelihood regions of the state-space

Replicate particles proportional to likelihood for \mathbf{e}_t



Widely used for tracking nonlinear systems, esp. in vision

Also used for simultaneous localization and mapping in mobile robots $10^5\mbox{-}dimensional$ state space

Summary

Temporal models use state and sensor variables replicated over time

Markov assumptions and stationarity assumption, so we need

- transition model $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$
- sensor model $\mathbf{P}(\mathbf{E}_t | \mathbf{X}_t)$

Tasks are filtering, prediction, smoothing, most likely sequence; all done recursively with constant cost per time step

Hidden Markov models have a single discrete state variable; used for speech recognition

Kalman filters allow n state variables, linear Gaussian, $O(n^3)$ update

Dynamic Bayes nets subsume HMMs, Kalman filters; exact update intractable

Particle filtering is a good approximate filtering algorithm for DBNs