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Decision-theoretic agents

A decision-theoretic agent makes rational decisions based on
what it believes and what it wants.

Combines beliefs and desires under uncertainty.

While a logical agent can only make binary distinction between good and bad (i.e.,
goal and non-goal) states, a decision-theoretic agent has

a continuous measure of outcome quality.

The agent’s preferences are captured by a utility function U(s), which assigns a single
number to a state s describing how desirable that state is.
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Maximizing Expected Utility

The principle of Maximum Expected Utility (MEU): a rational agent chooses the
action that maximizes the agent’s expected utility given the evidence e:

action = argmax
a

EU(a|e)

The expected utility of an action given the evidence is the averaged utility of the
outcomes, weighted by the probability that the outcome occurs:

EU(a|e) =
∑
s

P (Result(a) = s|a, e)U(s)

Conditioning on a in P (Result(a) = s|a, e) stands for the event that action a is
effectively executed.
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Maximizing Expected Utility - equivalent formulations

The expected utility of the best possible action given the evidence:

EU(α|e) = max
a

∑
s

P (Result(a) = s|a, e)U(s)

is the Maximum Expected Utility (MEU) of any action under the evidence e.
Also referred to as the MEU of the evidence e

MEU(e) = max
a

EU(a|e) = EU(α|e)

and often expressed as:

MEU(e) = max
a

∑
s

P (s|e)U(s, a)

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Rational decisions 5 / 42



Example - Take or Leave Umbrella

Credit: D. Klein and P. Abbeel, Introduction to Artificial Intelligence), http://ai.berkeley.edu/
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Example - Take or Leave Umbrella
Umbrella=leave:

EU(leave) =
∑
w

P (w)U(leave, w)

= 0.7 · 100 + 0.3 · 0 = 70

Umbrella=take:

EU(take) =
∑
w

P (w)U(take, w)

= 0.7 · 20 + 0.3 · 70 = 35

Optimal decision = leave

MEU({}) = max
a

EU(a) = 70
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Example - Take or Leave Umbrella

Credit: D. Klein and P. Abbeel, Introduction to Artificial Intelligence), http://ai.berkeley.edu/
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Preferences, prizes and lotteries

Notation:
A � B A preferred to B
A ∼ B indifference between A and B
A �∼ B B not preferred to A

A and B could be some states of the world, or some prizes

There is most often uncertainty about what is really being offered
(e.g., think of choices “the pasta dish” or “chicken” on a flight)

So, we can think of the set of outcomes of each action as a lottery

Lottery ⇔ situation with uncertain prizes
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Action outcome as a lottery

Denote lottery L with possible outcomes S1, ..., Sn that occur
with probabilities p1, ..., pn as:

L = [p1, S1; p2, S2; ...pn, Sn]

Lottery L = [p,A; (1− p), B]
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Rational preferences

Rational preferences =⇒
behavior describable as maximization of expected utility

Constraints on rational prefereces, also called axioms of utility theory:

Orderability
(A � B) ∨ (B � A) ∨ (A ∼ B)

Transitivity
(A � B) ∧ (B � C) =⇒ (A � C)

Continuity
A � B � C =⇒ ∃p, [p,A; 1− p, C] ∼ B

Substitutability
A ∼ B =⇒ [p,A; 1− p, C] ∼ [p,B; 1− p, C]

Monotonicity
A � B =⇒ (p > q ⇔ [p,A; 1− p,B] � [q, A; 1− q,B])
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Rational preferences, contd.

Violating the constraints leads to self-evident irrationality

Example: an agent with intransitive preferences can be induced to give away all its
money

If B � C, then an agent who has C
would pay (say) 1 cent to get B

If A � B, then an agent who has B
would pay (say) 1 cent to get A

If C � A, then an agent who has A
would pay (say) 1 cent to get C
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Preferences lead to utility

From the axioms of utility, the following consequences can be derived:

Existence of utility function:
U(A) > U(B) ⇔ A � B
U(A) = U(B) ⇔ A ∼ B

Expected utility of a lottery:
U([p1, S1; . . . ; pn, Sn]) =

∑
i
piU(Si)
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Utility functions

Utilities map from lotteries to real numbers and must obey certain utility axioms.
We cannot say much more – an agent can have any preferences it likes,

no matter how unusual they can be.

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery Lp that has

“best possible prize” u> with probability p
“worst possible catastrophe” u⊥ with probability (1− p)

adjust lottery probability p until A ∼ Lp
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Utility scales

Normalized utilities: u> = 1.0, u⊥ = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce product risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: the utility function is not unique: the agent’s behaviour wouldn’t change if its
utility function were transformed according to an affine transformation

U ′(x) = k1U(x) + k2 where k1 > 0

With deterministic prizes only (no lottery choices), only
ordinal utility can be determined, i.e., total order on prizes
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The utility of money
Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),
usually U(L) < U(EMV (L)), i.e., people are risk-averse

Utility curve: for what probability p am I indifferent between a prize x and a lottery
[p, $M ; (1− p), $0] for large M?

Typical empirical data, extrapolated with risk-prone behaviour:
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Student group utility

For each x, adjust p until half the class votes for lottery (M=10,000)
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Decision networks
Add action nodes and utility nodes to belief networks
to enable rational decision making

Algorithm:
For each value of action node

compute expected value of utility node given action, evidence
Return MEU action

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Rational decisions 18 / 42



Multi-attribute utility

How can we handle utility functions of many variables X1...Xn?

E.g., siting a new airport requires considerations of safety issues/death risks
(arising from local topography), noise (how many people suffer), cost (of the land) etc.

What is U(Deaths,Noise, Cost)?

How can complex utility functions be assessed from
preference behaviour?

Idea 1: identify conditions under which decisions can be made without complete
identification of U(x1, . . . , xn)

Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(x1, . . . , xn)
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Strict Dominance

Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff
∀i Xi(B) ≥ Xi(A) (and hence U(B) ≥ U(A))
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Stochastic dominance

Utility decreases with cost → S1 stochastically dominates S2 (i.e., S2 can be discarded)
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Stochastic dominance contd.

Distribution p1 stochastically dominates distribution p2 iff

∀t
∫ t

−∞
p1(x)dx ≤

∫ t

−∞
p2(t)dt

If U is monotonic in x, then A1 with outcome distribution p1
stochastically dominates A2 with outcome distribution p2:∫ ∞

−∞
p1(x)U(x)dx ≥

∫ ∞
−∞

p2(x)U(x)dx

Multi-attribute case: stochastic dominance on all attributes =⇒ optimal
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Stochastic dominance contd.

Stochastic dominance can often be determined without
exact distributions using qualitative reasoning

E.g., construction cost increases with distance from city
S1 is closer to the city than S2

=⇒ S1 stochastically dominates S2 on cost

E.g., injury increases with collision speed

Can annotate belief networks with stochastic dominance information:
X +−→ Y (X positively influences Y ) means that
For every value z of Y ’s other parents Z
∀x1, x2 x1 ≥ x2 =⇒ P(Y |x1, z) stochastically dominates P(Y |x2, z)
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Example: label the arcs in belief nets
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Example: label the arcs in belief nets
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Preference structure

Suppose we have n attributes, each with d distinct possible values.
Specification of U(x1, ..., xn) requires dn values in the worst case

The worst case ↔ the agent’s preferences have no regularity at all

Multi-attribute theory is based on the supposition that the preferences
of typical agents have some structure

Basic approach: identify regularities in the expected behaviour (some preference
structure) and express the agent’s utility function as

U(x1, ..., xn) = F [f(x1), ..., f(xn)]
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Preference structure

X1 and X2 preferentially independent of X3 iff
preference between 〈x1, x2, x3〉 and 〈x′1, x′2, x3〉
does not depend on x3

E.g., 〈Noise, Cost, Safety〉:
〈20,000 suffer, $4.6 billion, 0.06 deaths/mpm〉 vs.
〈70,000 suffer, $4.2 billion, 0.06 deaths/mpm〉 (mpm – million passenger miles)

The set of attributes 〈Noise, Cost, Safety〉 exhibits
mutual preferential independence (MPI)

If attributes X1, ..., Xn are MPI, then the agent’s preference behaviour
can be described as additive value function: V (x1, ..., xn) =

∑
i V (Xi)
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Preference structure: stochastic

Uncertainty → now we need to consider preferences over lotteries:
X is utility-independent of Y iff

preferences over lotteries in X do not depend on y

A set of attributes is mutually utility independent (MUI) if each of its subsets
is utility-independent of the remaining attributes

MUI implies that the agent’s behaviour can be described using a
multiplicative utility function

For the case of three attributes:

U = k1U1 + k2U2 + k3U3

+ k1k2U1U2 + k2k3U2U3 + k3k1U3U1

+ k1k2k3U1U2U3

n-attribute problem with MUI needs n single-attribute functions and n constants
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The value of information: example

Only one block contains oil, and this
oil is worth C dollars

The price per block is C/n dollars

A seismologist offers the results of a survey for block b3, which indicates definitely
whether that block contains oil.

– How much should the company pay for this information? To answer this,

calculate the expected profit given the survey:

1

n
× (C − C/n) + n− 1

n
× (C/(n− 1)− C/n) = C

n
(1)
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General formula
The value of the current best action a:

EU(α|e) = max
a

∑
s

P (Result(a) = s|a, e)U(s)

The value of the new best action (after obtaining the new evidence Ej = ej) will be

EU(αej |e, ej) = max
a

∑
s

P (Result(a) = s|a, e, ej)U(s)

But the current value of Ej is unknown
→ To determine the value of discovering Ej , given e, we must average over all

possible values of ejk that we might discover for Ej :

V PI(Ej |e) =

(∑
k

P (Ej = ejk|e)EU(αejk |e, Ej = ejk)

)
− EU(α|e)

“Perfect” information because assumes obtaining exact evidence about the value of Ej
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Example - Take or Leave Umbrella
Umbrella=leave:

EU(leave|bad) =
∑
w

P (w|bad)U(leave, w)

= 0.34 · 100 + 0.66 · 0 = 34

Umbrella=take:

EU(take|bad) =
∑
w

P (w|bad)U(take, w)

= 0.34 · 20 + 0.66 · 70 = 53

Optimal decision = take

MEU(F = bad) = max
a

EU(a|bad) = 53

Credit: D. Klein and P. Abbeel, Introduction to Artificial Intelligence), http://ai.berkeley.edu/
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Example - Take or Leave Umbrella

Credit: D. Klein and P. Abbeel, Introduction to Artificial Intelligence), http://ai.berkeley.edu/
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Example - Take or Leave Umbrella

MEU with no evidence:
MEU({}) = max

a
EU(a) = 70

MEU if forecast is bad:
MEU(F = bad) = max

a
EU(a|bad) = 53

MEU if forecast is good:
MEU(F = good) = max

a
EU(a|good) = 95

Forecast distribution: P (F = good) = 0.59

V PI(E′|e) =
∑
e′

P (e′|e)MEU(e, e′)−MEU(e) = 0.59 · 95 + 0.41 · 53− 70 = 7.8
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Qualitative behaviour

a) Choice is obvious, information worth little
b) Choice is nonobvious, information worth a lot
c) Choice is nonobvious, information worth little
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Properties of VPI

Nonnegative—in expectation, not post hoc

∀e, Ej V PIe(Ej) ≥ 0

Nonadditive—consider, e.g., obtaining Ej twice

V PIe(Ej , Ek) 6= V PIe(Ej) + V PIe(Ek)

Order-independent

V PIe(Ej , Ek) = V PIe(Ej) + V PIe,ej (Ek) = V PIe(Ek) + V PIe,ek(Ej)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
=⇒ evidence-gathering becomes a sequential decision problem
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Summary

Probability theory → what an agent should believe
Utility theory → what an agent wants, and
Decision theory (puts the two together) → what an agent should do

Rational agent – chooses the decision that leads to the best expected outcome
(principle of maximum expected utility)

Lotteries – choices among uncertain prizes

Multi-attribute utility theory deals with utilities that depend on several distinct
attributes of states

Decision networks – a natural extension of Bayesian networks, with action nodes and
utility nodes

The value of information – the expected improvement in utility compared with making
a decision without the information
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