

E016350 - Artificial Intelligence Lecture 17

Decisions & Action Markov Decision Processes

Aleksandra Pizurica

Ghent University Fall 2024

Overview

- Making complex decisions
- Markov Decision Process (MDP)
- Value iteration
- Policy iteration
- Alternative formulations of MDPs
 - rewards as functions of a state
 - rewards depending also on the actions and outcomes

[R&N], Chapter 17

These slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/, the

corresponding slides of S. Russel and the slides of D. Klein and P. Abbeel (course Introduction to Artificial Intelligence), http://ai.berkeley.edu/

A sequential decision problem

- Noisy actions: e.g., action 'North' takes the agent to North 80% of the time, while 10% of the time takes it East and 10% of the time takes it West.
- When the agent bumps into a wall, it stays put
- A small living reward (r = -0.04) in each step. Big rewards $r = \pm 1$ at the end.
- Goal: maximize the sum of rewards.

Markov Decision Process (MDP) – A formal definition

A Markov decision process is defined by:

- A set of states S (with an initial state s_0);
- A set \mathcal{A} of actions in each state: Actions(s)
- A transition model T(s, a, s') = P(s'|s, a) and
- A reward function R(s, a, s')

Andrey Markov (1856-1922)

A livelier look at a stochastic grid world

Deterministic Grid World

Stochastic Grid World

Credit: P. Abbeel and D. Klein, Introduction to Artificial Intelligence

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want optimal policy: $\pi^*: \mathcal{S} \to \mathcal{A}$
 - A policy gives an action for each state
 - An optimal policy maximizes the expected utility
 - An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
 - It computed the action for a single state only

P. Abbeel & D. Klein http://ai.berkeley.edu/

Example: optimal policies

Left: Optimal policies for the stochastic environment with r = -0.04 for transitions between non-terminal states. **Right**: Optimal policies for different ranges of r.

Utilities over time

Is there finite horizon or infinite horizon for decision making?

- Let $U_h(s_0, a_0, s_1, a_1, ... s_n)$ be the utility function on environment histories
- Finite horizon: $U_h(s_0, a_0, s_1, a_1, ..., s_{N+k}) = U_h(s_0, a_0, s_1, a_1, ..., s_N)$
 - May need to consider how much time is left
 - A policy that depends on time is non-stationary
- With no fixed time limit, the optimal policy is stationary
 - Policies for infinite-horizon case are simpler but not that simple for partially observable MDP's

What is the utility (value) of the collected rewards?

- The rewards can all come at the end or appear on the way
- If they appear on the way, how to combine them?
 - Are they all worth equally?
 - What is the total utility?

P. Abbeel & D. Klein http://ai.berkeley.edu/

Additive discounted rewards

- It is reasonable to maximize the sum of rewards
- Also reasonable to prefer rewards now to rewards later (Why?)
 - One solution: values of rewards decay exponentially
- Leads to additive discounted rewards:

 $U_h(s_0, a_0, s_1, a_1, s_2...) = R(s_0, a_0, s_1) + \gamma R(s_1, a_1, s_2) + \gamma^2 R(s_2, a_2, s_3) + ...$ where $0 \le \gamma \le 1$ a discount factor

Additive infinite rewards

What if the game lasts forever? How to avoid dealing with infinite rewards? Solutions:

- Finite horizon (similar to depth-limited search)
 - Terminate after k steps
 - Gives non-stationary policies (π depends on the time left)
- Discounting: $0 \le \gamma \le 1$
 - Utility of an infinite sequence becomes finite. If the rewards are bounded by $\pm R_{max}$:

$$U_h([s_0, a_0, s_1, \ldots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \le \sum_{t=0}^{\infty} \gamma^t R_{max} = \frac{R_{max}}{1 - \gamma}$$

- $\blacktriangleright\,$ Smaller γ means a smaller 'horizon' shorter term focus
- Absorbing state: guarantee that for every policy a terminal state will be reached
 - Proper policy a policy that is guaranteed to reach a terminal state

Optimal policies and utilities of states

- A policy is a mapping from states to actions: $\pi^*: \mathcal{S} \rightarrow \mathcal{A}$
- A utility (value) function for a policy U^π : S → ℝ gives the expected sum of discounted rewards when acting under that policy. This is the value of the expected utility obtained by executing π starting in s:

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^t R(S_t, \pi(S_t), S_{t+1})\right]$$

The optimal policy – one that maximizes the expected utility (starting from s):

$$\pi_s^* = \arg\max_{\pi} U^{\pi}(s)$$

and its value is written as $U^* = U^{\pi^*}$

• Note that it in the MDP literature the notation V^{π} is often used instead of U^{π}

The Bellman equation

The utility function U(s) allows the agent to select actions by using the principle of maximum expected utility:

$$\pi^*(s) = \arg \max_{a \in A(s)} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U(s')]$$

The utility of being in a state

= the expected sum of discounted rewards from that point onwards

 $\Rightarrow \exists$ a direct relationship between

the utility of a state and the utility of its neighbors (Bellman equation):

$$U(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U(s')]$$

The utility of a state is the expected reward for the next transition plus the discounted utility of the next state, assuming that the agent chooses the optimal action.

The Bellman equation: Example

The Bellman equation for U(1, 1), assuming r = -0.04:

 $\max \{ \begin{bmatrix} 0.8(-0.04 + \gamma U(1,2)) + 0.1(-0.04 + \gamma U(2,1)) + 0.1(-0.04 + \gamma U(1,1)] \\ [0.9(-0.04 + \gamma U(1,1)) + 0.1(-0.04 + \gamma U(1,2))] \\ [0.9(-0.04 + \gamma U(1,1)) + 0.1(-0.04 + \gamma U(2,1))] \\ [0.8(-0.04 + \gamma U(2,1)) + 0.1(-0.04 + \gamma U(1,2)) + 0.1(-0.04 + \gamma U(1,1))] \\ \}$

Q-function

 $\bullet\,$ The action-utility function or the Q-function Q(s,a)

= the expected utility of taking a given action in a given state

• The utilities are conveniently expressed in terms of the Q-function:

 $U(s) = \max_{a} Q(s, a)$

• The optimal policy can be extracted from the Q-function as follows

 $\pi^*(s) = \arg\max_a Q(s, a)$

• A Bellman equation for Q-functions:

$$Q(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U(s')]$$

=
$$\sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$$

MDP states and expectimax-like search tree

P. Abbeel & D. Klein http://ai.berkeley.edu/

Representing MDPs

- P(s'|s,a) and R(s,a,s') are 3-dim tables of size $|S|^2|A|$ for the 4×3 grid world: $11^2 \times 4$ each
- In some cases, tables are sparse, but for large problems even O(|S||A|) is too big
- We represent MDPs by extending Dynamic Bayesian Networks (DBN) with action (decision), reward and utility nodes to create Dynamic Decision Networks (DDN)

Example: Tetris

State vars: *CurrentPiece*, *NextPiece*, *Filled* (bit-vector with one bit per location) 10×20 board locations; State space size: $7 \times 7 \times 2^{200} \approx 10^{62}$

Algorithms for MDPs

- Algorithms for generating exact solutions offline
 - Value iteration
 - Policy iteration
 - Linear programming
- Online approximate algorithms
 - Monte Carlo planning

Value iteration

Iterative approach to solving n nonlinear Bellman equations

- Initialize $U_0(s) \leftarrow 0$, $\forall s \in S$
- 2 Repeat $\forall s$ until convergence:

$$U_{i+1}(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U_i(s')]$$

The update is assumed to be applied simultaneously to all the states in each iteration Converges to a unique set of solutions of the Bellman equations

Value iteration algorithm

function VALUE-ITERATION(mdp, ϵ) returns a utility function inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a), rewards R(s, a, s'), discount γ ϵ , the maximum error allowed in the utility of any state local variables: U, U', vectors of utilities for states in S, initially zero δ , the maximum relative change in the utility of any state

repeat

 $\begin{array}{l} U \leftarrow U'; \, \delta \leftarrow 0 \\ \text{for each state } s \text{ in } S \text{ do} \\ U'[s] \leftarrow \max_{a \in A(s)} \text{ Q-VALUE}(mdp, s, a, U) \\ \text{ if } |U'[s] - U[s]| > \delta \text{ then } \delta \leftarrow |U'[s] - U[s]| \\ \text{until } \delta \leq \epsilon(1 - \gamma)/\gamma \\ \text{return } U \end{array}$

The convergence rate of value iteration: example

Left: Evolution of the utilities of selected states in 4×3 world using value iteration. Right: The number of value iterations required to guarantee an error of at most $\epsilon = cR_{max}$, for different values of c, as a function γ

Example: Racing

- A robot car wants to travel far, guickly _
- Three states: Cool, Warm, Overheated _
- Two actions: Slow, Fast

+1

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/

Racing Search Tree

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/

Racing Search Tree

$$U_{i+1}(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U_i(s')]$$

i = 0										
C Cridworld Display										
	^	•	•							
	0.00	0.00	0.00	0.00						
	^		^							
	0.00		0.00	0.00						
	^	^	^	^						
	0.00	0.00	0.00	0.00						
	VALUES AFTER O ITERATIONS									

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

i = 1										
0.0		Gridwori	d Display							
	•	^								
	0.00	0.00	0.00 →	1.00						
	^									
	0.00		• 0.00	-1.00						
	^	^	^							
	0.00	0.00	0.00	0.00						
				-						
	VALUES AFTER 1 ITERATIONS									

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

i=2											
G G G G G G G G G G G G G G G G G G G											
0.00	0.00 →	0.72 →	1.00								
^		^									
0.00		0.00	-1.00								
^	^	^									
0.00	0.00	0.00	0.00								
			-								
VALUES AFTER 2 ITERATIONS											

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

i=3											
	0.00 →	0.52 ♪	0.78 ▶	1.00							
	^		^								
	0.00		0.43	-1.00							
	^	^	^								
	0.00	0.00	0.00	0.00							
				-							
	VALUES AFTER 3 ITERATIONS										

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

i=4									
0.37 ≯	0.66 ▸	0.83)	1.00						
•		• 0.51	-1.00						
^		•							
0.00	0.00 ▸	0.31	∢ 0.00						
VALUES AFTER 4 ITERATIONS									

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

i = 11Gridworld Display 0.64 0.74 → 0.85 1.00 0.56 0.57 -1.00 ^ 0.48 • 0.42 0.47 4 0.27 VALUES AFTER 11 ITERATIONS

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

i = 100Gridworld Display 0.64 0.74 → 0.85 1.00 0.57 0.57 -1.00 ^ • 0.43 0.49 0.48 4 0.28 VALUES AFTER 100 ITERATIONS

Noise = 0.2; Discount = 0.9; Living reward = 0

P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

Policy extraction

Suppose we computed the optimal values. How to compute **actions from these values**?

Recall, we already explained:

$$\pi^*(s) = \arg \max_{a \in A(s)} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U(s')]$$

(one step of expectimax)

Computing actions from Q-Values Suppose we computed Q-values

How to compute **actions from Q-values**? Easy:

 $\pi^*(s) = \arg\max_{a \in A(s)} Q(s, a)$

Actions are easier to select from Q-values!

Problems with Value Iteration

Value iteration repeats the Bellman updates:

 $U_{i+1}(s) \leftarrow \max_{a \in A(s)} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U_i(s')]$

Three main problems:

- Slow convergence
- The "max" at each state rarely changes
- The policy often converges long before the values

What the agent really cares about?

- Not the state values but how well it will do if it makes its decisions based on them (in practice it often happens that π_i becomes optimal long before U_i converges)

Policy Iteration

The **policy iteration** algorithm starts from some policy π^0 and alternates two steps:

• Policy evaluation: given a policy π_i , calculate $U_i = U^{\pi_i}$, the utility of each state if π_i were to be executed:

$$U_i(s) \leftarrow \sum_{s'} P(s'|s, \pi_i(s))[R(s, \pi_i(s), s') + \gamma U_i(s')]$$

• Policy improvement: Calculate a new MEU policy π_{i+1} , using one-step look-ahead based on U_i :

$$\pi_{i+1}(s) \leftarrow \arg\max_{a \in A(s)} \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U_i(s')]$$

Policy iteration algorithm

```
function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s' | s, a)
local variables: U, a vector of utilities for states in S, initially zero
\pi, a policy vector indexed by state, initially random
```

repeat

```
\begin{array}{l} U \leftarrow {\sf POLICY-EVALUATION}(\pi,\,U,\,mdp) \\ unchanged? \leftarrow {\sf true} \\ {\sf for \ each \ state \ s \ in \ S \ do} \\ a^* \leftarrow \mathop{\rm argmax}_{a \in A(s)} {\sf Q-VALUE}(mdp,\,s,\,a,\,U) \\ & \quad {\sf if \ Q-VALUE}(mdp,\,s,\,a^*,\,U) > {\sf Q-VALUE}(mdp,\,s,\pi[s],\,U) \ {\sf then} \\ \pi[s] \leftarrow a^*; \ unchanged? \leftarrow {\sf false} \\ {\sf until \ unchanged}? \\ {\sf return \ \pi} \end{array}
```

Comparison

- Value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - ▶ We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - ► We do several passes that update utilities with fixed policy
 - (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Partially observable MDPs

- We assumed so far the environment is fully observable the agent knows which state it is in
- If the agent doesn't know which state it is, it cannot execute the action $\pi(s)$ recommended for that state

Partially observable MDPs (POMDP)

- Has the same elements as MDP (transition model, actions, reward function) and in addition it also has a sensor model P(e|s)
- The agent computes its belief state

$$b'(s') = \alpha P(e|s') \sum_{s} P(s'|s, a) b(s)$$

Partially observable MDPs

(a) Posterior distribution over robot location after $E_1 = NSW$

0	0	0	0		0	0	0	0	0		0	0	0		0
		0	0		0			0		0		0			
	0	0	0		0			0	0	0	0	0			0
0	0		0	0	0		0	0	0	0		0	0	0	0

Remember the lesson on temporal probability models

The agent computes the belief state

$$b'(s') = \alpha P(e|s') \sum_{s} P(s'|s, a) b(s)$$

This is essentially the **filtering** task

b' = FORWARD(b, a, e)

(b) Posterior distribution over robot location after $E_1 = NSW$, $E_2 = NS$

Posterior distribution $P(X_t = i | \mathbf{e}_t)$ over robot location: (a) one observation $E_1 = NSW = 1011$; (b) after a second observation $E_2 = NS = 1010$. The size of each disk corresponds to the probability that the robot is at that location. $\epsilon = 0.2$

Partially observable MDPs: Example 4×3 world

Part of an expectimax tree for the 4×3 POMDP with a uniform initial belief state. Belief states depicted with shading \propto the probability of being in each location. Partially observable MDPs: Example 4×3 world

The decision circle of a POMPD agent can be broken into 3 steps:

- **(**) Given the current belief state *b*, execute the action $a = \pi^*(b)$
- **2** Observe the percept e
- § Set the current belief state to b' = FORWARD(b, a, e) and repeat

The probability of perceiving e, given that a was performed starting in belief state b:

$$P(e|a,b) = \sum_{s'} P(e|a,s',b)P(s'|a,b)$$

= $\sum_{s'} P(e|s')P(s'|a,b) = \sum_{s'} P(e|s')\sum_{s} P(s'|s,a)b(s)$

POMDP represented as Dynamic Decision Networks

- Variables with known values are shaded
- The current time is t and the agent must choose a value for the action A_t
- The network has been unrolled into the future for three steps and represents future rewards, as well as the utility of the state at the look-ahead horizon

(Source: R&N, 3rd Ed)

Bandit Problems

Suppose

•
$$\gamma = 0.5$$

• two arms: M and M_1 Choose which one to play

$$U(M) = (1 \times 0) + (0.5 \times 2) + (0.5^{2} \times 0) + (0.5^{3} \times 7.2) = 1.9$$
$$U(M_{1}) = \sum_{t=0}^{\infty} 0.5^{t} = 2$$

How about switching? E.g., after fourth reward:

 $U(S) = (1 \times 0) + (0.5 \times 2) + (0.5^{2} \times 0) + (0.5^{3} \times 7.2) + \sum_{t=4}^{\infty} 0.5^{t} = 2.025$

Bandit Problems

Online planning

Rules changed! Red's win chance is different.

Has to involve exploration. This will be a reinforcement learning problem!

Summary

- MDPs are sequential decision problems in uncertain environments.
- The MDPs are defined by a transition model, specifying the probabilistic outcomes of actions and by a reward function specifying a reward for each state (and possibly depending on the action and the outcome as well)
- The solution to an MDP is a policy
- We analysed two approaches for computing optimal policies: value iteration and policy iteration.
- Partially observable MDPs, called POMDPs are much more difficult to solve. Involve computing belief states (filtering operation) and can be represented by Dynamic Bayesian networks
- MDPs and POMDPs where the agent improves its performance based on experience → reinforcement learning