
E016350 - Artificial Intelligence

Lecture 17

Decisions & Action
Markov Decision Processes

Aleksandra Pizurica

Ghent University
Fall 2024



Overview
Making complex decisions

Markov Decision Process (MDP)

Value iteration

Policy iteration
Alternative formulations of MDPs

I rewards as functions of a state
I rewards depending also on the actions and outcomes

[R&N], Chapter 17

These slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/, the

corresponding slides of S. Russel and the slides of D. Klein and P. Abbeel (course Introduction to Artificial Intelligence), http://ai.berkeley.edu/
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A sequential decision problem

Noisy actions: e.g., action ‘North’ takes the agent to North 80% of the time,
while 10% of the time takes it East and 10% of the time takes it West.

When the agent bumps into a wall, it stays put

A small living reward (r = −0.04) in each step. Big rewards r = ±1 at the end.

Goal: maximize the sum of rewards.
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Markov Decision Process (MDP) – A formal definition

A Markov decision process is defined by:

A set of states S (with an initial state s0);

A set A of actions in each state: Actions(s)

A transition model T (s, a, s′) = P (s′|s, a) and

A reward function R(s, a, s′)

Andrey Markov (1856-1922)
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A livelier look at a stochastic grid world

Credit: P. Abbeel and D. Klein, Introduction to Artificial Intelligence
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Policies

In deterministic single-agent search problems, we
wanted an optimal plan, or sequence of actions,
from start to a goal

For MDPs, we want optimal policy: π∗ : S → A
I A policy gives an action for each state
I An optimal policy maximizes the expected utility
I An explicit policy defines a reflex agent

Expectimax didn’t compute entire policies
I It computed the action for a single state only

P. Abbeel & D. Klein http://ai.berkeley.edu/
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Example: optimal policies

Left: Optimal policies for the stochastic environment with r = −0.04 for transitions
between non-terminal states. Right: Optimal policies for different ranges of r.
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Utilities over time

Is there finite horizon or infinite horizon for decision making?

Let Uh(s0, a0, s1, a1, ...sn) be the utility function on environment histories

Finite horizon: Uh(s0, a0, s1, a1, ...sN+k) = Uh(s0, a0, s1, a1, ...sN )
I May need to consider how much time is left
I A policy that depends on time is non-stationary

With no fixed time limit, the optimal policy is stationary
I Policies for infinite-horizon case are simpler

but not that simple for partially observable MDP’s
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Utility of state sequences

What is the utility (value) of the collected rewards?

The rewards can all come at the end
or appear on the way

If they appear on the way, how to combine them?
I Are they all worth equally?
I What is the total utility?

P. Abbeel & D. Klein http://ai.berkeley.edu/
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Additive discounted rewards

It is reasonable to maximize the sum of rewards

Also reasonable to prefer rewards now to rewards later (Why?)
I One solution: values of rewards decay exponentially

Leads to additive discounted rewards:
Uh(s0, a0, s1, a1, s2...) = R(s0, a0, s1)+γR(s1, a1, s2)+γ

2R(s2, a2, s3)+ ...
where 0 ≤ γ ≤ 1 a discount factor
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Additive infinite rewards

What if the game lasts forever? How to avoid dealing with infinite rewards?
Solutions:

Finite horizon (similar to depth-limited search)
I Terminate after k steps
I Gives non-stationary policies (π depends on the time left)

Discounting: 0 ≤ γ ≤ 1
I Utility of an infinite sequence becomes finite. If the rewards are bounded by ±Rmax:

Uh([s0, a0, s1, ...]) =

∞∑
t=0

γtR(st, at, st+1) ≤
∞∑
t=0

γtRmax =
Rmax

1− γ

I Smaller γ means a smaller ‘horizon’ – shorter term focus

Absorbing state: guarantee that for every policy a terminal state will be reached
I Proper policy – a policy that is guaranteed to reach a terminal state
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Optimal policies and utilities of states

A policy is a mapping from states to actions: π∗ : S → A
A utility (value) function for a policy Uπ : S → R gives the expected sum of
discounted rewards when acting under that policy. This is the value of the
expected utility obtained by executing π starting in s:

Uπ(s) = E
[ ∞∑
t=0

γtR(St, π(St), St+1)
]

The optimal policy – one that maximizes the expected utility (starting from s):

π∗s = argmax
π

Uπ(s)

and its value is written as U∗ = Uπ
∗

Note that it in the MDP literature the notation V π is often used instead of Uπ
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The Bellman equation

The utility function U(s) allows the agent to select actions by using the principle of
maximum expected utility:

π∗(s) = arg max
a∈A(s)

∑
s′

P (s′|s, a)[R(s, a, s′) + γU(s′)]

The utility of being in a state
= the expected sum of discounted rewards from that point onwards
⇒ ∃ a direct relationship between

the utility of a state and the utility of its neighbors (Bellman equation):

U(s) = max
a∈A(s)

∑
s′

P (s′|s, a)[R(s, a, s′) + γU(s′)]

The utility of a state is the expected reward for the next transition plus the discounted
utility of the next state, assuming that the agent chooses the optimal action.
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The Bellman equation: Example

The Bellman equation for U(1, 1), assuming r = −0.04:

max{ [ 0.8(−0.04 + γU(1, 2)) + 0.1(−0.04 + γU(2, 1)) + 0.1(−0.04 + γU(1, 1)]

[ 0.9(−0.04 + γU(1, 1)) + 0.1(−0.04 + γU(1, 2))]

[ 0.9(−0.04 + γU(1, 1)) + 0.1(−0.04 + γU(2, 1))]

[ 0.8(−0.04 + γU(2, 1)) + 0.1(−0.04 + γU(1, 2)) + 0.1(−0.04 + γU(1, 1))]

}
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Q-function
The action-utility function or the Q-function Q(s, a)

= the expected utility of taking a given action in a given state
The utilities are conveniently expressed in terms of the Q-function:

U(s) = max
a

Q(s, a)

The optimal policy can be extracted from the Q-function as follows

π∗(s) = argmax
a

Q(s, a)

A Bellman equation for Q-functions:

Q(s, a) =
∑
s′

P (s′|s, a)[R(s, a, s′) + γU(s′)]

=
∑
s′

P (s′|s, a)[R(s, a, s′) + γmax
a′

Q(s′, a′)]
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MDP states and expectimax-like search tree

P. Abbeel & D. Klein http://ai.berkeley.edu/
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Representing MDPs
P (s′|s, a) and R(s, a, s′) are 3-dim tables of size |S|2|A|

for the 4× 3 grid world: 112 × 4 each

In some cases, tables are sparse, but for large problems even O(|S||A|) is too big

We represent MDPs by extending Dynamic Bayesian Networks (DBN) with action
(decision), reward and utility nodes to create Dynamic Decision Networks (DDN)
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Example: Tetris

State vars: CurrentP iece, NextP iece, Filled (bit-vector with one bit per location)
10× 20 board locations; State space size: 7× 7× 2200 ≈ 1062
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Algorithms for MDPs

Algorithms for generating exact solutions offline
I Value iteration
I Policy iteration
I Linear programming

Online approximate algorithms
I Monte Carlo planning
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Value iteration

Iterative approach to solving n nonlinear Bellman equations

1 Initialize U0(s)← 0, ∀s ∈ S

2 Repeat ∀s until convergence:

Ui+1(s) = max
a∈A(s)

∑
s′

P (s′|s, a)[R(s, a, s′) + γUi(s
′)]

The update is assumed to be applied simultaneously to all the states in each iteration
Converges to a unique set of solutions of the Bellman equations
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Value iteration algorithm

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Markov Decision Processes 21 / 53



The convergence rate of value iteration: example

Left: Evolution of the utilities of selected states in 4× 3 world using value iteration.
Right: The number of value iterations required to guarantee an error of at most
ε = cRmax, for different values of c, as a function γ
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Example: Racing

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/
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Racing Search Tree

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/
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Racing Search Tree

0             0             0

2             1             0

3.5          2.5          0

Assume no discount!

U2

U1

U0

Ui+1(s) = max
a∈A(s)

∑
s′

P (s′|s, a)[R(s, a, s′) + γUi(s
′)]
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Example: Grid world

i = 0

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 1

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 2

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 3

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 4

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 5

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 6

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 7

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 8

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 9

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Markov Decision Processes 35 / 53



Example: Grid world

i = 10

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 11

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Example: Grid world

i = 100

Noise = 0.2; Discount = 0.9; Living reward = 0
P. Abbeel and D. Klein: Introduction to Artificial Intelligence http://ai.berkeley.edu/
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Policy extraction

Suppose we computed the optimal values.
How to compute actions from these values?

Recall, we already explained:

π∗(s) = arg max
a∈A(s)

∑
s′

P (s′|s, a)[R(s, a, s′) + γU(s′)]

(one step of expectimax)
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Computing actions from Q-Values
Suppose we computed Q-values

How to compute actions from Q-values? Easy:

π∗(s) = arg max
a∈A(s)

Q(s, a)

Actions are easier to select from Q-values!
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Problems with Value Iteration

Value iteration repeats the Bellman updates:

Ui+1(s)← max
a∈A(s)

∑
s′

P (s′|s, a)[R(s, a, s′) + γUi(s
′)]

Three main problems:

Slow convergence

The “max” at each state rarely changes

The policy often converges long before the values

a

s

s, a

s,a,s’
s’

What the agent really cares about?
– Not the state values but how well it will do if it makes its decisions based on them

(in practice it often happens that πi becomes optimal long before Ui converges)
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Policy Iteration

The policy iteration algorithm starts from some policy π0 and alternates two steps:

Policy evaluation: given a policy πi, calculate Ui = Uπi ,
the utility of each state if πi were to be executed:

Ui(s)←
∑
s′

P (s′|s, πi(s))[R(s, πi(s), s′) + γUi(s
′)]

Policy improvement: Calculate a new MEU policy πi+1,
using one-step look-ahead based on Ui:

πi+1(s)← arg max
a∈A(s)

∑
s′

P (s′|s, a)[R(s, a, s′) + γUi(s
′)]
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Policy iteration algorithm

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Markov Decision Processes 43 / 53



Comparison

Value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
I Every iteration updates both the values and (implicitly) the policy
I We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
I We do several passes that update utilities with fixed policy

(each pass is fast because we consider only one action, not all of them)
I After the policy is evaluated, a new policy is chosen

(slow like a value iteration pass)
I The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs
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Partially observable MDPs

We assumed so far the environment is fully observable
the agent knows which state it is in

If the agent doesn’t know which state it is,
it cannot execute the action π(s) recommended for that state

Partially observable MDPs (POMDP)

Has the same elements as MDP (transition model, actions, reward function) and
in addition it also has a sensor model P (e|s)
The agent computes its belief state

b′(s′) = αP (e|s′)
∑
s

P (s′|s, a)b(s)
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Partially observable MDPs
Remember the lesson on temporal
probability models

The agent computes the belief state

b′(s′) = αP (e|s′)
∑
s

P (s′|s, a)b(s)

This is essentially the filtering task

b′ = Forward(b, a, e)

Posterior distribution P (Xt = i|et) over robot location: (a) one observation
E1 = NSW = 1011; (b) after a second observation E2 = NS = 1010. The size of
each disk corresponds to the probability that the robot is at that location. ε = 0.2
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Partially observable MDPs: Example 4× 3 world

Part of an expectimax tree for the 4× 3 POMDP with a uniform initial belief state.
Belief states depicted with shading ∝ the probability of being in each location.
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Partially observable MDPs: Example 4× 3 world

The decision circle of a POMPD agent can be broken into 3 steps:
1 Given the current belief state b, execute the action a = π∗(b)
2 Observe the percept e
3 Set the current belief state to b′ = Forward(b, a, e) and repeat

The probability of perceiving e, given that a was performed starting in belief state b:

P (e|a, b) =
∑
s′

P (e|a, s′, b)P (s′|a, b)

=
∑
s′

P (e|s′)P (s′|a, b) =
∑
s′

P (e|s′)
∑
s

P (s′|s, a)b(s)
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POMDP represented as Dynamic Decision Networks

Variables with known values are shaded

The current time is t and the agent must choose a value for the action At

The network has been unrolled into the future for three steps and represents
future rewards, as well as the utility of the state at the look-ahead horizon

(Source: R&N, 3rd Ed)
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Bandit Problems

Suppose

γ = 0.5

two arms: M and M1

Choose which one to play

U(M) = (1× 0) + (0.5× 2) + (0.52 × 0) + (0.53 × 7.2) = 1.9

U(M1) =

∞∑
t=0

0.5t = 2

How about switching? E.g., after fourth reward:

U(S) = (1× 0) + (0.5× 2) + (0.52 × 0) + (0.53 × 7.2) +
∞∑
t=4

0.5t = 2.025
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Bandit Problems
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Online planning

Rules changed! Red’s win chance is different.

Has to involve exploration. This will be a reinforcement learning problem!
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Summary

MDPs are sequential decision problems in uncertain environments.

The MDPs are defined by a transition model, specifying the probabilistic
outcomes of actions and by a reward function specifying a reward for each state
(and possibly depending on the action and the outcome as well)

The solution to an MDP is a policy

We analysed two approaches for computing optimal policies: value iteration and
policy iteration.

Partially observable MDPs, called POMDPs are much more difficult to solve.
Involve computing belief states (filtering operation) and can be represented by
Dynamic Bayesian networks

MDPs and POMDPs where the agent improves its performance based on
experience → reinforcement learning
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