

IN FACULTY OF ENGINEERING

E016350 - Artificial Intelligence Lecture 18

Decisions & Action Reinforcement learning

Aleksandra Pizurica

Ghent University Fall 2024

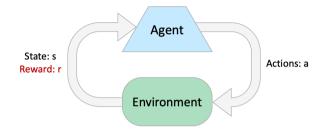
Overview

- Reinforcement Learning (RL) as MDP
- Passive RL
- Active RL including exploration
- Generalization
- Policy search

[R&N], Chapter22

These slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/, the corresponding slides of S. Russel and the slides of D. Klein and P. Abbeel (course Introduction to Artificial Intelligence), http://ai.berkeley.edu/

Reinforcement Learning

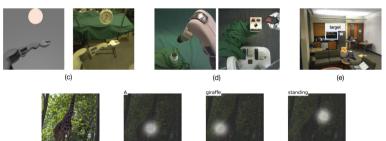


Basic idea:

- Receive feedback in the form of rewards
- Agent's utility is defined by the reward function
- Must (learn to) act so as to maximize expected rewards
- All learning is based on observed samples of outcomes!

Example applications

(b)



(f)

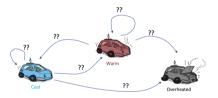
(a) Game playing; (b) racing simulators; (c) transferring knowledge from simulators to the real world; (d) robotic tasks (assembling pieces, picking up, precision tasks...) (e) navigation in various spaces; (f) learning where to look in order to recognize/interpret a captured scene.

K. Arulkumaran et al: Deep Reinforcement Learning: A brief Survey, IEEE Signal Processing Magazine, 2017.

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024

Reinforcement Learning - Problem formulation

- Still assume a Markov decision process (MDP)
 - A set of states S (with an initial state s_0)
 - ► A set A of actions in each state: Actions(s)
 - A transition model T(s, a, s') = P(s'|s, a) and
 - A reward function R(s, a, s')
- Still looking for a policy $\pi(s)$
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn
- MDP computes an optimal policy
- RL learns an optimal policy



A categorization of RL algorithms

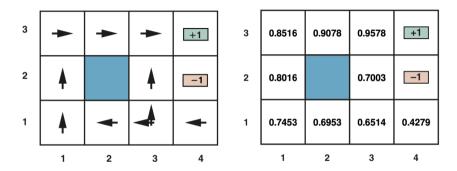
• Passive vs Active

- Passive: Agent executes a fixed policy (is told what to do) and evaluates it
- Active: Agent decides what to do and updates policy as it learns
- Model-based vs Model-free
 - ▶ Model-based: Learn transition and reward model, use it to get optimal policy
 - Model free: Derive optimal policy without learning the model

A categorization of RL algorithms, cont'd

- Model-based reinforcement learning
 - Use a transition model of the environment to help interpret the reward signals and to make decisions about how to act
 - The model can be
 - * initially unknown (the agent learns it by observing the effects of its actions)
 - * known (e.g., knowing the rules of chess without knowing how to make good moves)
- Model-free reinforcement learning
 - Action-utility learning
 - \star Q-learning
 - Policy search
 - \star reflex-agent

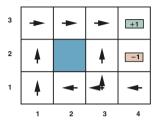
Passive Reinforcement Learning



Goal: evaluate how good a fixed policy $\pi(s)$ is

- \rightarrow need to learn the expected utility $U^{\pi}(s)$ for each state s
 - passive learning agent
 - similar task to policy eval. in MDPs but $P(s^{\prime}|s,a)$ and $R(s,a,s^{\prime})$ unknown

Passive Reinforcement Learning



Agent executes a sequence of trials:

$$\begin{array}{l} (1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (1,2)_{\textbf{-.04}} \rightsquigarrow (1,3)_{\textbf{-.04}} \rightsquigarrow (2,3)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (3,3)_{\textbf{-.04}} \rightsquigarrow (4,3)_{\textbf{+1}} \\ (1,1)_{\textbf{-.04}} \rightsquigarrow (2,1)_{\textbf{-.04}} \rightsquigarrow (3,1)_{\textbf{-.04}} \rightsquigarrow (3,2)_{\textbf{-.04}} \rightsquigarrow (4,2)_{\textbf{-1}} \end{array}$$

The goal is to learn

$$U^{\pi}(s) = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(S_t, \pi(S_t), S_{t+1})\right]$$

 S_t is a RV denoting the state reached at t executing π , starting from $S_0 = s$

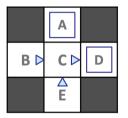
Direct Evaluation

Idea:

- The utility of a state = the expected reward-to-go
- Each trial provides a sample of this quantity
- Practically:
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation or direct utility estimation

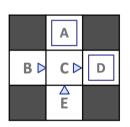
Input Policy π

Output Values



Assume: $\gamma = 1$

Input Policy π

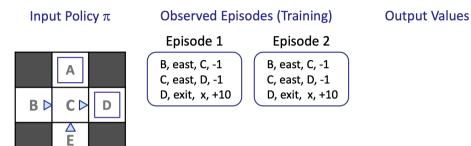


Assume: $\gamma = 1$

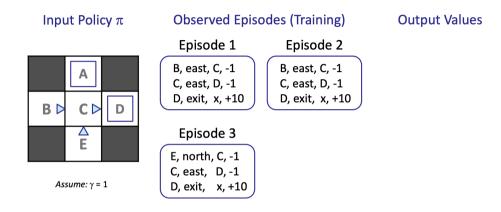
Observed Episodes (Training)

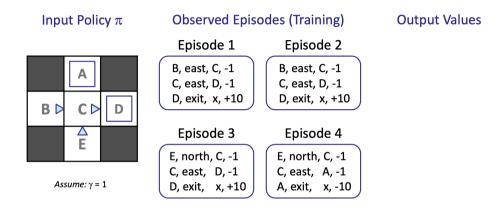
Episode 1

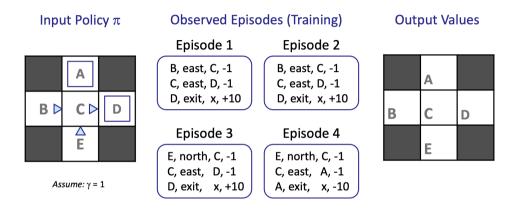
B, east, C, -1 C, east, D, -1 D, exit, x, +10 **Output Values**

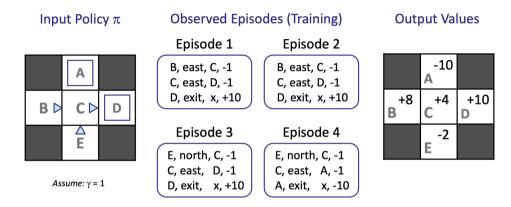


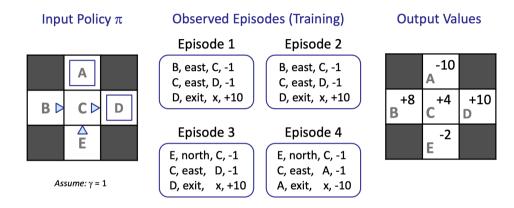
Assume: $\gamma = 1$







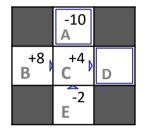




Reduced to a standard supervised learning problem with (state, reward-to-go) pairs

Problems with Direct Evaluation

- What is good about direct evaluation?
 - Easy to understand
 - Doesn't require any knowledge of T, R
 - Eventually computes the correct average values, using just sample transitions
- What is bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn



If B and E both go to C under this policy, how can their values be different?

Adaptive Dynamic Programming (ADP)

• A smarter method: make use of Bellman equations to get $U^{\pi}(s)$:

$$U^{\pi}(s) = \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma U^{\pi}(s')]$$

- \bullet Need to learn $P(s'|s,\pi(s))$ and $R(s,\pi(s),s')$ from trials
- Plug-in learnt transition and reward in the Bellman equations
- Solving for $U^{\pi}(s)$:
 - Solving a system of n linear equations
 - (Note: Bellman equations are linear when the policy is fixed!)
 - Alternatively: modified policy iteration using a simplified value iteration process (to update the utility estimates after each change to the learned model)
- Inefficient if state space is large
 - (e.g., in Backgammon need to solve $pprox 10^{20}$ equations in 10^{20} unknowns)
- ADP is a standard baseline for other RL methods

Temporal Difference (TD) Learning

- Does not require the agent to learn the transition model
- Best of both worlds
 - Only update states that are directly affected
 - Approximately satisfy the Bellman equations

Digression: Bellman updates without knowing/learning T and R?

- \bullet Simplified Bellman updates calculate U for a fixed policy:
 - ► Each round, replace U with a one-step-look-ahead layer over U $U_0^{\pi}(s) = 0$ $U_{i+1}^{\pi}(s) \leftarrow \sum_{i'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma U_i^{\pi}(s')]$
 - This approach fully exploited the connections between the states Unfortunately, we need T and R to do it!
- Key question: how to do this update without knowing T and R and without learning them?
 - I.e., how to take a weighted average without knowing the weights?

Digression: Sample-Based Policy Evaluation?

• We want to improve our estimate of U by computing these averages:

$$U_{i+1}^{\pi}(s) \leftarrow \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma U_i^{\pi}(s')]$$

• Idea: Take samples of outcomes s' (by doing the action!) and average

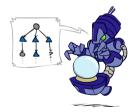
$$sample_{1} = R(s, \pi(s), s'_{1}) + \gamma U_{i}^{\pi}(s'_{1})$$

$$sample_{2} = R(s, \pi(s), s'_{2}) + \gamma U_{i}^{\pi}(s'_{2})$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s'_{n}) + \gamma U_{i}^{\pi}(s'_{n})$$

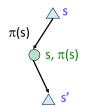
$$U_{i+1}^{\pi} \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$



Credit: P. Abbeel & D. Klein

Temporal Difference Learning

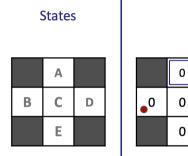
- Big idea: learn from every experience!
 - Update U(s) each time we experience a transition (s, a, s', r)
 - \blacktriangleright Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average



$$\begin{aligned} sample &= R(s, \pi(s), s') + \gamma U^{\pi}(s') \\ U^{\pi}(s) &\leftarrow (1 - \alpha) U^{\pi}(s) + \alpha \cdot sample \\ U^{\pi}(s) &\leftarrow U^{\pi}(s) + \alpha (sample - U^{\pi}(s)) \end{aligned}$$

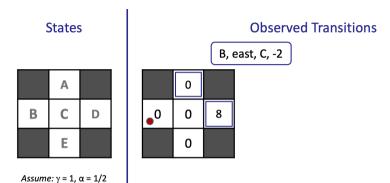
States Α Β С D Ε

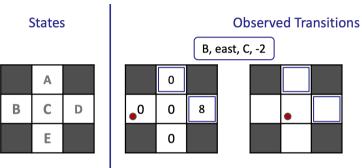
Assume: $\gamma = 1$, $\alpha = 1/2$



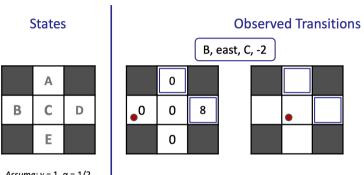
Assume:
$$\gamma = 1$$
, $\alpha = 1/2$

8



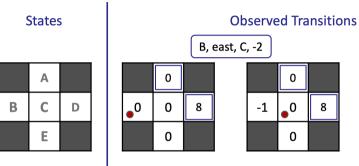


Assume: $\gamma = 1$, $\alpha = 1/2$



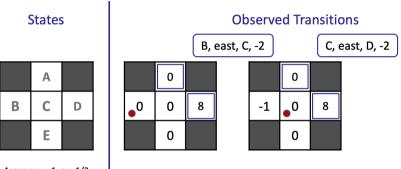
Assume:
$$\gamma = 1$$
, $\alpha = 1/2$

$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma U^{\pi}(s') \right]$$



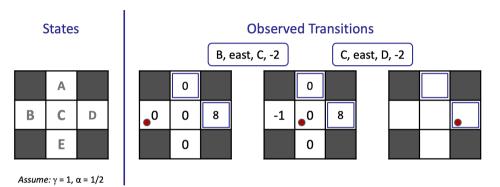
Assume: $\gamma = 1$, $\alpha = 1/2$

$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma U^{\pi}(s') \right]$$

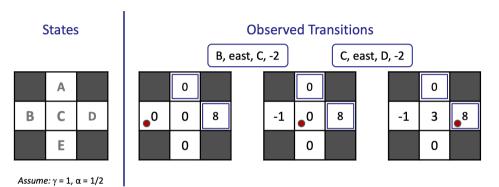


Assume:
$$\gamma = 1$$
, $\alpha = 1/2$

$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma U^{\pi}(s') \right]$$



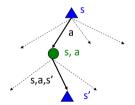
$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha \Big[R(s,\pi(s),s') + \gamma U^{\pi}(s') \Big]$$



$$U^{\pi}(s) \leftarrow (1-\alpha)U^{\pi}(s) + \alpha \Big[R(s,\pi(s),s') + \gamma U^{\pi}(s') \Big]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, it won't work well!
 - Greedy agent (applies simply the learned model)
 - > Optimal actions in the learned and real environments may differ
- Idea: learn an action-utility function Q(s, a) $\pi(s) = \arg \max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U(s')]$
- Makes action selection model-free too!



Active Reinforcement Learning

- Agent updates policy as it learns
- Goal: learn the optimal policy
- Needs to learn a complete transition model with outcome probabilities of *all* actions (not just for fixed policy)
- Learning using the passive ADP agent
 - Estimate the model P(s'|a, s), R(s, a, s') from observations
 - The utilities it needs to learn obey the Bellman equation

$$U^{\pi}(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma U^{\pi}(s')]$$

- Solve using value iteration or policy iteration
- Agent has "optimal" action
- Simply execute the "optimal" action. But should it?

Exploration vs. Exploitation

- The passive approach gives a greedy agent
- Exactly executes the recipe for solving MDPs
- Rarely converges to optimal utility and policy
 - Learned model different from true environment
- What to do?

The Need Room

Trade-off

- Exploitation: Maximize rewards using current estimates
 - $\star\,$ Agent stops learning and starts executing policy
- Exploration: Maximize long term rewards
 - ★ Agent keeps learning by trying out new things

Exploration Function

- Suppose we are using value iteration in an ADP agent
- $\bullet\,$ Alter Bellman equations using optimistic utilities $U^+(s)$

$$U^{+}(s) = \max_{a} f\left(\sum_{s'} P(s'|s, \pi(s))[R(s, \pi(s), s') + \gamma U^{+}(s')], N(s, a)\right)$$

 $N(\boldsymbol{s},\boldsymbol{a})$ – the number of times \boldsymbol{a} has been tried in \boldsymbol{s}

 $f(\boldsymbol{u},\boldsymbol{n})$ – the exploration function (trade-off between greed and curiosity)

- \blacktriangleright should increase in expected utility u
- \blacktriangleright should decrease with number of tries n
- A simple definition

$$f(u,n) = \begin{cases} R^+ & \text{if } n < N_e \\ u & \text{otherwise} \end{cases}$$

 R^+ – an optimistic estimate of the best possible reward obtainable in any state N_e – a fixed parameter

Q-Learning

- Exploration function gives an active ADP agent
- A corresponding TD agent can be constructed
 - Surprisingly, the TD update can remain the same
 - Converges to the optimal policy as active ADP
 - Slower than ADP in practice
- Q-learning learns an action-value function Q(s, a):
 - $Q(s,a) = \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma \max_{a'} Q(s',a')]$
 - Utility values $U(s) = \max_{a} Q(s, a)$
- A model-free TD method
 - No model for learning or action selection

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $U_0(s) = 0$
 - Given U_i calculate the depth i + 1 values for all states: $U_{i+1}(s) \leftarrow \max_a \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma U_i(s')]$
- 0.95
 0.96
 0.98
 1.00

 0.94
 (0.89
 -1.00

 0.92
 (0.91
 0.90
 0.80



- But Q-values are more useful, so compute them instead
 - Start with $Q_0(s, a) = 0$
 - Given Q_i calculate the depth i+1 values for all q-states: $Q_{i+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a)[R(s, a, s') + \gamma \max_{a'} Q_i(s', a')]$

Q-Learning

• We would like to do Q-value updates to each Q-state

 $Q_{i+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a) [R(s, a, s') + \gamma \max_{a'} Q_i(s', a')]$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s, a, r, s')
 - This sample suggests $Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$
- But we want to average over results from (s, a) (Why?)
- So keep a running average

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a')\right]$

Generalizing across states

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - ★ Distance to closest ghost
 - ★ Distance to closest dot
 - ★ Number of ghosts
 - * $1/(\text{dist to dot})^2$
 - ★ Is Pacman in a tunnel? (0/1) etc.
 - A q-state (s, a) can also be described with features (e.g. action moves closer to food)

Approximate Q-Learning

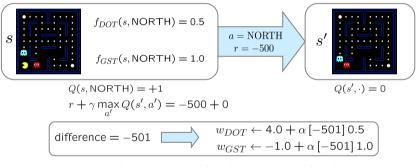
$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Q-learning with linear Q-functions:
 - transition = (s, a, r, s')
 - $difference = \left[r + \gamma \max_{a'} Q(s', a')\right] Q(s, a)$
 - Exact Q's: $Q(s,a) \leftarrow Q(s,a) + \alpha[difference]$
 - Approximate Q-learning: $w_i \leftarrow w_i + \alpha[difference]f_i(s, a)$
- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Source: Berkeley CS188

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$



$$Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$$

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/

Policy search

- Simplest policy search
 - Start with an initial linear value function or Q-function
 - ► Nudge each feature weight up and down and see if your policy is better than before
- Problems
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Summary

- RL is necessary for agents in unknown environments
- Passive Learning: Evaluate a given policy
 - Direct utility estimate by supervised learning
 - ADP learns a model and solves linear system
 - TD only updates estimates to match successor state
- Active Learning: Learn an optimal policy
 - DP using proper exploration function
 - Q-learning using model-free TD approach
- Policy search
 - Simple updates of feature weights in approx Q-learning
 - Better methods (exploit structure, sample wisely, change multiple parameters...)