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Overview

@ Reinforcement Learning (RL) as MDP
o Passive RL

@ Active RL including exploration

o Generalization

@ Policy search

[R&N], Chapter22

These slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/, the

corresponding slides of S. Russel and the slides of D. Klein and P. Abbeel (course Introduction to Artificial Intelligence), http://ai.berkeley.edu/
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Reinforcement Learning
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Basic idea:
@ Receive feedback in the form of rewards
@ Agent's utility is defined by the reward function
@ Must (learn to) act so as to maximize expected rewards

@ All learning is based on observed samples of outcomes!
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Example applications

giraffe, standing,

.
®

(a) Game playing; (b) racing simulators; (c) transferring knowledge from simulators to the real world; (d) robotic tasks (assembling pieces, picking
up, precision tasks...) (e) navigation in various spaces; (f) learning where to look in order to recognize/interpret a captured scene.

K. Arulkumaran et al: Deep Reinforcement Learning: A brief Survey, IEEE Signal Processing Magazine, 2017
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Reinforcement Learning — Problem formulation

o Still assume a Markov decision process (MDP)
> A set of states S (with an initial state s)

» A set A of actions in each state: Actions(s)
» A transition model T'(s,a,s’) = P(s|s,a) and
» A reward function R(s,a,s’) »

e Still looking for a policy 7(s)
@ New twist: don't know 7 or R
> l.e. we don't know which states are good
or what the actions do
» Must actually try
actions and states out to learn

@ MDP computes an optimal policy

@ RL learns an optimal policy
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A categorization of RL algorithms

@ Passive vs Active

» Passive: Agent executes a fixed policy (is told what to do) and evaluates it
» Active: Agent decides what to do and updates policy as it learns

@ Model-based vs Model-free

» Model-based: Learn transition and reward model, use it to get optimal policy
» Model free: Derive optimal policy without learning the model
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A categorization of RL algorithms, cont'd

@ Model-based reinforcement learning

» Use a transition model of the environment to help interpret the reward signals and to
make decisions about how to act
» The model can be

* initially unknown (the agent learns it by observing the effects of its actions)
* known (e.g., knowing the rules of chess without knowing how to make good moves)

@ Model-free reinforcement learning
» Action-utility learning
* Q-learning
» Policy search
* reflex-agent
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Passive Reinforcement Learning
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Goal: evaluate how good a fixed policy 7(s) is
— need to learn the expected utility U7 (s) for each state s

— passive learning agent
— similar task to policy eval. in MDPs but P(s'|s,a) and R(s,a,s’) unknown
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Passive Reinforcement Learning
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Agent executes a sequence of trials:
(1,1).0a~(1,2)-0a~(1,3)-.0a~ (1, 2)-.04~(1, 3) .04~ (2, 3)-.04~ (3, 3)-.04~> (4, 3) 41
(1,1).04~(1,2).04~(1, 3)-.04~(2, 3)-.04~(3, 3)-.04~(3, 2)_.04~(3, 3)-.04~ (4, 3)41
(1,1)-04~(2,1)-.04~(3,1)..04~(3, 2)-04~(4,2).1 .

The goal is to learn
[e.e]
U™(s) = B> 1" R(Si, w(S1), Se1)
t=0
S, is a RV denoting the state reached at ¢ executing , starting from Sy = s
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Direct Evaluation

o ldea:

» The utility of a state = the expected reward-to-go
» Each trial provides a sample of this quantity

@ Practically:

» Act according to 7
» Every time you visit a state, write down

what the sum of discounted rewards turned out to be
» Average those samples

@ This is called direct evaluation or direct utility estimation
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Direct Evaluation: Example

Input Policy Output Values

Assume:y=1
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Direct Evaluation: Example

Input Policy &t Observed Episodes (Training) Output Values
Episode 1

B, east, C, -1
C,east, D, -1
D, exit, x, +10

Assume:y=1
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Direct Evaluation: Example

Input Policy 7t Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10

Assume:y=1
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Direct Evaluation: Example

Input Policy &t Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3

E, north, C, -1

C east, D,-1
Assume:y =1 D, exit, x,+10
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Direct Evaluation: Example

Input Policy &t Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C, east, D,-1 C, east, A -1
Assume: y =1 D, exit, x,+10 A, exit, x,-10
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Direct Evaluation: Example

Input Policy &t Observed Episodes (Training) Output Values

Episode 1 Episode 2

B, east, C, -1 B, east, C, -1 !

C,east, D, -1 C, east, D, -1

D, exit, x, +10 D, exit, x, +10

C

Episode 3 Episode 4 !

E, north, C, -1 E, north, C, -1

C, east, D,-1 C, east, A -1

Assume: y =1 D, exit, x,+10 A, exit, x,-10
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Direct Evaluation: Example

Input Policy &t Observed Episodes (Training) Output Values
Episode 1 Episode 2
B, east, C, -1 B, east, C, -1
C,east, D, -1 C, east, D, -1
D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C, east, D,-1 C, east, A -1
Assume: y =1 D, exit, x,+10 A, exit, x,-10
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Direct Evaluation: Example
Observed Episodes (Training)
Episode 1 Episode 2

Input Policy Output Values

B, east, C, -1 B, east, C, -1

C,east, D, -1 C, east, D, -1

D, exit, x, +10 D, exit, x, +10
Episode 3 Episode 4

E, north, C, -1 E, north, C, -1
C,east, D,-1 C,east, A -1

Assume: y =1 D, exit, x,+10 A, exit, x,-10

Reduced to a standard supervised learning problem with (state, reward-to-go) pairs
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Problems with Direct Evaluation

@ What is good about direct evaluation?

» Easy to understand

» Doesn't require any knowledge of 7', R

» Eventually computes the correct average values,
using just sample transitions

@ What is bad about it?

» It wastes information about state connections

» Each state must be learned separately If B and E both go to C

» So, it takes a long time to learn under this policy, how can
their values be different?

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 18 / 45




Adaptive Dynamic Programming (ADP)

@ A smarter method: make use of Bellman equations to get U™ (s):

:ZP(5’|5,7T(5))[ (s,7m(s),8") + U (s")]

Need to learn P(s'|s, 7(s)) and R(s,7(s),s") from trials
Plug-in learnt transition and reward in the Bellman equations
Solving for U™ (s):
» Solving a system of n linear equations
(Note: Bellman equations are linear when the policy is fixed!)

> Alternatively: modified policy iteration using a simplified value iteration process
(to update the utility estimates after each change to the learned model)

Inefficient if state space is large
(e.g., in Backgammon need to solve ~ 10%° equations in 102° unknowns)

@ ADP is a standard baseline for other RL methods
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Temporal Difference (TD) Learning

@ Does not require the agent to learn the transition model
@ Best of both worlds

» Only update states that are directly affected
» Approximately satisfy the Bellman equations
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Digression: Bellman updates without knowing/learning 7" and R?

@ Simplified Bellman updates calculate U for a fixed policy:
» Each round, replace U with a one-step-look-ahead layer over U
UF(s)=0
U1 (s) 3 P(s']s, 7())[R(s, (s), ') + YUF(s")
» This approaéh fully exploited the connections between the states
Unfortunately, we need 7" and R to do it!

o Key question: how to do this update without knowing 7" and R il A s
and without learning them?
> l.e., how to take a weighted average
without knowing the weights?

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 21 / 45



Digression: Sample-Based Policy Evaluation?

@ We want to improve our estimate of U by computing these averages:

Ta(s) < D P(s'|s,m(s))[R(s,m(s), &) +YUT(s)]

@ Idea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 5}) +AUF(s})
samples = R(s,m(s), 5) +UF (s})
sample, = R(s,m(s),5,) +UF(s})

1
T - Z sample;
i

Credit: P. Abbeel & D. Klein
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Temporal Difference Learning

@ Big idea: learn from every experience!

s
» Update U(s) each time we experience a transition (s, a, s’, )
» Likely outcomes s’ will contribute updates more often m(s)
e Temporal difference learning of values s, m(s)
» Policy still fixed, still doing evaluation!
» Move values toward value of whatever successor occurs: As

running average

sample = R(s,m(s),s")+~U"(s")
U™ (s)

s
1—a)U (s) + a - sample
U™ (s) (

U™(s) + a(sample — U™ (s))
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Temporal Difference Learning: Example

States

oEn

Assume:y=1,a=1/2
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Temporal Difference Learning: Example

States

B
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Assume:y=1,a=1/2

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 25 / 45



Temporal Difference Learning: Example

States Observed Transitions

5] clofflo]o]s]

Assume:y=1,a=1/2
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Temporal Difference Learning: Example

States Observed Transitions

B, east, C, -2

oEn

Assume:y=1,a=1/2
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Temporal Difference Learning: Example

States Observed Transitions

B, east, C, -2

oEn

Assume:y=1,a=1/2

U™(s) ¢ (1 a)U™(s) + o |R(s,n(s), s') + U™ ()]
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Temporal Difference Learning: Example

States Observed Transitions

B, east, C, -2

oEn

Assume:y=1,a=1/2

U™(s) ¢ (1 a)U™(s) + o |R(s,n(s),8') + 10 ()]
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Temporal Difference Learning: Example

States Observed Transitions

B, east, C, -2 C, east, D, -2
5] c|o]

Assume:y=1,a=1/2

U™(s) ¢ (1 a)U™(s) + o |R(s,n(s),8') + 10 ()]
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Temporal Difference Learning: Example

States Observed Transitions

B, east, C, -2 C, east, D, -2

oEn

Assume:y=1,a=1/2

U™(s) ¢ (1 a)U™(s) + o |R(s,n(s),8') + 10 ()]
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Temporal Difference Learning: Example

States Observed Transitions

B, east, C, -2 C, east, D, -2

oEn

Assume:y=1,a=1/2

U™(s) ¢ (1 a)U™(s) + o |R(s,n(s),8') + 10 ()]
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Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, it won't work well!

» Greedy agent (applies simply the learned model)
» Optimal actions in the learned and real environments may differ

Idea: learn an action-utility function Q(s,a)
m(s) = argmax Q(s, a)
a

Q(s,a) = Z P(s'|s,a)[R(s,a,s") +~U(s")] \Sa

Makes action selection model-free too! A 5
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Active Reinforcement Learning

@ Agent updates policy as it learns
@ Goal: learn the optimal policy
@ Needs to learn a complete transition model with outcome probabilities
of all actions (not just for fixed policy)
@ Learning using the passive ADP agent
» Estimate the model P(s'|a,s), R(s,a,s") from observations
» The utilities it needs to learn obey the Bellman equation
U () = e 3 P(S |3, )[R (5,7(s), ) +907 ()
» Solve using value iteration or policy iteration
@ Agent has “optimal” action
@ Simply execute the“optimal” action. But should it?
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Exploration vs. Exploitation

The passive approach gives a greedy agent

Exactly executes the recipe for solving MDPs

Rarely converges to optimal utility and policy
» Learned model different from true environment

What to do?

‘Source: Berkeley CS188

Trade-off

» Exploitation: Maximize rewards using current estimates

* Agent stops learning and starts executing policy
» Exploration: Maximize long term rewards
* Agent keeps learning by trying out new things
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Exploration Function

@ Suppose we are using value iteration in an ADP agent

e Alter Bellman equations using optimistic utilities U (s)
Ut (s) = max f (3 P(s'ls, 7(s)[R(s, 7(s), 8) + U ()], N(s.0))

N (s,a) — the number of times a has been tried in s

f(u,n) — the exploration function (trade-off between greed and curiosity )
» should increase in expected utility u
» should decrease with number of tries n
@ A simple definition
Rt ifn< N,
u  otherwise

flum) = {

R — an optimistic estimate of the best possible reward obtainablein any state
N, — a fixed parameter
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Q-Learning

@ Exploration function gives an active ADP agent
@ A corresponding TD agent can be constructed

» Surprisingly, the TD update can remain the same
» Converges to the optimal policy as active ADP
» Slower than ADP in practice

@ Q-learning learns an action-value function (s, a):
> Qs,a) = X, P(s']s, a)[R(s, a, ') + ymax Q(s', a')]
» Utility values U(s) = max Q(s,a)

@ A model-free TD method
» No model for learning or action selection
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Detour: Q-Value lteration

e Value iteration: find successive (depth-limited) values
» Start with Uy(s) =0
» Given U; calculate the depth i + 1 values for all states:
Uir1(s) < maaXZP(s’Ls, a)[R(s,a,s") +~yU;(s")]

@ But Q-values are more useful, so compute them instead

» Start with Qg (s,a) =0
» Given (); calculate the depth i+ 1 values for all g-states:
Qi+1(57 CL) A Z P(S/‘S, a)[R(’S a, 5/) +’YIII§%X Qi(sl? a‘/)]
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Q-Learning

@ We would like to do Q-value updates to each Q-state
Qiv1(s,a) < > P(s'|s,a)[R(s,a,8") + ymax Q;(s', a’)]

» But can't compute this update without knowing 7', R

@ Instead, compute average as we go
» Receive a sample transition (s, a,r, s)
» This sample suggests
Qs,a) ~  + 7 max Q(s', )
a/
e But we want to average over results from (s,a) (Why?)

@ So keep a running average

Qs,a) « (1 —a)Q(s,a) + a [r + ymax Q(s', )
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Generalizing across states

@ Basic Q-Learning keeps a table of all g-values
@ In realistic situations, we cannot possibly learn about every single state!

» Too many states to visit them all in training
» Too many states to hold the g-tables in memory

@ Instead, we want to generalize:

» Learn about some small number of training states from experience
» Generalize that experience to new, similar situations
» This is a fundamental idea in machine learning
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Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024



Feature-Based Representations

@ Solution: describe a state using a vector of features
(properties)

» Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

» Example features:

* Distance to closest ghost
Distance to closest dot
Number of ghosts
1/(dist to dot)?
Is Pacman in a tunnel? (0/1)
etc.

.
.
.
.
.
.
.
.

[ ]

* % ok

» A g-state (s,a) can also be described with features
(e.g. action moves closer to food)
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Approximate Q-Learning

‘ Q(s,a) = wi fi(s,a) + wafa(s,a) + ... + wy fn(s,a) ‘

@ Q-learning with linear Q-functions:
» transition = (s,a,r,s’)
dif ference = ['r' + ymax Q(s, a’)} —Q(s,a)
a’
Exact Q's:
Q(s,a) < Q(s,a) + a[dif ference]
Approximate Q-learning:
w; < w; + aldif ference] f;(s, a)
@ Intuitive interpretation:
» Adjust weights of active features
» E.g., if something unexpectedly bad happens, blame the
features that were on: disprefer all states with that
state’s features

v

v

v

Source: Berkeley CS188

e Formal justification: online least squares
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Example: Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fgsr(s,a)
N

fpor(s,NORTH) = 0.5

a =NORTH
r = —500

fasr(s,NORTH) = 1.0

%
Q(s,NORTH) = +1 Q) =0

r+ymaxQ(s',a’) = =500 +0
a
difference = —501 :> wpor + 4.0 + a[-501] 0.5
wgsT < —1.0 + a[-501] 1.0

Q(S’ a) - 3OfDOT(S’ a) - 3OfGST(S’ a)

Introduction to Atrtificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/
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Policy search

@ Simplest policy search

» Start with an initial linear value function or Q-function

» Nudge each feature weight up and down and see if your policy is better than before
@ Problems

» How do we tell the policy got better?
> Need to run many sample episodes!
» If there are a lot of features, this can be impractical

@ Better methods exploit lookahead structure, sample wisely, change multiple
parameters. ..
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Summary

@ RL is necessary for agents in unknown environments
@ Passive Learning: Evaluate a given policy

» Direct utility estimate by supervised learning
> ADP learns a model and solves linear system
» TD only updates estimates to match successor state

@ Active Learning: Learn an optimal policy

» DP using proper exploration function
» Q-learning using model-free TD approach

@ Policy search

» Simple updates of feature weights in approx Q-learning
» Better methods (exploit structure, sample wisely, change multiple parameters...)
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