
E016350 - Artificial Intelligence

Lecture 18

Decisions & Action
Reinforcement learning

Aleksandra Pizurica

Ghent University
Fall 2024



Overview

Reinforcement Learning (RL) as MDP

Passive RL

Active RL including exploration

Generalization

Policy search

[R&N], Chapter22

These slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/, the

corresponding slides of S. Russel and the slides of D. Klein and P. Abbeel (course Introduction to Artificial Intelligence), http://ai.berkeley.edu/

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 2 / 45



Reinforcement Learning

Basic idea:

Receive feedback in the form of rewards

Agent’s utility is defined by the reward function

Must (learn to) act so as to maximize expected rewards

All learning is based on observed samples of outcomes!

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 3 / 45



Example applications

(a) Game playing; (b) racing simulators; (c) transferring knowledge from simulators to the real world; (d) robotic tasks (assembling pieces, picking
up, precision tasks...) (e) navigation in various spaces; (f) learning where to look in order to recognize/interpret a captured scene.

K. Arulkumaran et al: Deep Reinforcement Learning: A brief Survey, IEEE Signal Processing Magazine, 2017.

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 4 / 45



Reinforcement Learning – Problem formulation

Still assume a Markov decision process (MDP)
I A set of states S (with an initial state s0)
I A set A of actions in each state: Actions(s)
I A transition model T (s, a, s′) = P (s′|s, a) and
I A reward function R(s, a, s′)

Still looking for a policy π(s)

New twist: don’t know T or R
I I.e. we don’t know which states are good

or what the actions do
I Must actually try

actions and states out to learn

MDP computes an optimal policy

RL learns an optimal policy

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 5 / 45



A categorization of RL algorithms

Passive vs Active
I Passive: Agent executes a fixed policy (is told what to do) and evaluates it
I Active: Agent decides what to do and updates policy as it learns

Model-based vs Model-free
I Model-based: Learn transition and reward model, use it to get optimal policy
I Model free: Derive optimal policy without learning the model

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 6 / 45



A categorization of RL algorithms, cont’d

Model-based reinforcement learning
I Use a transition model of the environment to help interpret the reward signals and to

make decisions about how to act
I The model can be

F initially unknown (the agent learns it by observing the effects of its actions)
F known (e.g., knowing the rules of chess without knowing how to make good moves)

Model-free reinforcement learning
I Action-utility learning

F Q-learning

I Policy search
F reflex-agent

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 7 / 45



Passive Reinforcement Learning

Goal: evaluate how good a fixed policy π(s) is
→ need to learn the expected utility Uπ(s) for each state s

– passive learning agent
– similar task to policy eval. in MDPs but P (s′|s, a) and R(s, a, s′) unknown

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 8 / 45



Passive Reinforcement Learning

Agent executes a sequence of trials:

The goal is to learn

Uπ(s) = E
[ ∞∑
t=0

γtR(St, π(St), St+1)
]

St is a RV denoting the state reached at t executing π, starting from S0 = s
A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 9 / 45



Direct Evaluation

Idea:
I The utility of a state = the expected reward-to-go
I Each trial provides a sample of this quantity

Practically:
I Act according to π
I Every time you visit a state, write down

what the sum of discounted rewards turned out to be
I Average those samples

This is called direct evaluation or direct utility estimation

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 10 / 45



Direct Evaluation: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 11 / 45



Direct Evaluation: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 12 / 45



Direct Evaluation: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 13 / 45



Direct Evaluation: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 14 / 45



Direct Evaluation: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 15 / 45



Direct Evaluation: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 16 / 45



Direct Evaluation: Example

Reduced to a standard supervised learning problem with (state, reward-to-go) pairs

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 17 / 45



Direct Evaluation: Example

Reduced to a standard supervised learning problem with (state, reward-to-go) pairs

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 17 / 45



Problems with Direct Evaluation

What is good about direct evaluation?
I Easy to understand
I Doesn’t require any knowledge of T , R
I Eventually computes the correct average values,

using just sample transitions

What is bad about it?
I It wastes information about state connections
I Each state must be learned separately
I So, it takes a long time to learn

A

B C D

E

+8 +4

-10

-2

If B and E both go to C
under this policy, how can
their values be different?

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 18 / 45



Adaptive Dynamic Programming (ADP)

A smarter method: make use of Bellman equations to get Uπ(s):

Uπ(s) =
∑
s′

P (s′|s, π(s))[R(s, π(s), s′) + γUπ(s′)]

Need to learn P (s′|s, π(s)) and R(s, π(s), s′) from trials

Plug-in learnt transition and reward in the Bellman equations

Solving for Uπ(s):
I Solving a system of n linear equations

(Note: Bellman equations are linear when the policy is fixed!)
I Alternatively: modified policy iteration using a simplified value iteration process

(to update the utility estimates after each change to the learned model)

Inefficient if state space is large
(e.g., in Backgammon need to solve ≈ 1020 equations in 1020 unknowns)

ADP is a standard baseline for other RL methods

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 19 / 45



Temporal Difference (TD) Learning

Does not require the agent to learn the transition model

Best of both worlds
I Only update states that are directly affected
I Approximately satisfy the Bellman equations

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 20 / 45



Digression: Bellman updates without knowing/learning T and R?

Simplified Bellman updates calculate U for a fixed policy:
I Each round, replace U with a one-step-look-ahead layer over U
Uπ0 (s) = 0
Uπi+1(s)←

∑
s′
P (s′|s, π(s))[R(s, π(s), s′) + γUπi (s

′)]

I This approach fully exploited the connections between the states
Unfortunately, we need T and R to do it!

Key question: how to do this update without knowing T and R
and without learning them?

I I.e., how to take a weighted average
without knowing the weights?

p(s)

s

s, p(s)

s, p(s),s’
s’

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 21 / 45



Digression: Sample-Based Policy Evaluation?

We want to improve our estimate of U by computing these averages:

Uπi+1(s)←
∑
s′

P (s′|s, π(s))[R(s, π(s), s′) + γUπi (s
′)]

Idea: Take samples of outcomes s’ (by doing the action!) and average

sample1 = R(s, π(s), s′1) + γUπi (s
′
1)

sample2 = R(s, π(s), s′2) + γUπi (s
′
2)

...

samplen = R(s, π(s), s′n) + γUπi (s
′
n)

Uπi+1 ←
1

n

∑
i

samplei
Credit: P. Abbeel & D. Klein

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 22 / 45



Temporal Difference Learning

Big idea: learn from every experience!
I Update U(s) each time we experience a transition (s, a, s′, r)
I Likely outcomes s′ will contribute updates more often

Temporal difference learning of values
I Policy still fixed, still doing evaluation!
I Move values toward value of whatever successor occurs:

running average

p(s)
s

s, p(s)

s’

sample = R(s, π(s), s′) + γUπ(s′)

Uπ(s) ← (1− α)Uπ(s) + α · sample
Uπ(s) ← Uπ(s) + α(sample− Uπ(s))

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 23 / 45



Temporal Difference Learning: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 24 / 45



Temporal Difference Learning: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 25 / 45



Temporal Difference Learning: Example

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 26 / 45



Temporal Difference Learning: Example

Uπ(s)← (1− α)Uπ(s) + α
[
R(s, π(s), s′) + γUπ(s′)

]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 27 / 45



Temporal Difference Learning: Example

Uπ(s)← (1− α)Uπ(s) + α
[
R(s, π(s), s′) + γUπ(s′)

]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 27 / 45



Temporal Difference Learning: Example

Uπ(s)← (1− α)Uπ(s) + α
[
R(s, π(s), s′) + γUπ(s′)

]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 28 / 45



Temporal Difference Learning: Example

Uπ(s)← (1− α)Uπ(s) + α
[
R(s, π(s), s′) + γUπ(s′)

]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 29 / 45



Temporal Difference Learning: Example

Uπ(s)← (1− α)Uπ(s) + α
[
R(s, π(s), s′) + γUπ(s′)

]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 30 / 45



Temporal Difference Learning: Example

Uπ(s)← (1− α)Uπ(s) + α
[
R(s, π(s), s′) + γUπ(s′)

]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 31 / 45



Problems with TD Value Learning

TD value leaning is a model-free way to do policy evaluation,
mimicking Bellman updates with running sample averages

However, if we want to turn values into a (new) policy, it won’t work well!
I Greedy agent (applies simply the learned model)
I Optimal actions in the learned and real environments may differ

Idea: learn an action-utility function Q(s, a)

π(s) = argmax
a

Q(s, a)

Q(s, a) =
∑
s′
P (s′|s, a)[R(s, a, s′) + γU(s′)]

Makes action selection model-free too!

a

s

s, a

s,a,s’
s’

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 32 / 45



Active Reinforcement Learning

Agent updates policy as it learns

Goal: learn the optimal policy

Needs to learn a complete transition model with outcome probabilities
of all actions (not just for fixed policy)

Learning using the passive ADP agent
I Estimate the model P (s′|a, s), R(s, a, s′) from observations
I The utilities it needs to learn obey the Bellman equation

Uπ(s) = max
a∈A(s)

∑
s′

P (s′|s, π(s))[R(s, π(s), s′) + γUπ(s′)]

I Solve using value iteration or policy iteration

Agent has “optimal” action

Simply execute the“optimal” action. But should it?

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 33 / 45



Exploration vs. Exploitation

The passive approach gives a greedy agent

Exactly executes the recipe for solving MDPs

Rarely converges to optimal utility and policy
I Learned model different from true environment

What to do?

Trade-off
I Exploitation: Maximize rewards using current estimates

F Agent stops learning and starts executing policy

I Exploration: Maximize long term rewards
F Agent keeps learning by trying out new things

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 34 / 45



Exploration Function

Suppose we are using value iteration in an ADP agent

Alter Bellman equations using optimistic utilities U+(s)

U+(s) = max
a

f
(∑

s′

P (s′|s, π(s))[R(s, π(s), s′) + γU+(s′)], N(s, a)
)

N(s, a) – the number of times a has been tried in s

f(u, n) – the exploration function (trade-off between greed and curiosity )
I should increase in expected utility u
I should decrease with number of tries n

A simple definition

f(u, n) =
{ R+ if n < Ne

u otherwise

R+ – an optimistic estimate of the best possible reward obtainablein any state
Ne – a fixed parameter

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 35 / 45



Q-Learning

Exploration function gives an active ADP agent

A corresponding TD agent can be constructed
I Surprisingly, the TD update can remain the same
I Converges to the optimal policy as active ADP
I Slower than ADP in practice

Q-learning learns an action-value function Q(s, a):
I Q(s, a) =

∑
s′ P (s

′|s, a)[R(s, a, s′) + γmax
a′

Q(s′, a′)]

I Utility values U(s) = max
a

Q(s, a)

A model-free TD method
I No model for learning or action selection

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 36 / 45



Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values
I Start with U0(s) = 0
I Given Ui calculate the depth i+ 1 values for all states:
Ui+1(s)← max

a

∑
s′
P (s′|s, a)[R(s, a, s′) + γUi(s

′)]

But Q-values are more useful, so compute them instead
I Start with Q0(s, a) = 0
I Given Qi calculate the depth i+1 values for all q-states:
Qi+1(s, a)←

∑
s′
P (s′|s, a)[R(s, a, s′)+γmax

a′
Qi(s

′, a′)]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 37 / 45



Q-Learning

We would like to do Q-value updates to each Q-state

Qi+1(s, a)←
∑
s′
P (s′|s, a)[R(s, a, s′) + γmax

a′
Qi(s

′, a′)]

I But can’t compute this update without knowing T , R

Instead, compute average as we go
I Receive a sample transition (s, a, r, s′)
I This sample suggests
Q(s, a) ≈ r + γmax

a′
Q(s′, a′)

But we want to average over results from (s, a) (Why?)

So keep a running average

Q(s, a)← (1− α)Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)

]

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 38 / 45



Generalizing across states

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot possibly learn about every single state!
I Too many states to visit them all in training
I Too many states to hold the q-tables in memory

Instead, we want to generalize:
I Learn about some small number of training states from experience
I Generalize that experience to new, similar situations
I This is a fundamental idea in machine learning

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 39 / 45



Example: Pacman

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 40 / 45



Feature-Based Representations

Solution: describe a state using a vector of features
(properties)

I Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state

I Example features:
F Distance to closest ghost
F Distance to closest dot
F Number of ghosts
F 1/(dist to dot)2

F Is Pacman in a tunnel? (0/1)
etc.

I A q-state (s, a) can also be described with features
(e.g. action moves closer to food)

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 41 / 45



Approximate Q-Learning

Q(s, a) = w1f1(s, a) + w2f2(s, a) + ...+ wnfn(s, a)

Q-learning with linear Q-functions:
I transition = (s, a, r, s′)

I difference =
[
r + γmax

a′
Q(s′, a′)

]
−Q(s, a)

I Exact Q’s:
Q(s, a)← Q(s, a) + α[difference]

I Approximate Q-learning:
wi ← wi + α[difference]fi(s, a)

Intuitive interpretation:
I Adjust weights of active features
I E.g., if something unexpectedly bad happens, blame the

features that were on: disprefer all states with that
state’s features

Formal justification: online least squares

Source: Berkeley CS188

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 42 / 45



Example: Q-Pacman

Introduction to Artificial Intelligence of P. Abbeel and D. Klein http://ai.berkeley.edu/

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 43 / 45



Policy search

Simplest policy search
I Start with an initial linear value function or Q-function
I Nudge each feature weight up and down and see if your policy is better than before

Problems
I How do we tell the policy got better?
I Need to run many sample episodes!
I If there are a lot of features, this can be impractical

Better methods exploit lookahead structure, sample wisely, change multiple
parameters. . .

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 44 / 45



Summary

RL is necessary for agents in unknown environments

Passive Learning: Evaluate a given policy
I Direct utility estimate by supervised learning
I ADP learns a model and solves linear system
I TD only updates estimates to match successor state

Active Learning: Learn an optimal policy
I DP using proper exploration function
I Q-learning using model-free TD approach

Policy search
I Simple updates of feature weights in approx Q-learning
I Better methods (exploit structure, sample wisely, change multiple parameters...)

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Reinforcement learning 45 / 45


