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These slides are based on: Andrew Ng and Tengyu Ma: Lecture Notes (CS229) Machine learning https://cs229.stanford.edu/main_notes.pdf

and Moses Charikar and Sanmi Koyejo: (CS221) Artificial Intelligence: Principles and Techniques (Stanford)

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Logistic Regression and Optimization Algorithms 2 / 20

https://cs229.stanford.edu/main_notes.pdf


Outline

1 Optimization in ML

2 Logistic regression

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Logistic Regression and Optimization Algorithms 3 / 20



Optimization in machine learning
Our learning task: determine the parameters (weights) w of a hypothesis hw(x) that
approximates true, unknown function y = f(x).

To find the optimal w we minimize a loss function.
– Why using gradient descent?

Picture credit: N. Azizan R. and B. Hassibi. Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization. ICLR 2019.
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What is the Steepest Direction?

Goal: take a step ∆ : ∆2
1 + ∆2

2 < ε such that Loss(w + ∆) ≤ Loss(w)

min
∆:∆2

1+∆2
2<ε

Loss(w + ∆); w =

[
w1

w2

]
; ∆ =

[
∆1

∆2

]

First-order Taylor expansion

Loss(w+∆) ≈ Loss(w)+ ∂Loss
∂w1

∣∣∣
w

∆1+ ∂Loss
∂w2

∣∣∣
w

∆2 = Loss(w)+∆>∇wLoss(w)

So, for maximum leverage out of moving along ∆:
align ∆ with −∇wLoss(w)

I.e., steepest direction (down) = (negative) gradient direction in a given point
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A visualization of the gradient field

The gradient of a scalar-valued differentiable function of several variables is the vector field
whose value at a point p gives the direction and the rate of fastest increase at that point.

https://en.wikipedia.org/wiki/Gradient
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Gradient in d dimensions

Same reasoning in arbitrary number of directions
In d dimensions, w ∈ Rd and the gradient of the loss function in particular w point:

∇wLoss(w) =



∂Loss
∂w1

(w)
∂Loss
∂w2

(w)

.

.

.
∂Loss
∂wd

(w)


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Weight optimization
We optimize the w ∈ Rd by applying the gradient descent to the training loss:

wj ← wj − α
∂

∂wj
TrainLoss(w1, ..., wd)

Sometimes we write this more compactly as

wj ← wj − α
∂

∂wj
TrainLoss(w)

or in a vector form
w← w − α∇wTrainLoss(w)

Perform update in downhill direction for each coordinate

The steeper the slope (i.e. the larger the magnitude of the derivative)
the bigger the step for that coordinate.
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Gradient descent algorithm
Idea:

Start somewhere

Repeat: Take a step in the gradient direction

Credit: Stanford CS229 Course Notes. Trajectory for gradient descent is like climbing down into a valley
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Optimization procedure: Gradient Descent (GD)

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

L(x, y,w)

init w = [0, . . . , 0]

for iter 1, 2, ...

w← w − α∇wTrainLoss(w)

α: learning rate — tweaking parameter that needs to be chosen carefully

How? Try multiple choices
I Crude rule of thumb: update changes w about 0.1–1%
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Influence of the learning rate

Illustration Credit: Edouard Duchesnay, NeuroSpin CEA Université Paris-Saclay, France.
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Stochastic Gradient Descent (SGD)

TrainLoss(w) =
1

|Dtrain|
∑

(x,y)∈Dtrain

L(x, y,w)

init w = [0, . . . , 0]

for iter 1, 2, ...
I For (x, y) ∈ Dtrain:

w← w − α∇wL(x, y,w)

Motivation:

Gradient descent algorithm is slow: going over all the training examples in each
iteration is expensive when lots of data!

Rather than looping through all the training examples to compute a single
gradient, update the weights based on each example → SGD
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SGD vs. GD

Illustration Credit: Ankit-AI - Sharing AI: Optimization Algorithms for Machine Learning.
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Logistic regression - Reminder
We consider binary classification: to each input
data point x ∈ Rd we assign a class label y ∈ {0, 1}.

Let g(z) denote the logistic (sigmoid) function:

g(z) = Logistic(z) =
1

1 + e−z

For some weight vector w ∈ Rd, the hypothesis

hw(x) = g(w · x) =
1

1 + e−w·x

can be interpreted as the probability that x belongs
to class 1, i.e., the probability that y = 1.
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Logistic regression - Probabilistic interpretation formally

We said: hw(x) = g(w ·x) can be interpreted as the probability that y = 1. Formally:

P (y = 1|x,w) = hw(x)

P (y = 0|x,w) = 1− hw(x)

Or, more compactly:

P (y|x,w) = (hw(x))y(1− hw(x))(1−y)

If the training examples were generated independently, the likelihood of the weights is:

L(w) =
N∏
i=1

P (y(i)|x(i),w) =
N∏
i=1

(
hw(x(i)

)y(i)(
1− hw(x(i)

)1−y(i)

it is easier to maximize the log likelihood:

`(w) = logL(w) =
N∑
i=1

y(i) log hw(x(i)) + (1− y(i)) log(1− hw(x(i))
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Logistic regression under the maximum likelihood optimization

Now we can determine the update rule for the logistic regression by maximizing the
log-likelihood of the weights. This is the most common form of the logistic regression.

Note that now TrainLoss(w) = −`(w), so we are applying the gradient descent
algorithm to −`(w), or equivalently, we are applying the gradient ascent to `(w):

w← w + α∇w`(w)

We start with one training example (x, y):

∂

∂wj
`(w) =

(
y

1

g(w · x)
− (1− y)

1

1− g(w · x)

) ∂

∂wj
g(w · x)

=
(
y

1

g(w · x)
− (1− y)

1

1− g(w · x)

)
g(w · x)(1− g(w · x))

∂

∂wj
(w · x)

= (y(1− g(w · x)) − (1− y)g(w · x))xj

= (y − hw(x))xj
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Logistic regression under the maximum likelihood optimization

The maximum likelihood estimation gives us the following update rule

w← w + α∇w`(w)

where for one training example we derived

∂

∂wj
`(w) = (y − hw(x))xj

Hence, the MLE update rule for the logistic regression, with one example, is

wj ← wj + α(y − hw(x))xj

and with all training examples

wj ← wj + α
∑

(x,y)∈Dtrain

(y − hw(x))xj

Note: Looks exactly the same as for the least-squares linear regression (hw is different)
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Classification losses
Some common losses for binary classification (shown for y = 1).

Logistic loss:
Llogistic(x, y,w) = −`(w) = −y log hw(x)− (1− y) log(1− hw(x))

I For y = 1, this becomes: Llogistic(x, y = 1,w) = log(1 + e−w·x)

Hinge loss:
I Lhinge(x, y = 1,w) = max(1−w · x, 0) (and Lhinge(x, 0,w) = max(1 + w · x, 0))
I This loss is often used with support vector machines (SVM)
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Next time

Multiclass logistic regression

Learning with non-linear features

Decision trees
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