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The slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/; D. Klein &

P. Abbeel: CS188 Artificial Intelligence (Berkeley) and M. Charikar & Koyejo: CS221 Artificial Intelligence: Principles and Techniques (Stanford).
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Logistic regression - Reminder
We consider binary classification: to each input
data point x ∈ Rd we assign a class label y ∈ {0, 1}.

Let g(z) denote the logistic (sigmoid) function:

g(z) = Logistic(z) =
1

1 + e−z

For some weight vector w ∈ Rd, the hypothesis

hw(x) = g(w · x) = 1

1 + e−w·x

can be interpreted as the probability that x belongs
to class 1, i.e., the probability that y = 1.
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Multiclass Logistic Regression

Multi-class linear classification
I A weight vector for each class: wy

I Score (activation) of a class y : wy · x
I Prediction “the highest score wins”: argmax

y
wy ·x

How to turn the scores into probabilities?

z1, z2, z3︸ ︷︷ ︸
original activations

→ ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3︸ ︷︷ ︸
softmax activations

In general, for K classes:
softmax(zi) =

ezi∑K
k=1 e

zk
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Finding the best weights

Maximum likelihood estimation

w∗ = argmax
w
L(w) = argmax

w

N∏
i=1

P (y(i)|x(i),w)

with

P (y(i)|x(i),w) =
e
w
y(i)

·x(i)∑
y
e
w
y(i)

·x(i)

(softmax activations serve as probabilities)
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More complex data

So far we analysed linear regression and linear classification (with logistic regression).
– But in many cases data show nonlinear trends / nonlinear separability.

Can we handle such more complex data with the machinery of linear predictors?
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Linear predictors with nonlinear features

Idea: extract a vector of nonlinear features φ(x) from input x (no matter its
dimension) and feed φ(x) to a linear predictor. It’s going to be non-linear in x!

hw(x) = w · φ(x) hw(x) =
1

1 + e−w·φ(x)
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Quadratic predictors

φ(x) = [1, x, x2] (Example: φ(3) = [1, 3, 9])

hw(x) = [2, 1,−0.2] · φ(x)
hw(x) = [4,−1, 0.1] · φ(x)
hw(x) = [1, 1, 0] · φ(x)

Hypothesis space:
H = {hw(x) = w · φ(x) : w ∈ R3}

Non-linear predictors just by changing φ !

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Piece-wise constant predictors

φ(x) = [1[0 < x ≤ 1],1[1 < x ≤ 2],1[2 < x ≤ 3],1[3 < x ≤ 4],1[4 < x ≤ 5]]
(Example: φ(2.3) = [0, 0, 1, 0, 0])

hw(x) = [1, 2, 4, 4, 3] · φ(x)
hw(x) = [4, 3, 3, 2, 1.5] · φ(x)

Hypothesis space:
H = {hw(x) = w · φ(x) : w ∈ R5}

Expressive non-linear predictors by partitioning the input space.

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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Predictors with periodicity structure

φ(x) = [1, x, x2, cos(3x)]
(Example: φ(2) = [1, 2, 4, 0.96])

hw(x) = [1, 1,−0.1, 1] · φ(x)
hw(x) = [3,−1, 0.1, 0.5] · φ(x)

Hypothesis space:
H = {hw(x) = w · φ(x) : w ∈ R4}

Just throw in any features you want!

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Learning with Nonlinear Features and Decision Trees 12 / 31



Quadratic classifiers

φ(x) = [x1, x2, x
2
1 + x22]

A linear classifier with a hard threshold:

hw(x) = Threshold
(
[2, 2,−1]) · φ(x)

)
is now equivalent to:

hw(x) =
{ 1 (x1 − 1)2 + (x2 − 1)2 ≤ 2

0 otherwise

Decision boundary is a circle.

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)
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In essence, ...

A general concept (kernel trick in SVM)
– We’ll return to it later

Picture credit: Drew Wilimitis: The Kernel Trick in Support Vector Classification

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Learning with Nonlinear Features and Decision Trees 14 / 31



Outline

1 Multiclass classification

2 Learning with nonlinear features

3 Decision trees

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Learning with Nonlinear Features and Decision Trees 15 / 31



Decision trees

Decision trees are able to learn complex, nonlinear relationships between variables,
using a series of simple, intuitive decision rules.

Easy to undersand and interpret. Require little or no data preparation.

Widely used in today’s machine learning approaches.

Example: Should I play tennis today?

A simple idea: start with one test, and depending on its outcome decide what the next
test will be. Continue until a decision is reached.
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Interpretation of a decision tree

Like any supervised ML approach, a decision tree is learned from (x, y) ∈ Dtrain,
where x are the values of some features (or attributes) X and y is the output label.

Internal nodes test a feature Xi

In this tree: X1 = Outlook, X2 = Humidity, X3 =Wind

Branching is determined by the feature value
E.g. x3 = wind ∈ {Strong,Weak}

Leaf nodes are outputs (predictions):
I numerical (regression tree); categorical (classification tree)
I tuple-valued variable (multi-target trees) or P (y|x) (probability estimation trees)
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Case study: “Restaurant domain”

Decide whether to wait for a table in a restaurant depending on the following
attributes (R&N):

1 Alternate (Alt): Is there a suitable alternative restaurant nearby?

2 Bar (Bar): Is there a comfortable bar area in the restaurant, where I can wait?

3 Fri/Sat (Fri): True on Fridays/Saturdays

4 Hungry (Hun): Are we hungry?

5 Patrons (Pat): How many people are in the restaurant (None, Some or Full)

6 Price (Price): the restaurant’s price range ($, $$, $$$)

7 Raining (Rain): Is it raining outside?

8 Reservation (Res): Did we make a reservation?

9 Type (Type): the kind of restaurant (French, Italian, Thai or burger)

10 WaitEstimate (Est): the wait time estimated by the host (0-10, 10-30, 30-60, or>60 min)
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Decision trees

Examples for the restaurant domain R&N, table 19.2 (adapted notation)

Example
Input Attributes Output

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

1 T F F T Some $$$ F T French 0–10 T
2 T F F T Full $ F F Thai 30–60 F
3 F T F F Some $ F F Burger 0–10 T
4 T F T T Full $ F F Thai 10–30 T
5 T F T F Full $$$ F T French >60 F
6 F T F T Some $$ T T Italian 0–10 T
7 F T F F None $ T F Burger 0–10 F
8 F F F T Some $$ T T Thai 0–10 T
9 F T T F Full $ T F Burger >60 F

10 T T T T Full $$$ F T Italian 10–30 F
11 F F F F None $ F F Thai 0–10 F
12 T T T T Full $ F F Burger 30–60 T

Each raw is an example (x(i), y(i)), where the output y(i) is true (T) or false (F).
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Decision trees

Examples for the restaurant domain R&N, table 19.2 (adapted notation)

Each raw is an example (x(i), y(i)), where the output y(i) is true (T) or false (F).
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Decision trees

One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

No  Yes

None Some Full

>60 30−60 10−30 0−10

No  Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF
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Expressiveness

Decision trees can express any function of the input attributes.
E.g., for Boolean functions, truth table row → path to leaf:

FT

A

B

F T

B

A B A xor B
F F F
F T T
T F T
T T F

F

F F

 T

 T  T

Trivially, there is a consistent decision tree for any training set
with one path to leaf for each example (unless f nondeterministic in x)
but it probably won’t generalize to new examples

We prefer to find more compact decision trees
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Expressiveness cont’d

How many distinct decision trees with n Boolean attributes??
= number of Boolean functions
= number of distinct truth tables with 2n rows = 22

n

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 (≈ 1019) trees
With 10 Boolean attributes there are about 10308 trees

More expressive hypothesis space
– increases chance that target function can be expressed ¨̂
– increases number of hypotheses consistent w/ training set

=⇒ may get worse predictions _̈
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Decision tree learning: Idea

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant” attribute as root of (sub)tree:

Start with the whole training set and an empty decision tree

Pick a feature that gives the best split

Split on that feature and recurse on sub-partitions
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Decision tree learning algorithm

The function IMPORTANCE measures the importance of attributes (as explained
next). The PLURALITY-VALUE function selects the most common output value
among a set of examples, breaking ties randomly.
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Choosing attribute tests

Idea: a good (=important) attribute splits the examples into subsets that are (ideally)
“all positive” or “all negative”

None Some Full

Patrons?

French Italian Thai Burger

Type?

Patrons? is a better choice – gives information about the classification
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Information gain

Information answers questions

The more clueless we are about the answer initially, the more information is
contained in the answer

1 bit = answer to Boolean question with prior 〈0.5, 0.5〉
Information in an answer when prior is 〈P1, . . . , Pn〉 is

H(〈P1, . . . , Pn〉) =
n∑
i=1

−Pi log2 Pi

(also called entropy of the prior)
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Information gain, cont’d

Suppose we have p positive and n negative examples at the root
=⇒ H(〈p/(p+ n), n/(p+ n)〉) bits needed to classify a new example

E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets Ei, each of which (we hope) needs less
information to complete the classification

Let Ei have pi positive and ni negative examples
=⇒ H(〈pi/(pi + ni), ni/(pi + ni)〉) bits needed to classify a new example
=⇒ expected number of bits per example over all branches is∑

i

pi + ni
p+ n

H
(〈 pi

pi + ni
,

ni
pi + ni

〉)
For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit
=⇒ choose the attribute that minimizes the remaining information needed
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Information gain cont’d

Decision tree learned from the 12 examples:

No  Yes
Fri/Sat?

None Some Full

Patrons?

No Yes
Hungry?

Type?

French Italian Thai Burger

F T

T F

F

T

F T

Substantially simpler than “true” tree — a more complex hypothesis isn’t justified by
small amount of data
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Some considerations

8
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Tree with tests  
of the form  

X<… or Y<… 

X

Y

4

3

Y < 4

X<4 X<3

yes no

+ -- Y<3

- +

Left: a small tree fits the training data almost perfectly. It can be grown to fit
perfectly (right), but a relatively large area to the right will then be predicted positive,
while the data contains very little evidence for this.
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Next lesson

Perceptron

Neural networks
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