

IN FACULTY OF ENGINEERING

E016350 - Artificial Intelligence Lecture 4

Machine learning Learning with Nonlinear Features and Decision Trees

Aleksandra Pizurica

Ghent University Spring 2024

Outline

- Multiclass classification
- 2 Learning with nonlinear features
- 3 Decision trees

[R&N], Chapter 19

The slides are based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern Approach, (Fourth Ed.), http://aima.cs.berkeley.edu/; D. Klein &

P. Abbeel: CS188 Artificial Intelligence (Berkeley) and M. Charikar & Koyejo: CS221 Artificial Intelligence: Principles and Techniques (Stanford).

Outline

2 Learning with nonlinear features

Logistic regression - Reminder

We consider binary classification: to each input data point $\mathbf{x} \in \mathbb{R}^d$ we assign a class label $y \in \{0, 1\}$.

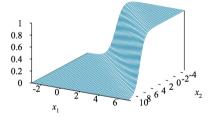
Let g(z) denote the logistic (sigmoid) function:

$$g(z) = Logistic(z) = \frac{1}{1 + e^{-z}}$$

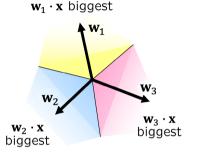
For some weight vector $\mathbf{w} \in \mathbb{R}^d$, the hypothesis

$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

can be interpreted as the probability that \mathbf{x} belongs to class 1, i.e., the probability that y = 1.

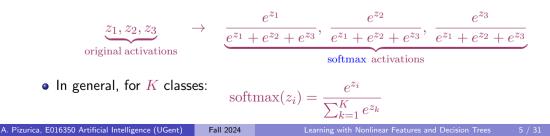


Multiclass Logistic Regression



- Multi-class linear classification
 - A weight vector for each class: w_y
 - Score (activation) of a class $y : \mathbf{w}_y \cdot \mathbf{x}$
 - Prediction "the highest score wins": $\arg \max \mathbf{w}_y \cdot \mathbf{x}$

• How to turn the scores into probabilities?



Finding the best weights

Maximum likelihood estimation

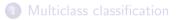
$$\mathbf{w}^* = \arg \max_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \arg \max_{\mathbf{w}} \prod_{i=1}^N P(y^{(i)} | \mathbf{x}^{(i)}, \mathbf{w})$$

with

$$P(y^{(i)}|\mathbf{x}^{(i)}, \mathbf{w}) = \frac{e^{\mathbf{w}_{y^{(i)}} \cdot \mathbf{x}^{(i)}}}{\sum_{y} e^{\mathbf{w}_{y^{(i)}} \cdot \mathbf{x}^{(i)}}}$$

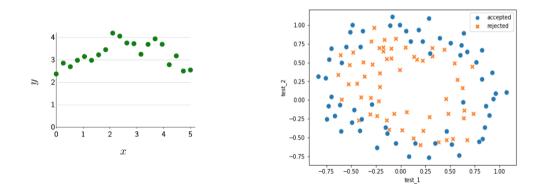
(softmax activations serve as probabilities)

Outline



More complex data

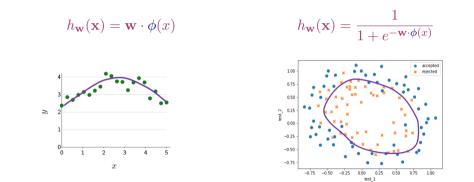
So far we analysed linear regression and linear classification (with logistic regression). - But in many cases data show nonlinear trends / nonlinear separability.



Can we handle such more complex data with the machinery of linear predictors?

Linear predictors with nonlinear features

Idea: extract a vector of nonlinear features $\phi(x)$ from input x (no matter its dimension) and feed $\phi(x)$ to a linear predictor. It's going to be non-linear in x!



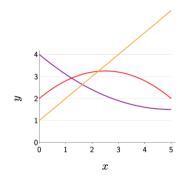
Quadratic predictors

 $\phi(x)=[1,x,x^2]$ (Example: $\phi(3)=[1,3,9]$)

$$h_{\mathbf{w}}(x) = [2, 1, -0.2] \cdot \phi(x)$$

$$h_{\mathbf{w}}(x) = [4, -1, 0.1] \cdot \phi(x)$$

$$h_{\mathbf{w}}(x) = [1, 1, 0] \cdot \phi(x)$$



Hypothesis space: $\mathcal{H} = \{h_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x) : \mathbf{w} \in \mathbb{R}^3\}$

Non-linear predictors just by changing ϕ !

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)

Piece-wise constant predictors

 $\phi(x) = [\mathbf{1}[0 < x \le 1], \mathbf{1}[1 < x \le 2], \mathbf{1}[2 < x \le 3], \mathbf{1}[3 < x \le 4], \mathbf{1}[4 < x \le 5]]$ (Example: $\phi(2.3) = [0, 0, 1, 0, 0]$)

 $h_{\mathbf{w}}(x) = [1, 2, 4, 4, 3] \cdot \phi(x)$ $h_{\mathbf{w}}(x) = [4, 3, 3, 2, 1.5] \cdot \phi(x)$ Hypothesis space:

 $\mathcal{H} = \{h_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x) : \mathbf{w} \in \mathbb{R}^5\}$

Expressive non-linear predictors by partitioning the input space.

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)

5

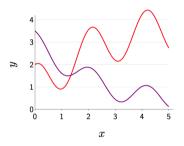
Predictors with periodicity structure

 $\phi(x) = [1, x, x^2, \cos(3x)]$

(Example: $\phi(2) = [1, 2, 4, 0.96]$)

$$h_{\mathbf{w}}(x) = [1, 1, -0.1, 1] \cdot \phi(x)$$

$$h_{\mathbf{w}}(x) = [3, -1, 0.1, 0.5] \cdot \phi(x)$$



Hypothesis space: $\mathcal{H} = \{h_{\mathbf{w}}(x) = \mathbf{w} \cdot \phi(x) : \mathbf{w} \in \mathbb{R}^4\}$

Just throw in any features you want!

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)

Quadratic classifiers

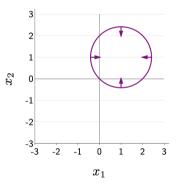
 $\phi(x) = [x_1, x_2, x_1^2 + x_2^2]$

A linear classifier with a hard threshold:

$$h_{\mathbf{w}}(\mathbf{x}) = Threshold\Big([2, 2, -1]) \cdot \phi(x)\Big)$$

is now equivalent to:

$$h_{\mathbf{w}}(\mathbf{x}) = \begin{cases} 1 & (x_1 - 1)^2 + (x_2 - 1)^2 \le 2\\ 0 & \text{otherwise} \end{cases}$$



Decision boundary is a circle.

Slide credit: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford)

In essence, ...



- A general concept (kernel trick in SVM)
 - We'll return to it later

Picture credit: Drew Wilimitis: The Kernel Trick in Support Vector Classification

Outline

1 Multiclass classification

2 Learning with nonlinear features

- Decision trees are able to learn complex, nonlinear relationships between variables, using a series of simple, **intuitive** decision rules.
- Easy to undersand and interpret. Require little or no data preparation.
- Widely used in today's machine learning approaches.

Example: Should I play tennis today?

A simple idea: start with one test, and depending on its outcome decide what the next test will be. Continue until a decision is reached.

A. Pizurica, E016350 Artificial Intelligence (UGent)

Interpretation of a decision tree

Like any supervised ML approach, a decision tree is learned from $(\mathbf{x}, y) \in \mathcal{D}_{train}$, where \mathbf{x} are the values of some features (or attributes) \mathbf{X} and y is the output label.

• Internal nodes test a feature X_i

In this tree: $X_1 = Outlook$, $X_2 = Humidity$, $X_3 = Wind$

• Branching is determined by the feature value

E.g. $x_3 = wind \in \{Strong, Weak\}$

- Leaf nodes are outputs (predictions):
 - numerical (regression tree); categorical (classification tree)
 - \blacktriangleright tuple-valued variable (multi-target trees) or $P(y|\mathbf{x})$ (probability estimation trees)

Case study: "Restaurant domain"

Decide whether to wait for a table in a restaurant depending on the following attributes (R&N):

- Alternate (Alt): Is there a suitable alternative restaurant nearby?
- 2 Bar (Bar): Is there a comfortable bar area in the restaurant, where I can wait?
- S Fri/Sat (Fri): True on Fridays/Saturdays
- Hungry (Hun): Are we hungry?
- Some or Full) Patrons (Pat): How many people are in the restaurant (None, Some or Full)
- Price (Price): the restaurant's price range (\$, \$\$, \$\$\$)
- Raining (Rain): Is it raining outside?
- **(3)** Reservation (*Res*): Did we make a reservation?
- **②** Type (Type): the kind of restaurant (French, Italian, Thai or burger)
- **1** WaitEstimate (Est): the wait time estimated by the host (0-10, 10-30, 30-60, or>60 min)

Examples for the restaurant domain $\mathbb{R}_{\mathbb{K}}^{\mathbb{K}}\mathbb{N}$, table 19.2 (adapted notation)									
Input Attributes									

c -

Input Attributes										Output	
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
5	Т	F	Т	F	Full	\$\$\$	F	Т	French	$>\!60$	F
6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
9	F	Т	Т	F	Full	\$	Т	F	Burger	$>\!60$	F
10	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
11	F	F	F	F	None	\$	F	F	Thai	0–10	F
12	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Each raw is an example $(\mathbf{x}^{(i)}, y^{(i)})$, where the output $y^{(i)}$ is true (T) or false (F).

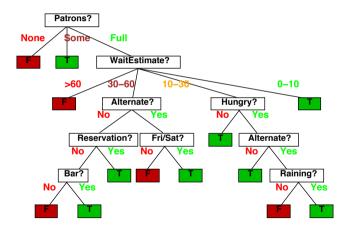
Examples for the restaurant domain R&N, table 19.2 (adapted notation)

	Input Attributes										Output
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
$(\mathbf{x}^{(5)}, y^{(5)})$	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
9	F	Т	Т	F	Full	\$	Т	F	Burger	> 60	F
10	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10–30	F
11	F	F	F	F	None	\$	F	F	Thai	0–10	F
12	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Each raw is an example $(\mathbf{x}^{(i)}, y^{(i)})$, where the output $y^{(i)}$ is true (T) or false (F).

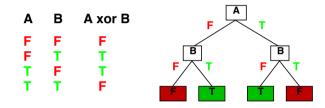
One possible representation for hypotheses

E.g., here is the "true" tree for deciding whether to wait:



Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, truth table row \to path to leaf:



Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in \mathbf{x}) but it probably won't generalize to new examples

We prefer to find more **compact** decision trees

Expressiveness cont'd

How many distinct decision trees with n Boolean attributes??

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}

E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 ($\approx 10^{19}$) trees With 10 Boolean attributes there are about 10^{308} trees

More expressive hypothesis space

- increases chance that target function can be expressed $\ddot{-}$
- increases number of hypotheses consistent w/ training set

 \implies may get worse predictions \H

Decision tree learning: Idea

Aim: find a small tree consistent with the training examples

Idea: (recursively) choose "most significant" attribute as root of (sub)tree:

- Start with the whole training set and an empty decision tree
- Pick a feature that gives the best split
- Split on that feature and recurse on sub-partitions

Decision tree learning algorithm

 $function LEARN-DECISION-TREE(examples, attributes, parent_examples) \ returns \ a \ tree$

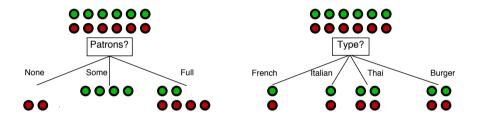
```
if examples is empty then return PLURALITY-VALUE(parent_examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else
```

```
\begin{array}{l} A \leftarrow \operatorname{argmax}_{a \in \ attributes} \ \text{IMPORTANCE}(a, examples) \\ tree \leftarrow a \ \text{new decision tree with root test } A \\ \textbf{for each value } v \ \text{of } A \ \textbf{do} \\ exs \leftarrow \{e : e \in examples \ \textbf{and} \ e.A = v\} \\ subtree \leftarrow \text{LEARN-DECISION-TREE}(exs, attributes - A, examples) \\ add \ a \ branch \ \text{to } tree \ \text{with label} \ (A = v) \ \text{and subtree } subtree \\ \textbf{return } tree \end{array}
```

The function IMPORTANCE measures the importance of attributes (as explained next). The PLURALITY-VALUE function selects the most common output value among a set of examples, breaking ties randomly.

Choosing attribute tests

Idea: a good (=**important**) attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"



Patrons? is a better choice – gives information about the classification

Information gain

- Information answers questions
- The more clueless we are about the answer initially, the more information is contained in the answer
- 1 bit = answer to Boolean question with prior $\langle 0.5, 0.5 \rangle$
- Information in an answer when prior is $\langle P_1,\ldots,P_n\rangle$ is

$$H(\langle P_1, \dots, P_n \rangle) = \sum_{i=1}^n -P_i \log_2 P_i$$

(also called entropy of the prior)

Information gain, cont'd

Suppose we have p positive and n negative examples at the root $\implies H(\langle p/(p+n), n/(p+n) \rangle)$ bits needed to classify a new example E.g., for 12 restaurant examples, p=n=6 so we need 1 bit

An attribute splits the examples E into subsets E_i , each of which (we hope) needs less information to complete the classification

Let E_i have p_i positive and n_i negative examples

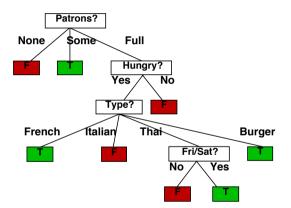
- $\implies H(\langle p_i/(p_i+n_i), n_i/(p_i+n_i)\rangle)$ bits needed to classify a new example
- \implies expected number of bits per example over all branches is

$$\sum_{i} \frac{p_i + n_i}{p + n} H\left(\left\langle \frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i} \right\rangle\right)$$

For *Patrons*?, this is 0.459 bits, for *Type* this is (still) 1 bit \implies choose the attribute that minimizes the remaining information needed

Information gain cont'd

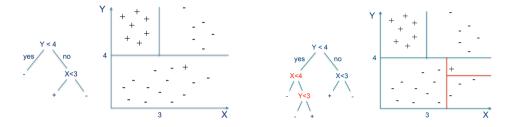
Decision tree learned from the 12 examples:



Substantially simpler than "true" tree — a more complex hypothesis isn't justified by small amount of data

A. Pizurica, E016350 Artificial Intelligence (UGent)

Some considerations



Left: a small tree fits the training data almost perfectly. It can be grown to fit perfectly (right), but a relatively large area to the right will then be predicted positive, while the data contains very little evidence for this.

Next lesson

- Perceptron
- Neural networks