



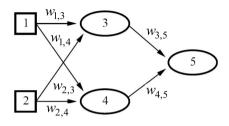
# E016350 - Artificial Intelligence Lecture 6

Machine learning
Neural networks
Part 2

Aleksandra Pizurica

Ghent University Spring 2024

## Feed-forward networks - example



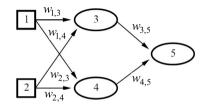
Feed-forward network = a parameterized family of nonlinear functions:

$$a_5 = g(w_{3,5}a_3 + w_{4,5}a_4)$$
  
=  $g(w_{3,5}g(w_{1,3}x_1 + w_{2,3}x_2) + w_{4,5}g(w_{1,4}x_1 + w_{2,4}x_2))$ 

Adjusting weights changes the function: do learning this way!

## Weight matrix

(For simplicity, we assume no bias)

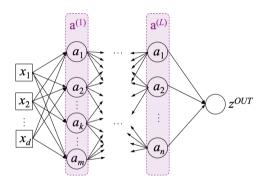


$$a_{5} = g\left(\begin{bmatrix} w_{3,5} & w_{4,5} \end{bmatrix} \begin{bmatrix} a_{3} \\ a_{4} \end{bmatrix}\right) = g\left(\underbrace{\begin{bmatrix} w_{3,5} & w_{4,5} \end{bmatrix}}_{\mathbf{W}^{(2)}} g\left(\underbrace{\begin{bmatrix} w_{1,3} & w_{2,3} \\ w_{1,4} & w_{2,4} \end{bmatrix}}_{\mathbf{W}^{(1)}} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}\right)\right)$$
$$= g\left(\mathbf{W}^{(2)}g\left(\mathbf{W}^{(1)}\mathbf{x}\right)\right)$$

 $\mathbf{W}^{(l)}$  is the weight matrix in the l-th layer. Its rows are the weight vectors. Omitting the layer index:  $\mathbf{W}(j,:) = \mathbf{w_j}^{\top} = [w_{0,j} \dots w_{n,j}].$ 

## Matrix notation for multilayer neural networks

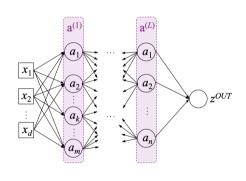
For now still assume no bias (What should change in the equations otherwise?)



$$\mathbf{a}^{(1)} = g(\mathbf{W}^{(1)}\mathbf{x})$$
 $\mathbf{a}^{(2)} = g(\mathbf{W}^{(2)}\mathbf{a}^{(1)})$ 
 $\vdots$ 
 $\mathbf{a}^{(L-1)} = g(\mathbf{W}^{(L-1)}\mathbf{a}^{(L-2)})$ 
 $z^{OUT} = \mathbf{W}^{(L)}\mathbf{a}^{(L-1)}$ 

Regression:  $h_{\mathbf{w}}(\mathbf{x}) = z^{OUT}$ ; Classification:  $h_{\mathbf{w}}(\mathbf{x}) = Threshold(z^{OUT})$  (or feed the output scores to sigmoid or to softmax for multiclass classification)

## Matrix notation for multilayer neural networks

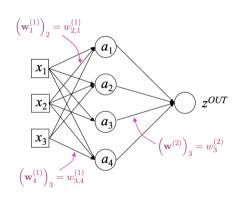


For m neurons in layer i with d inputs:

$$\mathbf{W}^{(i)} = \begin{bmatrix} \mathbf{w}_{1}^{(i)^{\top}} \\ \vdots \\ \mathbf{w}_{m}^{(i)^{\top}} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{(i)} \dots w_{d,1}^{(i)} \\ \vdots \\ w_{1,m}^{(i)} \dots w_{d,m}^{(i)} \end{bmatrix}$$

$$z^{OUT} = \mathbf{W}^{(n)} g \left( \mathbf{W}^{(n-1)} \dots g \left( \mathbf{W}^{(1)} \mathbf{x} \right) \right)$$

## Matrix notation for multilayer neural networks



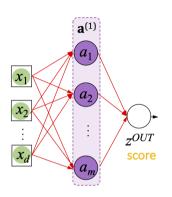
#### For the neural network on the left:

$$\mathbf{W}^{(1)} = \begin{bmatrix} \mathbf{w}_{1}^{(1)^{\top}} \\ \vdots \\ \mathbf{w}_{4}^{(1)^{\top}} \end{bmatrix} = \begin{bmatrix} w_{1,1}^{(1)} & w_{2,1}^{(1)} & w_{3,1}^{(1)} \\ \vdots & & & \\ w_{1,4}^{(1)} & w_{2,4}^{(1)} & w_{3,4}^{(1)} \end{bmatrix}$$

$$\mathbf{W}^{(2)} = \begin{bmatrix} \mathbf{w}^{(2)}^{\top} \end{bmatrix} = \begin{bmatrix} w_1^{(2)} & w_2^{(2)} & w_3^{(2)} & w_4^{(2)} \end{bmatrix}$$

$$\underline{z^{OUT}}_{\mathbf{v},\mathbf{v},\mathbf{v},\mathbf{v}} = \mathbf{w}^{(2)} \cdot g\Big(\mathbf{W}^{(1)}\mathbf{x}\Big) = \mathbf{w}^{(2)^{\top}} g\Big(\mathbf{W}^{(1)}\mathbf{x}\Big)$$

## Two-layer regression neural network



Intermediate problems (learned features):

$$\mathbf{a}^{(1)} \qquad \mathbf{W}^{(1)} \qquad \mathbf{x}$$

$$= g(\mathbf{a}^{(1)} \mathbf{b}^{(1)})$$

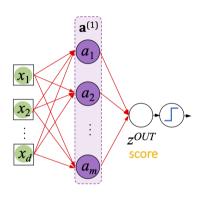
Predictor:

$$h_{\mathbf{W}^{(1)},\mathbf{w}^{(2)}}(\mathbf{x}) = \mathbf{w}^{(2)} \cdot \mathbf{a}^{(1)}$$

Hypothesis class:

$$\mathcal{H} = \{ h_{\mathbf{W}^{(1)}, \mathbf{w}^{(2)}} : \mathbf{W}^{(1)} \in \mathbb{R}^{m \times d}, \mathbf{w}^{(2)} \in \mathbb{R}^m \}$$

## Two-layer classification neural network



Intermediate problems (learned features):

$$\mathbf{a}^{(1)} \qquad \mathbf{W}^{(1)} \qquad \mathbf{x}$$

$$= g(\mathbf{a}^{(1)} \mathbf{b}^{(1)})$$

Predictor:

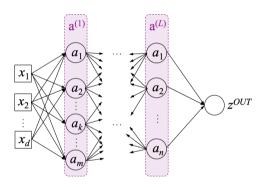
$$h_{\mathbf{W}^{(1)},\mathbf{w}^{(2)}}(\mathbf{x}) = Threshold( \bigcirc \mathbf{v}^{(2)} . \bigcirc \mathbf{a}^{(1)} )$$

Hypothesis class:

$$\mathcal{H} = \{ h_{\mathbf{W}^{(1)}, \mathbf{w}^{(2)}} : \mathbf{W}^{(1)} \in \mathbb{R}^{m \times d}, \mathbf{w}^{(2)} \in \mathbb{R}^m \}$$

## Compact matrix notation for multilayer neural networks

We can use the same compact notation when bias is not omitted



$$\mathbf{a}^{(1)} = g(\mathbf{W}^{(1)}\mathbf{x})$$
 $\mathbf{a}^{(2)} = g(\mathbf{W}^{(2)}\mathbf{a}^{(1)})$ 
 $\vdots$ 
 $\mathbf{a}^{(L-1)} = g(\mathbf{W}^{(L-1)}\mathbf{a}^{(L-2)})$ 
 $z^{OUT} = \mathbf{W}^{(L)}\mathbf{a}^{(L-1)}$ 

• We stipulate: each unit has an extra input from a dummy unit that is fixed to +1 and a weight  $w_{0,i}$  for that input

## Multilayer neural networks in matrix notation

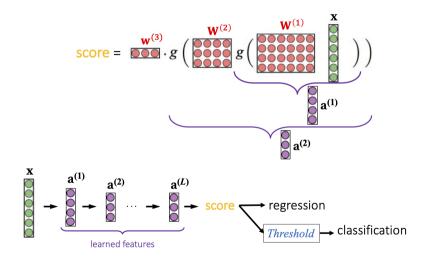
1-layer neural network:

2-layer neural network:

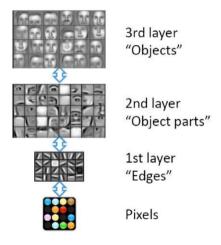
3-layer neural network:

Slide adapted from: M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

## Multilayer neural networks in matrix notation



## Layers represent multiple levels of abstractions



## Optimization in neural networks: A motivating example

Consider regression with a four-layer neural network.

Loss on one example:

$$Loss(\mathbf{x}, y, \mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}, \mathbf{w}^{(4)}) = (\mathbf{w}^{(4)} \cdot g(\mathbf{W}^{(3)}g(\mathbf{W}^{(2)}g(\mathbf{W}^{(1)}\mathbf{x}))) - y)^2$$

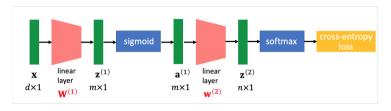
(Stochastic) gradient descent:

$$\begin{split} \mathbf{W}^{(1)} &\leftarrow \mathbf{W}^{(1)} - \alpha \nabla_{\mathbf{W}^{(1)}} Loss(\mathbf{x}, y, \mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}, \mathbf{w}^{(4)}) \\ \mathbf{W}^{(2)} &\leftarrow \mathbf{W}^{(2)} - \alpha \nabla_{\mathbf{W}^{(2)}} Loss(\mathbf{x}, y, \mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}, \mathbf{w}^{(4)}) \\ \mathbf{W}^{(3)} &\leftarrow \mathbf{W}^{(3)} - \alpha \nabla_{\mathbf{W}^{(3)}} Loss(\mathbf{x}, y, \mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}, \mathbf{w}^{(4)}) \\ \mathbf{w}^{(4)} &\leftarrow \mathbf{W}^{(3)} - \alpha \nabla_{\mathbf{w}^{(4)}} Loss(\mathbf{x}, y, \mathbf{W}^{(1)}, \mathbf{W}^{(2)}, \mathbf{W}^{(3)}, \mathbf{w}^{(4)}) \end{split}$$

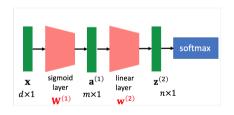
We learned to compute the gradients in the inner layers by backpropagation. Still, this seems very complex!

Easy with automatic differentiation tools that use computation graphs.

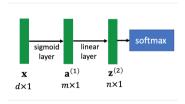
## Digression: How do we typically represent deep neural nets



### Simpler:

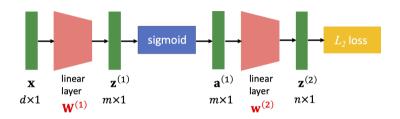


or even simpler:



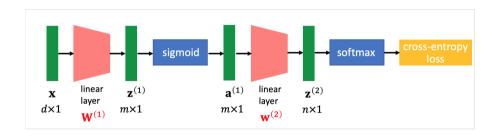
Sergey Levine: Backpropagation - Designing, Visualizing and Understanding Deep Neural Networks.

## Gradient of the loss function



$$\nabla_{\mathbf{w}} Loss = \left(\frac{\partial Loss}{\partial \mathbf{w}}\right)^{\top}$$
$$\frac{\partial Loss}{\partial \mathbf{w}^{(2)}} \in \mathbb{R}^{1 \times n} \; ; \quad \frac{\partial Loss}{\partial \mathbf{W}^{(1)}} \in \mathbb{R}^{m \times d}$$

# Backpropagation



$$\frac{\partial Loss}{\partial \mathbf{W^{(1)}}} = \frac{\partial \mathbf{z^{(1)}}}{\partial \mathbf{W^{(1)}}} \underbrace{\frac{\partial \mathbf{a^{(1)}}}{\partial \mathbf{z^{(1)}}}}_{\mathbf{z^{(1)}}} \underbrace{\frac{\partial \mathbf{z^{(2)}}}{\partial \mathbf{a^{(1)}}}}_{\mathbf{compute first: } \delta} \underbrace{\frac{\partial Loss}{\delta_{init}}}_{\mathbf{update: new } \delta}$$

# Why this recursion?

$$\frac{\partial Loss}{\partial \mathbf{W^{(1)}}} = \frac{\partial \mathbf{z^{(1)}}}{\partial \mathbf{W^{(1)}}} \frac{\partial \mathbf{a^{(1)}}}{\partial \mathbf{z^{(1)}}} \frac{\partial \mathbf{z^{(2)}}}{\partial \mathbf{a^{(1)}}} \frac{\partial Loss}{\partial \mathbf{z^{(2)}}}$$

$$\frac{\partial \mathbf{z}^{(1)}}{\partial \mathbf{W}^{(1)}}, \frac{\partial \mathbf{a}^{(1)}}{\partial \mathbf{z}^{(1)}}, \ \frac{\partial \mathbf{z}^{(2)}}{\partial \mathbf{a}^{(1)}}$$
 are Jacobian matrices

Suppose 
$$m = n$$
 ( $\mathbf{a}^{(i)}$ ,  $\mathbf{z}^{(i)}$  are of size  $n$ )

Both 
$$\frac{\partial \mathbf{a}^{(1)}}{\partial \mathbf{z}^{(1)}}$$
,  $\frac{\partial \mathbf{z}^{(2)}}{\partial \mathbf{a}^{(1)}}$  are  $n \times n$ 

Computing 
$$\frac{\partial \mathbf{a}^{(1)}}{\partial \mathbf{z}^{(1)}} \frac{\partial \mathbf{z}^{(2)}}{\partial \mathbf{a}^{(1)}}$$
 is  $O(n^3)$ !

(AlexNet has layers with n = 4096)

### Make "cheap" computation in each step

Initialize: 
$$\frac{\partial Loss}{\partial \mathbf{z}^{(2)}} = \delta_{init}$$

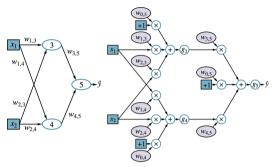
compute: 
$$\frac{\partial \mathbf{z}^{(2)}}{\partial \mathbf{a}^{(1)}} \delta_{init} = \delta$$

$$\frac{\partial Loss}{\partial \mathbf{W}^{(1)}} = \frac{\partial \mathbf{z}^{(1)}}{\partial \mathbf{W}^{(1)}} \underbrace{\frac{\partial \mathbf{a}^{(1)}}{\partial \mathbf{z}^{(1)}}}_{O(n^2)} \delta$$

compute: 
$$\frac{\partial \mathbf{a}^{(1)}}{\partial \mathbf{z}^{(1)}} \delta = \delta_{new}$$

$$\frac{\partial Loss}{\partial \mathbf{W}^{(1)}} = \underbrace{\frac{\partial \mathbf{z}^{(1)}}{\partial \mathbf{W}^{(1)}} \delta_{new}}_{O(n^2)}$$

## Computation graphs

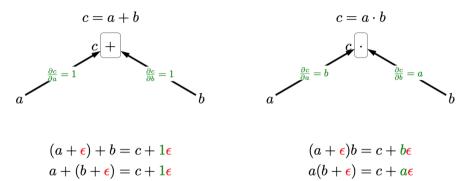


## Definition (Computation graph)

A directed acyclic graph whose root node represents the final mathematical expression and each node represents intermediate subexpressions.

- Automatically compute gradients (how TensorFlow and PyTorch work)
- Gain insight into modular structure of gradient computations

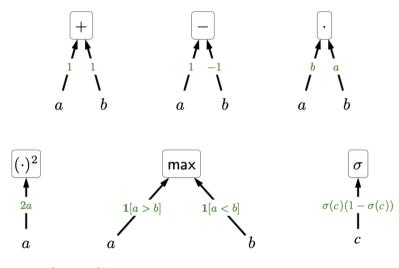
## Computation graphs concepts: Functions as boxes



Gradients: how much does c change if a or b changes?

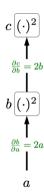
M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

## Basic building blocks of computation graphs



 $\sigma$  denotes sigmoid (logistic) function. M. Charikar & Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

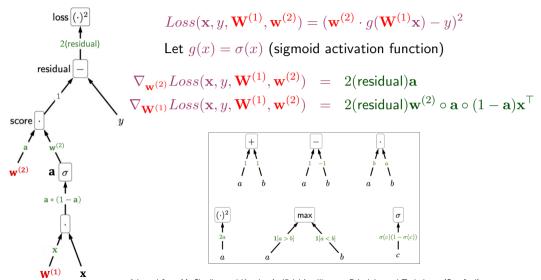
## Function composition



$$\frac{\partial c}{\partial a} = \frac{\partial c}{\partial b} \frac{\partial b}{\partial a} = (2b)(2a) = (2a^2)(2a) = 4a^3$$

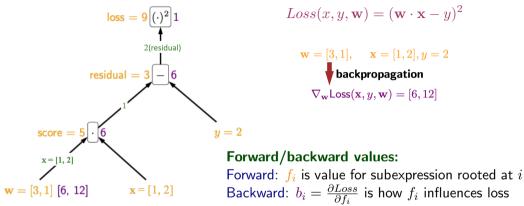
M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

## Two-layer neural networks



Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

## A simple backpropagation example

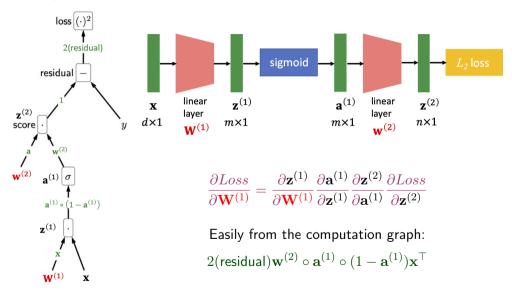


### Backpropagation:

- Forward pass: compute each  $f_i$  (from leaves to root)
- **2** Backward pass: compute each  $b_i$  (from root to leaves)

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

# Backpropagation in neural networks explained



## Cross-entropy loss

In deep learning, commonly we talk about minimizing cross-entropy loss

- $\bullet$  Cross-entropy H(P,Q) is a measure of dissimilarity between the two distributions P and Q
- General definition:

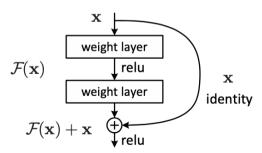
$$H(P,Q) = \mathbb{E}_{z \sim P(z)}[-\log Q(z)] = -\int P(\mathbf{z}) \log Q(\mathbf{z}) d\mathbf{z}$$

- Typically: P is the true distribution over the training examples  $P^*(\mathbf{x}, y)$ , and Q is the predictive hypothesis  $P(y|\mathbf{x}, \mathbf{w})$ 
  - ▶ But we don't know  $P^*(\mathbf{x}, y)$ . We have access to its samples though!
  - ▶ So, approximate the expectation by the sum over the samples
  - Practical approach:

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} - \sum_{j=1}^{N} \log P(y^{(j)}|\mathbf{x}^{(j)}, \mathbf{w}) = \arg\max_{\mathbf{w}} \sum_{j=1}^{N} \log P(y^{(j)}|\mathbf{x}^{(j)}, \mathbf{w})$$

#### Residual neural networks

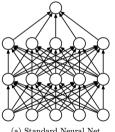
- A popular approach to building very deep neural networks
- Instead of learning the desired mapping  $h(\mathbf{x})$ , the stacked nonlinear layers fit the residual  $\mathcal{F}(\mathbf{x}) = h(\mathbf{x}) \mathbf{x}$ . Hence, the original mapping recast to  $\mathcal{F}(\mathbf{x}) + \mathbf{x}$
- It is easier to optimize the residual mapping than to optimize the original, unreferenced mapping
  - ► Think if an identity mapping were optimal, easier to push residual to zero than to fit identity mapping by a stack of nonlinear layers



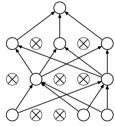
## Regularization in deep neural networks

Some common regularization approaches in deep learning include

- ullet Weight decay: add a penalty  $\lambda \sum_{i,j} w_{i,j}^2$  to the loss function
  - ▶ Not straightforward to interpret the effect of weight decay in neural network
  - Common to use  $\lambda$  near  $10^{-4}$
- Dropout: deactivate a random chosen subset of units in each step of training

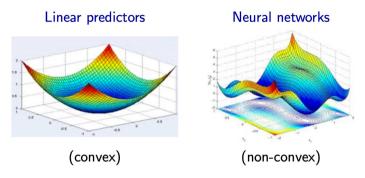


(a) Standard Neural Net



(b) After applying dropout.

## Does stochastic gradient descent (SGD) work for neural networks?

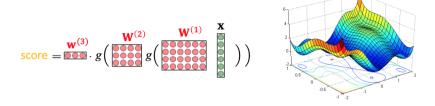


- For neural networks, optimization is hard
- In practice, SGD can work for neural nets much better than the theory predicts

  The gap between theory and practice not well understood yet!

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).

### How to train neural networks



- Careful initialization (random noise, pre-training)
- Overparameterization (more hidden units than needed)
- Adaptive step sizes (AdaGrad, Adam)
- Don't let gradients vanish or explode!

Adapted from M. Charikar and Koyejo: Artificial Intelligence: Principles and Techniques (Stanford).