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Overview

Uncertainty

Probability

Marginalization

Independence and Bayes’ Rule

Inference

[R&N], Chapter 12

This presentation is based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern

Approach, (Fourth Ed.), denoted as [R&N] and the course Artificial Intelligence UC Berkeley
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Why do we need reasoning under uncertainty?

Let At denote the action “leave for airport t minutes before flight”
Will At get me there on time?
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Why do we need reasoning under uncertainty?

Let At denote the action “leave for airport t minutes before flight”
Will At get me there on time?

Purely logical approach

risks falsehood, e.g.,: “A90 gets me on time”

or leads to weak conclusions, e.g.: “A90 gets me on time if no accidents on the
way and it doesn’t rain and I don’t get a flat tire and no meteorite hits the car,
etc.” (success of the plan cannot be inferred)
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Why do we need reasoning under uncertainty?

Consider making a diagnosis for a patient with headache. Many reasons are possible:
sinus problems, eye vision, tense muscles ... A logical rule that attempts to express this:

Headache =⇒ Sinusitis ∨ EyeSight ∨ StiffNeck ∨ Flu ∨ Cancer ∨ ...

Doesn’t work because the list of possible causes is practically unlimited.
The causal rule like StiffNeck =⇒ Headache doesn’t work either (stiff neck
doesn’t always cause headache).

Trying to use logic in these domains fails because

there is too much work to list all the attributes

no complete theory or knowledge

not all the necessary tests can be or have been run
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Probabilistic reasoning as a remedy when logic fails

Logic often fails due to inability to list all the attributes, for different reasons that can
be grouped as follows

In this view, we can say that
probabilistic assertions summarize the effects of “laziness” and “ignorance”
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Probabilistic reasoning

A consistent framework for dealing with degrees of belief
We don’t know for sure the cause to a given manifestation but we know that
there is a certain chance (or probability) of a given cause

(e.g. 80% of patients with toothache have a cavity
→ the patient with a toothache has a cavity with probability 0.8)

Probabilities relate propositions to one’s own state of knowledge e.g.,
P (A120|no reported accidents) = 0.6

Probabilities of propositions change with new evidence, e.g.,
P (A120|no reported accidents ∧ 4am) = 0.8
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Uncertainty and rational decisions

Let At denote the action “leave for airport t minutes before flight”.
Suppose I believe the following:

P (A30 gets me there on time| . . .) = 0.05
P (A120 gets me there on time| . . .) = 0.75
P (A180 gets me there on time| . . .) = 0.95
P (A1440 gets me there on time| . . .) = 0.9999

Which action to choose?
Depends on my preferences for missing flight vs. waiting at the airport.

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Intro to Probabilistic Reasoning 8 / 51



Digression: Maximum expected utility (MEU) principle

Fundamental idea of decision theory: choose an action that yields MEU

Definition (Rational agent and the MEU principle)

An agent is rational if and only if it chooses the action that yields the highest
expected utility, averaged over all the possible outcomes of the action. This is called
the principle of maximum expected utility (MEU).

Let U(s) denote the utility of state s. Expected utility of action a under evidence e is

EU(a|e) =
∑
s

P (Result(a) = s|a, e)U(s)

MEU and rational action under evidence e:

MEU(e) = max
a

EU(a|e); action = arg max
a

EU(a|e)

This is basis for reinforcement learning (Part 2 of the 6-credit version of the course)
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Probability basics and notation

A set Ω – the sample space
e.g., 6 possible rolls of a die.
ω ∈ Ω is a sample point/possible world/atomic event

A probability space or probability model is a sample space
with an assignment P (ω) for every ω ∈ Ω subject to

0 ≤ P (ω) ≤ 1∑
ω P (ω) = 1

e.g., P (1) =P (2) =P (3) =P (4) =P (5) =P (6) = 1/6.

An event A is any subset of Ω

P (A) =
∑
{ω∈A}

P (ω)

E.g., P (die roll < 4) = P (1) + P (2) + P (3) = 1/6 + 1/6 + 1/6 = 1/2
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Probability axioms
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Probability axioms

de Finetti (1931): an agent who bets according to probabilities that violate these
axioms can be forced to bet so as to lose money regardless of outcome.
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Evidence and query variables

Observed (evidence): Agent knows something about the state of the world
(e.g., sensor readings or symptoms)

Unobserved variables: Need to reason about other aspects
I query variables: What the agent is interested in

(e.g. where an object is or what disease is present)
I hidden variables: Other relevant variables in the problem description

(may be useful to answer query)

Model: Agent knows something about
I how the known variables relate to the unknown variables

likelihood model, e.g., sensor model
I the unknown variables (for a particular type of problem)

prior model, e.g., transition model
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Evidence, query and model: Example

A ghost is in the grid
somewhere

Sensor readings tell how close
a square is to the ghost

I on the ghost: red
I 1 or 2 away: orange
I 3 or 4 away: yellow
I 5+ away: green

Sensor readings are noisy!

We know the sensor model: P (Color︸ ︷︷ ︸
evidence

|Distance︸ ︷︷ ︸
query

)

P (red | 3) P (orange | 3) P (yellow | 3) P (green | 3)

0.05 0.15 0.5 0.3

Adapted from D. Klein & P. Abbeel: Artificial Intelligence (UC Berkeley)
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Random variables, events and propositions in AI - practically

Random variable: a variable whose value is affected by some random phenomenon
E.g.,

I D = How long will it take to drive to airport?
I A = Are there reported accidents?
I R = Is it raining?
I L = In which square is the ghost?

Categorization
I discrete

F Boolean (propositional): take only two values {true, false}, i.e., {1, 0} ( E.g., A, R)
F General discrete – countable number of distinct values (E.g., L)

I continuous (E.g., D )

Assignment of a realization to a random variable is an event.
I E.g. R = true. What is the probability of the event ”it rains”?

In AI, event = proposition
For any proposition φ, P (φ) =

∑
ω∈φ P (ω)
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Probability distributions

Temperature: Weather:

Illustration credit: D. Klein & P. Abbeel: Artificial Intelligence (UC Berkeley)
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Probability distributions

Unobserved random variables have distributions

A distribution: table of probabilities of values

A probability is a single number
P (W = rain) = 0.1

Shorthand notation:

P (hot) = P (T = hot)

P (cold) = P (T = cold)

P (rain) = P (W = rain)

. . .

OK if domain entries unique

It holds:
∀x P (X = x) ≥ 0 and

∑
x
P (X = x) = 1
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Joint distributions

A joint distribution over a set of random variables X1, X2, . . . Xn

specifies a real number for each assignment (outcome):

P (X1 = x1, X2 = x2, . . . Xn = xn)

or shorter: P (x1, x2, . . . xn)

Must obey:

P (x1, x2, . . . xn) ≥ 0∑
(x1,x2,...xn)

P (x1, x2, . . . xn) = 1

P(T,W )
T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Size of distribution if n variables with domain sizes d?
I For all but the smallest distributions, impractical to write out!
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Probabilistic Models

A probabilistic model is a joint distribution
over a set of random variables

Probabilistic models:
I (Random) variables with domains
I Assignments are called

outcomes or realizations
I joint distributions:

say whether outcomes are likely
I Normalized: sum to 1.0
I Ideally: only certain variables directly

interact

Distribution over T , W

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Events

An event is a set E of outcomes

P (E) =
∑

(x1,x2,...xn)∈E

P (x1, x2, . . . xn)

From a joint distribution, we can calculate
the probability of any event connected to
(some or all of) the involved variables, e.g.,

I Probability that it’s hot AND sunny?
I Probability that it’s hot?
I Probability that it’s hot OR sunny?

P(T,W )
T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Typically, the events we care about are partial assignments, like P (T = hot),
i.e., probabilistic assertions are usually not about particular atomic events
but about sets of them.
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Quiz: Events

P (x, y) = . . . . . .

P (x) = . . . . . .

P (x ∨ ¬y) = . . . . . .

P(X,Y )
X Y P

x y 0.2

x ¬y 0.3

¬x y 0.4

¬x ¬y 0.1

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Intro to Probabilistic Reasoning 21 / 51



Marginal Distributions
Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): Combine collapsed rows by adding

P (X1 = x1) =
∑
x2

P (X1 = x1, X2 = x2)
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Quiz: Marginal Distributions
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Conditional probabilities

Definition (Conditional probability)

P (a|b) =
P (a, b)

P (b)
if P (b) 6= 0

Product rule gives an alternative formulation:
P (a, b) = P (a|b)P (b) = P (b|a)P (a)

A general version holds for whole distributions, e.g.,
P(T,W ) = P(T |W )P(W )

(View as a 2× 2 set of equations, not matrix multiplication)
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Conditional probabilities

Definition (Conditional probability)

P (a|b) =
P (a, b)

P (b)
if P (b) 6= 0
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Quiz: Conditional probabilities

P(X,Y )
X Y P

x y 0.2

x ¬y 0.3

¬x y 0.4

¬x ¬y 0.1

P (x | y) = . . . . . .

P (¬x | y) = . . . . . .

P (¬y | x) = . . . . . .
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Conditional distributions
Conditional distributions are probability distributions over some variables given
fixed values of others
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Chain rule

Chain rule is derived by successive application of product rule:
P(X1, . . . , Xn) = P(X1, . . . , Xn−1) P(Xn|X1, . . . , Xn−1)

= P(X1, . . . , Xn−2) P(Xn−1|X1, . . . , Xn−2) P(Xn|X1, . . . , Xn−1)
= . . .
=

∏n
i=1P(Xi|X1, . . . , Xi−1)
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Dentist use case

What can a dentist conclude when the steel probe catches in the aching tooth?
Model this by 3 Boolean r.v.s: Catch, Cavity, Toothache

Perceive also Weather as a discrete r.v. (sunny, rainy, cloudy or snow)
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Syntax for propositions

Propositional or Boolean random variables
e.g., Cavity (do I have a cavity?)
Cavity= true is a proposition, also written cavity

Discrete random variables (finite or infinite)
e.g., Weather is one of 〈sunny, rain, cloudy, snow〉
Weather= rain is a proposition
Values must be exhaustive and mutually exclusive

Continuous random variables (bounded or unbounded)
e.g., WaitingT ime= 383.4; also allow, e.g., WaitingT ime < 60.0.

Arbitrary Boolean combinations of basic propositions
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Prior probability

Prior or unconditional probabilities of propositions
e.g., P (Cavity= true) = 0.1 and P (Weather= sunny) = 0.72

correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = 〈0.72, 0.1, 0.08, 0.1〉 (normalized, i.e., sums to 1)

Joint probability distribution for a set of r.v.s gives the
probability of every atomic event on those r.v.s (i.e., every sample point)

P(Weather, Cavity) = a 4× 2 matrix of values:

Weather= sunny rain cloudy snow

Cavity= true 0.144 0.02 0.016 0.02
Cavity= false 0.576 0.08 0.064 0.08

Note: every question about a domain can be answered by the joint distribution
because every event is a sum of sample points
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Probability for continuous variables

For continuous variables, we define the probability that a random variable takes some
value x as a parametrized function of x, e.g.,
P (X =x) = U [18, 26](x) = uniform density between 18 and 26

Here P is a probability density function (pdf) or just density; it integrates to 1.
P (X = 20.5) = 0.125 really means

lim
dx→0

P (20.5 ≤ X ≤ 20.5 + dx)/dx = 0.125
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Conditional probabilities exemplified for the Dentist case

Conditional probabilities express belief given some evidence
e.g., P (cavity|toothache) = 0.8

means 80% chance of cavity given that toothache is all I know
NOT “if toothache then 80% chance of cavity”

If we know more, e.g., that there is no gum disease, we might get
P (cavity|toothache,¬gumdisease) = 0.93

Note: the less specific belief remains valid after more evidence arrives, but is not
always useful

New evidence may be irrelevant, allowing simplification, e.g.,
P (cavity|toothache, kaagentwins) = P (cavity|toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Notation for conditional distributions:
P(Cavity|Toothache) = 2-element vector of 2-element vectors.
We call it conditional probability table (CPT)
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Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where the proposition is true:
P (φ) =

∑
ω∈φ

P (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where the proposition is true:
P (φ) =

∑
ω∈φ

P (ω)

P (toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

Start with the joint distribution:

For any proposition φ, sum the atomic events where the proposition is true:
P (φ) =

∑
ω∈φ

P (ω)

P (cavity ∨ toothache) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
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Inference by enumeration
Start with the joint distribution:

For any proposition φ, sum the atomic events where the proposition is true:
P (φ) =

∑
ω∈φ

P (ω)

Can also compute conditional probabilities:

P (¬cavity|toothache) =
P (¬cavity ∧ toothache)

P (toothache)

=
0.016 + 0.064

0.108 + 0.012 + 0.016 + 0.064
= 0.4
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Inference by enumeration
Start with the joint distribution:

Denominator can be viewed as a normalization constant α

P(Cavity|toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache, catch) + P(Cavity, toothache,¬catch)]

= α [〈0.108, 0.016〉+ 〈0.012, 0.064〉]
= α 〈0.12, 0.08〉 = 〈0.6, 0.4〉

General idea: compute distribution on query variable
by fixing evidence variables and summing over hidden variables
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Inference by enumeration: Summary

Let X denote all the variables in a given problem formulation. Typically, we want:
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be H = X−Y −E (neither query nor evidence vars)

Then we obtain the desired posterior by summing out the hidden variables:

P(Y|E= e) = αP(Y,E= e) = α
∑
h

P(Y,E= e,H=h)

Obvious problems:
1) Worst-case time complexity O(dn) where d is the largest arity
2) Space complexity O(dn) to store the joint distribution
3) How to find the numbers for O(dn) entries???
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Independence

A and B are independent iff
P(A|B) =P(A) or P(B|A) =P(B) or P(A,B) =P(A)P(B)

P(Toothache, Catch, Cavity,Weather)
= P(Toothache, Catch, Cavity)P(Weather)

32 entries reduced to 12

for n independent biased coins P(C1, ..., Cn) =
∏
i P (Ci), so reduction 2n → n

Absolute independence powerful but rare in practice. What to do?
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Conditional independence

P(Toothache, Cavity, Catch) has 23 − 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend on
whether I have a toothache:

(1) P (catch|toothache, cavity) = P (catch|cavity)

The same independence holds if I haven’t got a cavity:
(2) P (catch|toothache,¬cavity) = P (catch|¬cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)

Equivalent statements:
P(Toothache|Catch, Cavity) = P(Toothache|Cavity)
P(Toothache, Catch|Cavity) = P(Toothache|Cavity)P(Catch|Cavity)
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Conditional independence contd.

Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)
= P(Toothache|Catch,Cavity)P(Catch,Cavity)
= P(Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity)
= P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)

I.e., reduced from 23 − 1 = 7 to 2 + 2 + 1 = 5 independent numbers

In most cases, the use of conditional independence reduces the size of the
representation of the joint distribution from exponential in n to linear in n.

The decomposition of large probabilistic domains into weakly connected
subsets through conditional independence is crucial in AI.
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Bayes’ Rule

Product rule P (a ∧ b) = P (a|b)P (b) = P (b|a)P (a)

=⇒ Bayes’ rule P (a|b) =
P (b|a)P (a)

P (b)

or in distribution form

P(Y |X) =
P(X|Y )P(Y )

P(X)
= αP(X|Y )P(Y )

Useful for assessing diagnostic probability from causal probability:

P (Cause|Effect) =
P (Effect|Cause)P (Cause)

P (Effect)

E.g., let M be meningitis, S be stiff neck:

P (m|s) =
P (s|m)P (m)

P (s)
=

0.8× 0.0001

0.1
= 0.0008

Note: posterior probability of meningitis still very small!
A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Intro to Probabilistic Reasoning 43 / 51



Bayes’ Rule and conditional independence
Remember the dentist problem:

P(Cavity|toothache ∧ catch)

= αP(toothache ∧ catch|Cavity)P(Cavity)

= αP(toothache|Cavity)P(catch|Cavity)P(Cavity)

This is an example of a näıve Bayes model:

P(Cause,Effect1, . . . , Effectn) = P(Cause)
∏
i

P(Effecti|Cause)

Total number of parameters is linear in n.
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Example of probabilistic inference: Wumpus world

Each square other than [1,1] contains a pit with probability 0.2
Pits cause breezes in neighbouring squares; B: breeze felt; OK: safe location
Pij = true iff [i, j] contains a pit. The agent dies when entering a square with a pit.
Bij = true iff [i, j] is breezy
Goal: infer where is it safest to move on outside of the explored OK locations.
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Specifying the probability model

The full joint distribution is P(P1,1, . . . , P4,4, B1,1, B1,2, B2,1)

Apply product rule: P(B1,1, B1,2, B2,1 |P1,1, . . . , P4,4)P(P1,1, . . . , P4,4)
(Do it this way to get P (Effect|Cause).)

First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per square:

P(P1,1, . . . , P4,4) =

4,4∏
i,j=1,1

P(Pi,j) = 0.2n× 0.816−n

for n pits.
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Observations and query

We know the following facts:
b = ¬b1,1 ∧ b1,2 ∧ b2,1
known = ¬p1,1 ∧ ¬p1,2 ∧ ¬p2,1

Query is P(P1,3|known, b)

Define Unknown = Pijs other than P1,3 and Known

For inference by enumeration, we have

P(P1,3|known, b) = α
∑

unknown

P(P1,3, unknown, known, b)

Grows exponentially with number of squares!
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Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given
neighbouring hidden squares

Define Unknown = Fringe ∪Other
P(b|P1,3,Known,Unknown) = P(b|P1,3,Known, Fringe)
Manipulate query into a form where we can use this!
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Using conditional independence contd.

P(P1,3|known, b) = α
∑

unknown

P(P1,3, unknown, known, b)

= α
∑

unknown

P(b|P1,3, known, unknown)P(P1,3, known, unknown)

= α
∑
fringe

∑
other

P(b|known, P1,3, fringe, other)P(P1,3, known, fringe, other)

= α
∑
fringe

∑
other

P(b|known, P1,3, fringe)P(P1,3, known, fringe, other)

= α
∑
fringe

P(b|known, P1,3, fringe)
∑
other

P(P1,3, known, fringe, other)

= α
∑
fringe

P(b|known, P1,3, fringe)
∑
other

P(P1,3)P (known)P (fringe)P (other)

= αP (known)P(P1,3)
∑
fringe

P(b|known, P1,3, fringe)P (fringe)
∑
other

P (other)
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Using conditional independence contd.

P(P1,3|known, b) = α′P(P1,3)
∑
fringe

P(b|known, P1,3, fringe)P (fringe)

= α′ 〈0.2(0.04 + 0.16 + 0.16), 0.8(0.04 + 0.16)〉
≈ 〈0.31, 0.69〉

P(P2,2|known, b) ≈ 〈0.86, 0.14〉 (derived equivalently)

Obviously, the agent should avoid [2,2].
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Summary

Probability is a rigorous formalism for uncertain knowledge

Joint probability distribution specifies probability of every atomic event

Queries can be answered by summing over atomic events

For nontrivial domains, we must find a way to reduce the joint size

Independence and conditional independence provide the tools

Next time: Bayesian networks
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