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Overview

Syntax

Semantics

Parameterized distributions

[R&N], Chapter 13

This presentation is based on: S. Russel and P. Norvig: Artificial Intelligence: A Modern

Approach, (Fourth Ed.), denoted as [R&N] and the resource page http://aima.cs.berkeley.edu/
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Bayesian networks

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:

P(Xi|parents(Xi))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over Xi for each combination of parent values
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Example

Network topology encodes conditional independence assertions:

Weather is independent of the other variables
Toothache and Catch are conditionally independent given Cavity
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Example

I’m at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn’t
call. Sometimes it’s set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects “causal” knowledge:
– A burglar can set the alarm off
– An earthquake can set the alarm off
– The alarm can cause Mary to call
– The alarm can cause John to call
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Example contd.
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Compactness

A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of
parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1− p)

If each variable has no more than k parents,
the complete network requires O(n · 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint distribution For burglary net,

1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25 − 1 = 31)

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Bayesian networks 7 / 31



Global semantics

Global semantics defines the full joint distribution as the product of the local
conditional distributions:

P (x1, . . . , xn) =

n∏
i=1

P (xi|parents(Xi))

e.g., P (j ∧m ∧ a ∧ ¬b ∧ ¬e)

= P (j|a)P (m|a)P (a|¬b,¬e)P (¬b)P (¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998

≈ 0.00063
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Local semantics
Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics ⇔ global semantics
A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Bayesian networks 9 / 31



Markov blanket
Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents:
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Constructing Bayesian networks

We need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Nodes: Choose an ordering of variables X1, . . . , Xn

2. Links: For i = 1 to n
add Xi to the network
select parents from X1, . . . , Xi−1 such that

P(Xi|Parents(Xi)) = P(Xi|X1, . . . , Xi−1)

This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) =

n∏
i=1

P(Xi|X1, . . . , Xi−1) (chain rule)

=

n∏
i=1

P(Xi|Parents(Xi)) (by construction)
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Example

Suppose we choose the ordering M , J , A, B, E

P (J |M) = P (J)?
P (A|J,M) = P (A|J)? P (A|J,M) = P (A)? No
P (B|A, J,M) = P (B|A)? Yes
P (B|A, J,M) = P (B)? No
P (E|B,A, J,M) = P (E|A)? No
P (E|B,A, J,M) = P (E|A,B)? Yes
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Example

Compare this network to the one that was given earlier.
Less compact. (Needs 1 + 2 + 4 + 2 + 4=13 numbers)

Deciding conditional independence is hard in noncausal directions.
Assessing conditional probabilities is hard in noncausal directions.
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Example: Car diagnosis

Initial evidence: car won’t start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
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Example: Car insurance
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Compact conditional distributions

CPT grows exponentially with number of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican ⇔ Canadian ∨ US ∨Mexican

E.g., numerical relationships among continuous variables

∂Level

∂t
= inflow + precipitation - outflow - evaporation
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Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes assuming:
1) Parents include all possible causes (can add leak node)
2) Independent failure probability (inhibition probability) qj for each cause alone

With this, the entire CPT can be built using this general rule:

P (xi|parents(Xi)) = 1−
∏

j:Xj=true

qj
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Compact conditional distributions contd.

Example: Suppose there are three possible causes for Fever,
and these are Cold, Flu and Malaria. Let their inhibition probabilities be:

qcold = P (¬fever|cold,¬flu,¬malaria) = 0.6
qflu = P (¬fever|¬cold, flu,¬malaria) = 0.2
qmalaria = P (¬fever|¬cold,¬flu,malaria) = 0.1

Noisy-OR model: P (xi|parents(Xi)) = 1−
∏

j:Xj=true

qj yields the CPT:

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Bayesian networks 22 / 31



Compact conditional distributions contd.

Example: Suppose there are three possible causes for Fever,
and these are Cold, Flu and Malaria. Let their inhibition probabilities be:

qcold = P (¬fever|cold,¬flu,¬malaria) = 0.6
qflu = P (¬fever|¬cold, flu,¬malaria) = 0.2
qmalaria = P (¬fever|¬cold,¬flu,malaria) = 0.1

Noisy-OR model: P (xi|parents(Xi)) = 1−
∏

j:Xj=true

qj yields the CPT:

A. Pizurica, E016350 Artificial Intelligence (UGent) Fall 2024 Bayesian networks 22 / 31



Compact conditional distributions contd.

P (xi|parents(Xi)) = 1−
∏

j:Xj=true

qj

The number of parameters increases linearly with the number of parents.
(O(k) parameters instead of O(2k) for the full CPT)
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Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

Two new types of distributions to specify:
1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)
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Continuous child variables

How to construct conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents?

Most common is the linear Gaussian model, e.g.,:

P (Cost= c|Harvest=h, Subsidy? = true)

= N(ath+ bt, σt)(c)

=
1

σt
√

2π
exp

(
−1

2

(
c− (ath+ bt)

σt

)2
)

Mean Cost varies linearly with Harvest, variance is fixed
Linear variation is unreasonable over the full range

but works OK if the likely range of Harvest is narrow
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Continuous child variables

All-continuous network with LG distributions
=⇒ full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate
Gaussian over all continuous variables for each combination of discrete variable values
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Continuous child variables
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Discrete variable with continuous parents

Probability of Buys? given Cost should be a “soft” threshold:

Probit distribution uses integral of Gaussian:
Φ(x) =

∫ x
−∞N(0, 1)(x)dx

P (Buys? = true|Cost= c) = Φ((−c+ µ)/σ)
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Why the probit?

1. It’s sort of the right shape
2. Can be viewed as hard threshold whose location is subject to noise
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Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

P (Buys? = true|Cost= c) =
1

1 + exp(−2−c+µσ )

Sigmoid has similar shape to probit but much longer tails:
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Summary

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables =⇒ parameterized distributions (e.g., linear Gaussian)
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