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Computer Animation

• What is Animation?
§ Make objects change over time 
according to scripted actions
§ Computer animation is the process 
used for generating animated images 
(moving images) using computer 
graphics 

• What is Simulation?
§ Predict how objects change over time 
according to physical laws.
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First animation

• Persistence of vision: discovered about 1800s
§ Zoetrope or “wheel of life”
§ Flip-book

Source: Wikipedia
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Overview

• Animating using:
§ Key frames
§ Forward kinematics
§ Inverse kinematics
§ Hierarchical kinematics
§ Dynamics

The material partially based on: E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

4



Computer Graphics, A. Pizurica and D. Babin, Spring 2021 5

Keyframing

• Keyframe systems take their name from the traditional 
hierarchical production system first applied by Walt Disney

• Skilled animators would design or choreograph a particular 
sequence by drawing frames that established the animation -
the so-called keyframes

• The production of the complete sequence was then passed on 
to less skilled artists who used the keyframes to produce ‘in-
between’ frames
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• Keyframe is a drawing (image) of a key moment in an 
animation sequence, where the motion is at its extreme

• Inbetweens fill the gaps between keyframes

Keyframe animation
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• In traditional animation, skilled animators draw keyframes; 
less experienced animators draw inbetweens

• In 3D computer animations, animators set up parameter 
values for keyframes; 

• Software interpolates parameter values between 
keyframes for inbetweens

• Every motion is created by animators

Keyframe animation



Computer Graphics, A. Pizurica and D. Babin, Spring 2021 8

Inbetweening: interpolating positions

• Given positions:

• find a curve                       

• such that
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Linear Interpolation
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Polynomial Interpolation

• An n-degree polynomial can interpolate any n+1 points. 

• The Lagrange formula gives the n+1 coefficients of an n-degree 
polynomial that interpolates n+1 points. 

• The resulting interpolating polynomials are called Lagrange polynomials. 
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Lagrange polynomials

Source: Wikipedia
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Spline Interpolation

• Lagrange polynomials of small degree are fine but high degree 
polynomials are too wiggly. 

• Spline (piecewise cubic polynomial) interpolation produces nicer 
interpolation.
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Interpolation of Positions

• We want to support general constraints: not just smooth 
velocity and acceleration. 

• For example, a bouncing ball does not always have 
continuous velocity:
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Interpolating angles

• Given angles

• find curve         

• such that

( , ),  0, ,i it i nq = !

( )tq

( )i itq q=

• Angle interpolation is ambiguous.  

• Different angle measurements will produce different motion

0q
1q

2q
2q



Computer Graphics, A. Pizurica and D. Babin, Spring 2021 15

View interpolation problem statement:
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Solution:
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View interpolation example
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View interpolation example
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Keyframing drawbacks

• The keyframing approach carries certain disadvantages:
§ It is suitable for simple motion of rigid bodies
§ Care must be taken to ensure that no unwanted motion is 
introduced by the interpolation.

• None the less, interpolation of key frames remains 
fundamental to many animation systems
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Kinematics and Dynamics

• Kinematics: 
• Motion parameters such as position, velocity and  acceleration 
are specified without reference to the forces.

• Inverse kinematics:
• Initial and final positions of objects at  specified times and from 
that motion parameters . 

• Dynamics: 
• The forces that produce the velocities and accelerations are
specified (physically based modeling).

• It uses laws such as Newton’s laws of motion, Euler or Navier -
Stokes equations.
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Animating Articulated Structures

• The characters themselves are constructed  out of skeletons 
which resemble the articulated structures found in robotics

• Articulated figure: a structure consisting of rigid links connected 
at joints

• Degrees of freedom (DOF): The number of independent joint 
variables specifying the state of the  structure

• End Effector: end of a chain of links, e.g. a hand or a foot

• State vector: set of independent parameters which define a 
particular state of the articulated structure. 

• E.g. state vector Q = (Q1, Q2, ..., QN) has N degrees of freedom. 
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Forward Kinematics

• In forward kinematics the motion 
of all the joints in the structure are 
explicitly specified which yields the 
end effector position

• The  end effector position X is a 
function of the state vector of the  
structure:

𝑋 = 𝑓(𝑄)
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Example: 2-Link Structure

• Consider 2 links connected by rotational joints

• Links can only move in the plane of the page

“End-Effector”

X=(x, y)

(0, 0)
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Forward Kinematics

• Animator specifies joint angles: Q1 and Q2

• Computer finds positions of end-effector: X

X=(x, y)

(0, 0)

X=(l1cosQ1+ l2cos(Q1+Q2), l1sinQ1+ l2sin(Q1+Q2))
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Forward Kinematics

• Joint motions can be specified by Spline Curves

X=(x, y)

(0, 0)
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Forward Kinematics

• Joint motions can be specified by initial conditions and 
velocities

X=(x, y)

(0, 0) ( ) ( )

1.02.1

2500600

21

21

-=
Q

=
Q

°=Q°=Q

dt
d

dt
d



Computer Graphics, A. Pizurica and D. Babin, Spring 2021 27

Inverse Kinematics

• In inverse kinematics (also known as "goal directed motion") 
the end effector's position is all that is defined

• Given the end effector position, we must  derive the state 
vector of the structure which produced that end effector 
position

• Thus the state vector is given by: 

𝑄 = 𝑓'((𝑋)
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Inverse Kinematics

• Given the end-effector position (x,y) 
we can find the joint angles Q1 and 
Q2
§ Once again use simple geometry

• Increasing degrees of freedom 
allows more motion, but makes the 
geometry more difficult (for inverse 
kinematics, there will be multiple 
solutions)

• Suppose you want the robot to pick 
up a can of oil to drink. How?
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Example: 2-Link Structure

• What If Animator Knows Position of “End-Effector”

“End-Effector”

X=(x, y)

(0, 0)
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Inverse Kinematics

• Animator specifies end-effector position X

• Computer finds joint angles: Q1 and Q2

X=(x, y)

(0, 0)
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Inverse Kinematics

• End-Effector positions can be specified by spline curves

X=(x, y)

(0, 0)
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Inverse Kinematics

• Problem for More Complex Structures
§ System of equations is usually under-defined
§ Multiple solutions

X=(x, y)

(0, 0)
Three unknowns: Q1, Q2,Q3

Two equations: x, y
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What makes inverse kinematics hard

• Redundancy

X=(x, y)

(0, 0)
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Inverse Kinematics

• Solution for More Complex Structures
§ Find best solution (e.g., minimize energy in motion)
§ Non-linear optimization

X=(x, y)

(0, 0)
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Hierarchical models

• When animation is desired, objects may have parts that move 
with respect to each other
§ Object represented as hierarchy
§ Often there are joints with motion constraints
§ Example: represent wheels of car as sub-objects with rotational 
motion
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Directed Acyclic Graph (DAG) models

• Could use tree to represent 
object

• DAG (directed acyclic graph) 
is better: can re-use objects

• Note that each arrow needs 
a separate modeling 
transform

• In object-oriented graphics, 
also need motion constraints 
with each arrow
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Example: Robot

• Traverse tree (or DAG) using DFS (or BFS)

• Push and pop matrices along the way
(e.g. left-child right-sibling)
(joint position parameters?)
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Example: Character
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Example: Walk Cycle

• Leg:

Hip

Knee

Foot

Upper Leg

Ankle

Lower Leg

Hip Rotate

Hip Rotate + Knee Rotate

Upper Leg (Hip Rotate)

Foot (Ankle Rotate)

Lower Leg (Knee Rotate)
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• Hip Joint Orientation:

Example: Walk Cycle
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Example: Walk Cycle

• Knee Joint Orientation :
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• Ankle Joint Orientation:

Example: Walk Cycle



Computer Graphics, A. Pizurica and D. Babin, Spring 2021 43

Dynamics

• Simulation of physics insures realism of motion
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Space Time Constraints

• Animator Specifies Constraints
§ What the character’s physical structure is (e.g. articulated 
figure)
§ What the character has to do (e.g., jump from here to there 
within time t)
§ What other physical structures are present (e.g. floor to push 
off and land)
§ How the motion should be performed (e.g. minimize energy).
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Space Time Constraints

• Compute the optimal physical motion satisfying constraints

• Example: particle with jet propulsion
§ x(t) is position of particle at time t
§ f(t) is force of jet propulsion at time t
§ Particle’s equation of motion is:

§ Suppose we want to move from a to b within t0 to t1

with minimum jet fuel:
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Space Time Constraints

• Discretize Time Steps
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Space Time Constraints

• Solve with iterative 
optimization methods
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Space Time Constraints

• Advantages:
§ Free animator from having to specify details of physically 
realistic motion with spline curves
§ Easy to vary motions due to new parameters and/or new 
constraints

• Challenges:
§ Specifying constraints and objective functions
§ Avoiding local minima during optimization


