h FACULTY OF ENGINEERING
Il | AND ARCHITECTURE

E016712: Computer Graphics

Animation Part 2

Lecturers: Aleksandra Pizurica and Danilo Babin

GHENT
UNIVERSITY

Overview
H B

e Animating using:
= Motion capture
" Free form deformation
" Level sets
= Skeletons
= Boids

= Particle systems

The material partially based on: E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Typical Character

SKELETON JOINTS FACIAL ANIMATION

Joints are used to creote o fromework
for o charocter's hierarchy. The rototion
of the skeleton joints defines the motion
of the choracter; you con use inverse
kinemaotics for even more control.

Yo onimote focial feotures, you con use

deformers such as Blend Shape to creote
focicl poses thot con be used for tolking
and for showing emotion.

KINEMATICS
CHARACTER CONTROLS

To control your skeleton joints, you
con choose from forward or inverse
kinemotics. Forward Kinematics allows
you to set the joint rotations directly.
IK ollows you to position IK Mondles,
which rototes the joints.

Using animation techniques such os Set
Driven Key and expressions, you can set up
attributes for controlling different ports
of o charocter. For exomple, 0 hond joint
could have ottributes used to control the
different finger joints.
CONSTRAINTS BOUND SURFACES
It is possible to constrain the kinemotic
controls of o skeleton to objects in your
scene or even simple locators. You con then
animate the constraint weights to moke o
character pick something up or grab hold of
o fixed object.

Surfaces of o choracter's skin and clothing
con be either porented or bound to the
skeleton joints to moke them move togeth-
er. Binding ploces points from o surfoce
into clusters thot ore then ossocioted with
particulor joints.

SELECTION HANDLES
)) _ * DEFORMERS
Selection Handles give you quick access to *

parts of o character's hierarchy that are to Yo help the surfoces bend realistically
be onimoted. This mokes it eosier to work ot joints, deformers such os flexors
with o chorocter after it has been rigged ond influence objects con be used.
up for animotion,

Computer Graphics, A. Pizurica and D. Babin, Spring 2021 3

Motion Capture

e More realistic motion
sequences cah be @
generated by Motion o ——"q
Capture S

e Attach joint position

indicators to real actors 3 A
Y, ¢
e Record live action
o e
@, O
& | {O

Computer Graphics, A. Pizurica and D. Babin, Spring 2021 4

Motion Capture

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Soft object animation

e Soft object is an object that can be deformed by the user or
during the process of animation.

e Shape distortion to highlight dynamic interaction with the
environment.

e Free Form Deformation (FFD) is part of the computer graphics
literature on soft objects

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Soft object animation
B B

e Examples:

= Deform the shape of a car during a collision in a racing
simulation

= Realistic deformation of an object that has a highly elastic and
flexible shape

" Facial expressions, motion of the human body, and cartoon
animation

e Deformation of an object occurs by moving the vertices of a
polygonal object or the control points of a parametric curve

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Free Form Deformation (FFD)

 Deform space by deforming a lattice around an object

4#—
—

 The deformation is defined by moving the control points

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Free Form Deformation (FFD)
H B

A two-dimensional Bézier surface can be defined as a parametric surface
where the position of a point p as a function of the parametric coordinates u,

““\\\\ \
%‘%““.“‘“\\‘\\\\

SRR N
O
BN .

vis given by: [}

p(u,v) = B} (u) B} (v) ki

1=0 3

n o m
=0

evaluated over the unit square, where

n . .
— (n—1
Br(w) = () w'(1-u)
. . . 1
is a Bernstein polynomial, and
' 0.8}
n — n: Sample Bézier surface; red — control points, blue — =~
. 0.6
1 2! (n — Z)' control grid, black — surface approximation

is the binomial coefficient. |

0.2+

k; are control points

4

0.2 0.4 0.6 0.8 1

Bernstein basis polynomials for 4th =~

. Source: Wikipedia
degree curve blending

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Free Form Deformation (FFD)

The lattice defines a Bezier volume

pav,w) =) BaB®BWky
i,jk
1. Compute lattice coordinates

(u,v,w)

2. Alter the control points
kijk

3. Compute the deformed points

(u,v,w)

p(u, v, w)

Computer Graphics, A. Pizurica and D. Babin, Spring 2021 10

FFD Example

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

11

FFD Example

- S— |.............|.Jw|.||.||||||||...

12

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

FFD Animation

Animate a reference and a deformed lattice

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

reference deformed

morphed

[SRiiiaiis

13

FFD Animation

Animate the object through the lattice

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

reference deformed morphed
]] ;\lﬁ ’1 !‘ |

{

14

Level sets
N
= Curve propagation based on internal and external energies

" Yield smooth segmentation results

=

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

15

Level sets

Copyright (c) 2006 - Paul Macklin
http://math.uci.edu/~pmacklin/

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

16

Level set morphing

" Important for computer animation.
= Simulating smooth transitions and material behavior.

Screencast=0:Matic*fcom

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

17

Skeletons

e Skeleton with joined “bones”
e Can add “skin” on top of bones

e Automatic or hand-tuned
skinning

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

18

Skeletons in animation
H

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

| Screencast-O-Matic.com

19

Skeletons in animation
H

e

Screencast=0:Matic*com

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

20

Swarms
H B

= QOrganic movement of large groups (flocks of birds, school of fish)

/ 7 - A_ » >

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Swarms

e A swarm sometimes seems to behave as if it is an individual
organism. Ants or wasps on a hunt for food, or on the attack,

behave as if with a single mind, co-ordinating different actions
with different parts of the swarm.

e A swarm (of ants/bees/locusts) often exhibits behaviours that
seem clearly more intelligent than any of the individual members
of it.

e The way in which swarms in some species change direction is
astoundingly well co-ordinated.

e The way in which swarms in some species avoid obstacles seems
to be extremely well choreographed

Computer Graphics, A. Pizurica and D. Babin, Spring 2021 22

Boids

e Craig Reynolds is a computer graphics researcher, who
revolutionised animation in games and movies with his classic

paper :

e Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed
Behavioral Model, in Computer Graphics, 21(4) (SIGGRAPH '87
Conference Proceedings) pages 25-34.

e Reynold’s solved the problem by trying a very simple approach,
which was inspired by a sensible view of how animals actually do it.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021 23

Reynold’s Rules

e Reynolds came up with three simple rules that solve this
problem, resulting in entirely realistic flocking behaviour.

e To explain them, we first need to consider the perceptual
system of an individual (which Reynolds called a boid).

e For realistic movement, you need a realistic view of
perception, e.g. a starling’s movement is not influenced at all
by the flock mates that it cannot see — such as those out of its
line of sight, or too far away.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021 24

A simple sensory system

e The boid can see a certain amount
ahead, and is also aware of any
flockmates within limits on either
side.

e Two parameters, angle and
distance, define the system.

e The boid will only be influenced by
those others it can sense according
to these parameters.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

25

Rule 1: Separation

e At each iteration, adjust
velocity to avoid getting
too close to local (the
ones it is aware of)
flockmates.

e “Personal space” rule -

move away sharply from
very close neighbours.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

26

Rule 2: Alignment

e At each iteration, a boid
adjusts its velocity to
match the average
velocity of its local
flockmates.

e |n other words, boids
align themselves to their
neighbors’ average
direction.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

27

Rule 3: Cohesion

e At each iteration, a boid
adjusts its velocity

towards the centroid of
its flockmates.

e |n other words, boids try
to move to the middle of
their local
neighbourhood group

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

- .\\
/ -
R
/
'l
'l'
,l
’
'
J
' |
|
A |
J
i
\
\
|
A
|
|
‘\
\‘\
\
\l
\
\

\
N

\\
\
\\
\
.
)\
A
|
’
J

/

\
|

J
J

28

Boids: Demo

1 Total Boid

Particle systems

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Real-time Fluids
H B

e Computational Fluid Dynamics (CFD):

= Apply only to the surface of the
water (cheaper to compute than the
whole volume)

e Other techniques:

= Superimpose sine waves of a variety
of amplitudes and directions.

= Heightfield approximations: if the
surface is the only interest, it can be
represented using a 2d heightfield
and animated by 2d wave equations
with interaction forces.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

ids

ime Flu

-t

Real

<
S
(0]
O —
m.a
o &
© On
0w ©
L oo
= <
v
mu
- £
v -
> »
(Vo IS
ma
o O
.-—UO
« O
M o
o on
L 2

©
()]
©
<
o
-
()
| -
Q
)
ﬁWa
G
@)
i)
c
>
@)
©

0
§=
c
(2]
©
Q
()
| -
o
m-I
o
!
=
¥e!
©
m’
i
o
=
o

(2]
8
=
=

32

| Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Fluid Simulation Example

e Gravity: pull of force to
the ground.

= Value O means no
gravity, so particles fly
away.

Elasticity: loss of energy
after the contact with
the surface.

= Value 1 means that
particle will bounce
indefinitely, value O
means it will not bounce
at all.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Size of particle
3

Gravity
0.2

Elasticity
0.5

Flow rate
1

Color

Restart
Play

33

Fluid Simulation Example

e Gravity: pull of force to
the ground.

= Value O means no
gravity, so particles fly
away.

Elasticity: loss of energy
after the contact with
the surface.

= Value 1 means that
particle will bounce
indefinitely, value O
means it will not bounce
at all.

Size of particle
3

Gravity
0.2

Elasticity
0.5

Flow rate
1

Color

Restart

Pause

Screencast-O-Matic.com

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Types of Particle Systems
H B
e Stateless Particle System

" Particle data is computed from birth to death by a closed form
function defined by a set of start values and a current time (does
not react to dynamic environment)

e State Preserving Particle System

= Uses numerical iterative integration methods to compute
particle data from previous values and changing environmental
descriptions.

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

35

Stateless Particle Systems

e Stateless Simulation —
Computed particle data by
closed form functions

= No reaction on
dynamically changing
environment.

= No storage of varying data

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

—

grass

36

Particle Life Cycle

e Generation — Particles are generated randomly within a
predetermined location.

e Particle Dynamics — The attributes of a particle may vary over
time (e.g. color gets darker as particle cools off after explosion)

e Extinction
= Age — Time the particle has been alive
" Lifetime — Maximum amount of time the particle can live.

e Premature Extinction:
" Running out of bounds (e.g. particle gets too dark to see)
= Hitting an object (ground)
= Attribute reaches a threshold (particle becomes transparent)

I Computer Graphics, A. Pizurica and D. Babin, Spring 2021 37

Rendering
H B

e Expensive to render thousands of particles

e Simplify: avoid hidden surface calculations
= Each particle has small graphical primitive (blob)

e Particles that map to the same pixels are additive
= Sum the colors together
* No hidden surface removal

= Motion blur is rendered by streaking based on the particles
position and velocity

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

38

State Preserving Algorithm

Rendering Passes:

e Process Birth and Deaths
e Update Velocities

e Update Positions

e Sort Particles for alpha blending (optional, takes multiple
passes)

e Render particles

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

39

Birth and Death

e Birth = allocation of a particle
= Associate new data with an available index
= Serial process (offloaded to CPU)
= |nitial particle data determined (on CPU)

e Death = deallocation of a particle
" Frees the index associated with particle
= Extra pass to move any dead particles
" |n practice particles fade out or fall out of view

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

40

Update Velocities

e Global Forces
= \Wind
= Gravity

e Local Forces
= Attraction
= Repulsion

e Velocity Damping

e Collision Detection

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

If m = 1;

41

Velocity Damping and Un-damping

e Damping
® |mitates viscous materials or air resistance
" Implement by downward scaling velocity

e Un-damping
= Self-propelled objects (bee swarms)
" Implement by upward scaling velocity

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

42

Collisions
m
e (Collisions against simple objects
= Walls
= Bounding Spheres

e Collision against complex
objects

" Terrain
= Other objects

" Terrain is usually modeled as a
texture-based height field

I Computer Graphics, A. Pizurica and D. Babin, Spring 2021

<—Vt

v, = nhormal component of velocity
v, = tangent component of velocity
V = (1-p)v, — ev,

i = dynamic friction (affects tangent
velocity)

€ = resilience (affects normal velocity)

43

Update Positions

e FEuler Integration

pzpprev'l'\/*At

e Verlet (for simple velocity updates, saves a rendering pass for

computing velocity)

Pi1 = Pi + (P Piy) +@ * At?

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

central-difference

backward-difference

f(x)

forward-difference

44

