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Overview

• Animating using:
§ Motion capture
§ Free form deformation
§ Level sets
§ Skeletons
§ Boids
§ Particle systems

The material partially based on: E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012
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Typical Character 
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Motion Capture

• More realistic  motion 
sequences can be 
generated by Motion 
Capture

• Attach joint  position 
indicators to real actors

• Record live action
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Motion Capture
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Soft object animation

• Soft object is an object that can be deformed by the user or 
during the process of animation.

• Shape distortion to highlight dynamic interaction with the 
environment.

• Free Form Deformation (FFD) is part of the computer graphics 
literature on soft objects
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Soft object animation

• Examples:
§ Deform the shape of a car during a collision in a racing 
simulation 

§ Realistic deformation of an object that has a highly elastic and 
flexible shape

§ Facial expressions, motion of the human body, and cartoon 
animation 

• Deformation of an object occurs by moving the vertices of a 
polygonal object or the control points of a parametric curve 
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Free Form Deformation (FFD)

• Deform space by deforming a lattice around an object

• The deformation is defined by moving the control points
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Free Form Deformation (FFD)

Source: Wikipedia

ki,j are control points
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Free Form Deformation (FFD)

The lattice defines a Bezier volume

1. Compute lattice coordinates

2. Alter the control points

3. Compute the deformed points
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FFD Example
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FFD Example
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FFD Animation

Animate a reference and a deformed lattice
reference deformed morphed
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FFD Animation

Animate the object through the lattice
reference deformed morphed
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Level sets

§ Curve propagation based on internal and external energies
§ Yield smooth segmentation results
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Level sets
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Level set morphing

§ Important for computer animation.
§ Simulating smooth transitions and material behavior.
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Skeletons

• Skeleton with joined “bones”

• Can add “skin” on top of bones

• Automatic or hand-tuned 
skinning
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Skeletons in animation
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Skeletons in animation
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Swarms

§ Organic movement of large groups (flocks of birds, school of fish)
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• A swarm sometimes seems to behave as if it is an individual  
organism. Ants or wasps on a hunt for food, or on the attack, 
behave as if with a single mind, co-ordinating different actions 
with different parts of the swarm.

• A swarm (of ants/bees/locusts) often exhibits behaviours that 
seem clearly more intelligent than any of the individual members 
of it. 

• The way in which swarms in some species  change direction is 
astoundingly well co-ordinated.

• The way in which swarms in some species avoid obstacles seems 
to be extremely well choreographed

Swarms
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Boids

• Craig Reynolds is a computer graphics researcher, who 
revolutionised animation in games and movies with his classic 
paper :

• Reynolds, C. W. (1987) Flocks, Herds, and Schools: A Distributed 
Behavioral Model, in Computer Graphics, 21(4) (SIGGRAPH '87 
Conference Proceedings) pages 25-34. 

• Reynold’s solved the problem by trying a very simple approach, 
which was inspired by a sensible view of how animals actually do it.
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Reynold’s Rules

• Reynolds came up with three simple rules that solve this 
problem, resulting in entirely realistic flocking behaviour.

• To explain them, we first need to consider the perceptual 
system of an individual (which Reynolds called a boid). 

• For realistic movement, you need a realistic view of 
perception, e.g. a starling’s movement is not influenced at all 
by the flock mates that it cannot see – such as those out of its 
line of sight, or too far away.
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A simple sensory system

• The boid can see a certain amount 
ahead, and is also aware of any 
flockmates within limits on either 
side.

• Two parameters, angle and 
distance, define the system. 

• The boid will only be influenced by 
those others it can sense according 
to these parameters.  
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Rule 1: Separation

• At each iteration, adjust 
velocity to avoid getting 
too close to local (the 
ones it is aware of) 
flockmates.

• “Personal space” rule -
move away sharply from 
very close neighbours.
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Rule 2: Alignment

• At each iteration, a boid
adjusts its velocity to 
match the average 
velocity of its local 
flockmates. 

• In other words, boids
align themselves to their 
neighbors’ average 
direction.
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Rule 3: Cohesion

• At each iteration, a boid
adjusts its velocity 
towards the centroid of 
its flockmates. 

• In other words, boids try 
to move to the middle of 
their local 
neighbourhood group
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Boids: Demo
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Particle systems
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• Computational Fluid Dynamics (CFD):
§ Apply only to the surface of the 
water (cheaper to compute than the 
whole volume)

• Other techniques:
§ Superimpose sine waves of a variety 
of amplitudes and directions. 

§ Heightfield approximations: if the 
surface is the only interest, it can be 
represented using a 2d heightfield 
and animated by 2d wave equations 
with interaction forces.

H(x, y)
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Real-time Fluids

§ Particle systems: This approach 
is good at simulating a small 
amount of water such as a 
puddle, a bubble, or splashing 
fluids
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Fluid Simulation Example

• Gravity: pull of force to 
the ground.

§ Value 0 means no 
gravity, so particles fly 
away.

• Elasticity: loss of energy 
after the contact with 
the surface.

§ Value 1 means that 
particle will bounce 
indefinitely, value 0 
means it will not bounce 
at all. 

https://www.khanacademy.org/partner-
content/pixar/effects/particle/pi/water-
simulation
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Fluid Simulation Example

• Gravity: pull of force to 
the ground.

§ Value 0 means no 
gravity, so particles fly 
away.

• Elasticity: loss of energy 
after the contact with 
the surface.

§ Value 1 means that 
particle will bounce 
indefinitely, value 0 
means it will not bounce 
at all. 

https://www.khanacademy.org/partner-
content/pixar/effects/particle/pi/water-
simulation
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Types of Particle Systems

• Stateless Particle System 
§ Particle data is computed from birth to death by a closed form 
function defined by a set of start values and a current time (does 
not react to dynamic environment)

• State Preserving Particle System
§ Uses numerical iterative integration methods to compute 
particle data from previous values and changing environmental 
descriptions.



Computer Graphics, A. Pizurica and D. Babin, Spring 2021 36

Stateless Particle Systems

• Stateless Simulation –
Computed particle data by 
closed form functions

§ No reaction on 
dynamically changing 
environment.

§ No storage of varying data
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Particle Life Cycle

• Generation – Particles are generated randomly within a 
predetermined location.

• Particle Dynamics – The attributes of a particle may vary over 
time (e.g. color gets darker as particle cools off after explosion)

• Extinction 
§ Age – Time the particle has been alive
§ Lifetime – Maximum amount of time the particle can live.

• Premature Extinction:
§ Running out of bounds (e.g. particle gets too dark to see)
§ Hitting an object (ground)
§ Attribute reaches a threshold (particle becomes transparent)
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Rendering

• Expensive to render thousands of particles

• Simplify: avoid hidden surface calculations
§ Each particle has small graphical primitive (blob)

• Particles that map to the same pixels are additive 
§ Sum the colors together
§ No hidden surface removal
§ Motion blur is rendered by streaking based on the particles 
position and velocity
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State Preserving Algorithm

Rendering Passes:

• Process Birth and Deaths

• Update Velocities

• Update Positions

• Sort Particles for alpha blending (optional, takes multiple 
passes)

• Render particles
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Birth and Death

• Birth = allocation of a particle 
§ Associate new data with an available index
§ Serial process (offloaded to CPU)
§ Initial particle data determined (on CPU)

• Death = deallocation of a particle
§ Frees the index associated with particle
§ Extra pass to move any dead particles
§ In practice particles fade out or fall out of view 
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• Global Forces
§ Wind
§ Gravity

• Local Forces
§ Attraction 
§ Repulsion

• Velocity Damping

• Collision Detection

41

Update Velocities

𝐹 ='
0

1

𝐹2

𝐹 = 𝑚𝑎

𝑎 =
𝐹
𝑚

If 𝑚 = 1: 𝐹 = 𝑎
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Velocity Damping and Un-damping

• Damping
§ Imitates viscous materials or air resistance
§ Implement by downward scaling velocity

• Un-damping
§ Self-propelled objects (bee swarms)
§ Implement by upward scaling velocity
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Collisions

• Collisions against simple objects
§ Walls 
§ Bounding Spheres

• Collision against complex 
objects
§ Terrain
§ Other objects
§ Terrain is usually modeled as a 
texture-based height field

V

Vt

Vn

vn = normal component of velocity

vt = tangent component of velocity

V = (1-μ)vt – εvn

μ = dynamic friction (affects tangent 
velocity)

ε = resilience (affects normal velocity)
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Update Positions

• Euler Integration

p = pprev + v * Δt

• Verlet (for simple velocity updates, saves a rendering pass for 
computing velocity)

pi+1 = pi + (pi– pi-1) + a * Δt2        


