

E016712: Computer Graphics Medical Visualization Part 2

Lecturers: Aleksandra Pizurica and Danilo Babin

Outline

Presentation outline:

- Segmentation & skeletonization
- Functional imaging & visualization
- Use cases

Visualization vs quantification

- Visualization: surface rendering, volume rendering...
- Not enough for diagnosis or treatment: we need measurements!

Medical image analysis

- Segmentation: determine which pixels belong to which organs/tissues
- Skeletonization: extracting centerlines
- With segmentation and skeletonization we can perform measurements!

Lung cross-sectional slice

Segmentation methods: Thresholding

- Separate objects in image by their brightness ("color")
- Automatic method: choose threshold at maximum histogram curvature

Segmentation methods: Morphology

- Structuring element moves on the object
- Two basic operations:

Segmentation methods: Morphological profiles

Use structuring elements of different size:
 r=2

We are able to determine the size of an object in the image – binary and gray-scale!

Ordered skeletonization

- Extract image of centerlines
- Iterative thinning in a specific order (from vessel borders inwards)
- Remove pixels with preserving connectivity in 26-neighborhood

Pixel redundant

Pixel not redundant

Pixel not redundant

Pixel redundant

Result: one pixel wide centerlines!

Ordered skeletonization

- Enables best path calculations (for catheter guidance)
- Allows measurements at each vessel location (e.g. radii, bending angles...)
- Does NOT classify structure into separate vessels
- Does NOT detect vessel bifurcations or malformations

Skeleton building

- Convert image to graph
- Classify vertices by number of neighbors
- Classify edges by vertices they connect
- Make link and node subgraphs
- Create skeleton

10

Skeleton

- Allows various path calculations (for catheter guidance)
- Allows automatic AVM detection and extraction
- Classifies the structure into vessel branches and bifurcations
- Better visualization with multiple color mappings

VTK tube filter for centerline visualization

vtkSmartPointer<vtkLineSource> lineSource =
vtkSmartPointer<vtkLineSource>::New(); lineSource->SetPoint1(1.0, 0.0, 0.0);
lineSource->SetPoint2(0.0, 1.0, 0.0);

vtkSmartPointer<vtkTubeFilter> tubeFilter =
vtkSmartPointer<vtkTubeFilter>::New();
tubeFilter->SetInputConnection(lineSource->GetOutputPort());
tubeFilter->SetRadius(.025);
tubeFilter->SetNumberOfSides(50);
tubeFilter->Update();

```
vtkSmartPointer<vtkPolyDataMapper> tubeMapper =
    vtkSmartPointer<vtkPolyDataMapper>::New();
tubeMapper->SetInputConnection(tubeFilter->GetOutputPort());
vtkSmartPointer<vtkActor> tubeActor = vtkSmartPointer<vtkActor>::New();
tubeActor->SetMapper(tubeMapper);
```

```
renderer->AddActor(tubeActor);
```

Vessel cross-section visualization

Virtual endoscopy: Pancreatic duct

• Follow a centerline while moving through vessels/organs.

Magnetic Resonance Imaging (MRI)

Structural imaging

Functional imaging

Magnetic Resonance Imaging (MRI)

 MRI uses static and variant magnetic field to acquire image slices by modifying nuclear spins.

Functional MRI (fMRI) can measure function: diffusion, oxygenation of blood, blood flow (inversion of incoming blood signal).

- Requires advanced image processing, analysis and visualization.
- Visualization
 - Diffusion Tensor Imaging (DTI)
 - Blood flow visualization using Phase-Contast MRI (PC-MRI)

Diffusion tensor imaging (DTI)

- fMRI can measure diffusion of liquids (water) in brain.
- Diffusion directions correspond to connections (pathways) of brain
- Visualization: calculate the direction of diffusion for each voxel, connect to fibers and color-code according to direction and connectivity.

Diffusion tensor imaging (DTI)

DTI: Fiber tracking

DTI: Slicing

4D blood flow visualization

- Phase Contrast MRI can measure blood flow.
- White/black indicate blood flow up/down, intensity is proportional to velocity
- Visualization: calculate the direction of flow for each voxel, connect to flow stream-lines and color-code according velocity.

4D blood flow visualization: flow curves

4D blood flow visualization

Use case: Arteriovenous Malformation (AVM)

- Direct artery-vein connection (no capillaries)
- Nidus malformed blood vessels (danger of rupture)

AVM Embolization

AVM

 \odot

- Must NOT occlude draining veins!
- Goal: AVM model extraction and decomposition

AVM decomposition demo

Aortic stiffness

- Overall cardiovascular health indicator
- Predictor of disease outcome (Marfan syndrome, hypertension, diabetes, Turner syndrome...)
- Estimated with pulse wave velocity (PWV) – speed of the pulse wave
- Stiffer aorta yields higher PWV
- Goal: measure PWV

Aortic stiffness: Pulse Wave Velocity (PWV)

Aortic centerline extraction

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Velocity curves

Computer Graphics, A. Pizurica and D. Babin, Spring 2021

Pulse Wave Velocity demo

Virtual reality: education & examination

Virtual reality: training

Augmented reality

- Map (patient-specific) images to real-time viewing.
- Account for movement, occlusion...

Démonstration: Affichage d'un scan de cerveau sur tête réelle et manipulation du contenu.

Demonstration: Display of a brain scan on a real head and contents manipulations.

Augmented reality

Near-infra red (NIR) imaging: vein finder

- NIR imaging detects (de-) oxygenated blood.
- Ideal for finding blood vessels for injections.
- Problem: how to efficiently visualize the veins? Screen solutions have proven difficult (looking at a screen while giving an injection).

Near-infra red (NIR) imaging: vein finder

Computer Graphics, A. Pizurica and D. Babin, Spring 2021